Showing 1 - 3 results of 3 for search '"остаточная цитоплазма"', query time: 0.47s Refine Results
  1. 1
    Academic Journal

    Contributors: Российский научный фонд (проект № 14–50-00029) и РФФИ (грант № 16-04-01447)

    Source: Andrology and Genital Surgery; Том 18, № 1 (2017); 48-61 ; Андрология и генитальная хирургия; Том 18, № 1 (2017); 48-61 ; 2412-8902 ; 2070-9781 ; 10.17650/2070-9781-2017-18-1

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/224/211; Zamboni L. Sperm structure and its relevance to infertility. An electron microscopic study. Arch Pathol Lab Med 1992;116(4):325–44.; Gannon J.R., Emery B.R., Jenkins T.G., Carrell D.T. The sperm epigenome: implications for the embryo. Adv Exp Med Biol 2014;791:53–66.; Carrell D.T. Epigenetics of the male gamete. Fertil Steril 2012;97(2):267–74.; Castillo J., Estanyol J.M., Ballescá J.L., Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl 2015;17(4):601–9.; Braun R.E. Packaging paternal chromosomes with protamine. Nature Genetics 2001;28:10–2.; Георгиев Г.П., Ченцов Ю.С. О структуре клеточного ядра(экспериментальное электронно-микроскопическое исследование изолированных ядер). Докл. АН СССР 1960;132:199–202. [Georgiev G.P., Chentsov Yu.S. On the structure of cell nuclei: Experimental electron microscopic investigation of isolated nuclei. Doklady Akademii nauk SSSR = Proceedings of the USSR Academy of Sciences 1960;132:199–202. (In Russ.)].; Kierszenbaum A.L., Tres L.L. The acrosome – acroplaxome – manchette complex and the shaping of the spermatid head. Arch. Histol Cytol 2004;67:271–84.; Green G.R., Balhorn R., Poccia D.L., Hecht N.B. Synthesis and processing of mammalian protamines and transition proteins. Mol Reprod Dev 1994;37:255–63.; Govin J., Caron C., Rousseaux S. et al. Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 2005;30:357–9.; McPherson S., Longo F.J., Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem 1993;37:109–28.; Коничев А.С., Севастьянова Г.А. Молекулярная биология. М.: ИЦ «Академия», 2012. [Konichev A.S., Sevastyanova G.A. Molecular biology. Moscow: IC «Akademiya», 2012. (In Russ.)].; Marcon L., Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004;70:910–8. 13.; Oliva R. Protamines and male infertility. Hum Reprod Update 2006;12(4):417–35.; Castillo J., Amaral A., Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology 2014;2(3):326–38.; Prigent Y., Muller S., Dadoune J.P. Immunoelectron microscopical distribution of histones H2B and H3 and protamines during human spermiogenesis. Mol Hum Reprod 1996;2(12):929–235.; Dadoune J.P. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 2003;61:56–75.; Love C.C., Kenney R. Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod 1999;60:615–20.; D’Occhio M.J., Hengstberger K.J., Johnston S.D. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Anim Reprod Sci 2007;101(1–2):1–17.; Brykczynska U., Hisano M., Erkek S. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 2010;17(6):679–87.; Miller D., Brinkworth M., Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2010;139(2):287–301.; Hammoud S.S., Nix D.A., Zhang H. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009;23;460(7254):473–78.; Arpanahi A., Brinkworth M., Iles D. et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 2009;19:1338–49.; Rousseaux S., Reynoird N., Escoffier E. et al. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reproductive BioMedicine Online 2008;16:492–503.; Ward W.S. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 2010;16:30–6.; Małgorzata K., Depa-Martynów M., Butowska W. et al. Human spermatozoa ultrastructure assessment in the infertility treatment by assisted reproduction technique. Arch Androl 2007;53(6):297–302.; Бочарова Е.Н., Брагина Е.Е., Гусак Ю.К. Количественное ультраструктурное исследование сперматозоидов человека при нарушениях фертильности. Вестник новых медицинских технологий 2007;24(4):199–201. [Bocharova E.N., Bragina E.E., Gusak Yu.K. Quantitative ultrastructural research of spermatozoon from patients with fertility infringement. Vestnik novikh meditsinskikh tekhnologiy = Journal of New Medical Technologies 2007;24(4):199–201. (In Russ.)]; Talebi A.R., Vahidi S., Aflatoonian A. et al. Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions. Andrologia 2012;44 Suppl 1:462–70.; Hammoud S.S., Nix D.A., Hammoud A.O. et al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 2011;26:2558–69.; Арифулин Е.А., Брагина Е.Е., Замятнина В.А. и др. Компактизация ДНК в сперматозоидах человека. I. Динамика изменений компактизации нуклеогистонного и нуклеопротаминного хроматина в дифференцирующихся сперматидах. Онтогенез 2012;(2):143–53. [Arifulin E.A., Bragina E.E., Zamyatnina V.A. et al. Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodeling in differentiating human spermatids. Ontogenez = Russian Journal of Developmental Biology 2012;(2):143–53. (In Russ.)].; Manochantr S., Chiamchanya C., Sobhon P. Relationship between chromatin condensation, DNA integrity and quality of ejaculated spermatozoa from infertile men. Andrologia 2012;44(3):187–99.; Iranpour F.G., Nasr-Esfahani M.H., Valojerdi M.R., al-Taraihi T.M. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J Assist Reprod Genet 2000;17(1):60–6.; Zini A., Gabriel M.S., Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril 2007;87(1):217–19.; Foresta C., Zorzi M., Rossato M., Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl 1992;15(4):330–7.; Bianchi P.G., Manicardi G.C., Bizzaro D. et al. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 1993;49:1083–88.; Montjean D., Zini A., Ravel C. et al. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 2015;3(2):235–40.; Singh N.P., Danner D.B., Tice R.R. et al. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res 1989;184(2):461–70.; Gorczyca W., Traganos F., Jesionowska H., Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 1993;207(1):202–5.; Varghese A.C., Bragais F.M., Mukhopadhyay D. et al. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia 2009;41(4):207–15.; Ahmadi A., Ng S.C. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 1999;284:696–704.; Benchaib M., Braun V., Lornage J. et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 2003;18:1023–8.; Seli E., Gargner D.K., Schoolcraft W.B. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 2004;82:378–83.; Simon L., Liu L., Murphy K. et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod 2014;29(5):904–17.; Hamidi J., Frainais C., Amar E. et al. A double-blinded comparison of in situ TUNEL and aniline blue versus flow cytometry acridine orange for the determination of sperm DNA fragmentation and nucleus decondensation state index. Zygote 2015;23(4):556–62.; Manicardi G.C., Bianchi P.G., Pantano S. et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod 1995;52(4): 864–7.; Simon L., Castillo J., Oliva R., Lewis S.E. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 2011;23(6):724–34.; Skowronek F. Casanova G. Alciaturi J. et al. DNA sperm damage correlates with nuclear ultrastructural sperm defects in teratozoospermic men. Andrologia 2012;44(1):59–65.; Irvine D.S., Twigg J.P., Gordon E.L. et al. DNA integrity in human spermatozoa: relationships with semen quality. J Androl 2000;21:33–44.; Mantas D., Angelopoulou R., Msaouel P. et al. Evaluation of sperm chromatin quality and screening of Y chromosome microdeletions in Greek males with severe oligozoospermia. Arch Androl 2007;53:5–8.; De Iuliis G.N., Thomson L.K., Mitchell L.A. et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-– deoxyguanosine, a marker of oxidative stress. Biol Reprod 2009;81(3):517–24.; Aoki V.W., Emery B.R., Liu L., Carrell D.T. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl 2006;27:890–8.; Zini A., Bielecki R., Phang D., Zenzes M.T. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 2001;75:674–7.; Virro M.R., Larson-Cook K.L., Evenson D.P. Sperm chromatin structure assay(scsa) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 2004;81:1289–95.; Wyrobek A.J., Eskenazi B., Young S. et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA 2006;103:9601–6.; Sati L., Ovari L., Bennett D. et al. Double probing of human spermatozoa for persistent histones, surplus cytoplasm, apoptosis and DNA fragmentation. Reprod Biomed Online 2008;16(4):570–9.; Muratori M., Tamburrino L., Marchiani S. et al. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol Med 2015;21:109–22.; Брагина Е.Е., Бочарова Е.Н. Количественное электронно-микроскопическое исследование сперматозоидов при диагностике мужского бесплодия. Андрология и генитальная хирургия 2014;(1):41–50. [Bragina Y.Y., Bocharova Y.N. Quantitative electron microscopic examination of sperm for male infertility diagnosis. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2014;(1):41–50. (In Russ.)].; Guzick D.S., Overstreet J.W., Factor-Litvak P. et al. National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 2001;345:1388–93.; Sakkas D., Tomlinson M. Assessment of sperm competence. Semin Reprod Med 2000;18:133–9.; Avendano C., Franchi A., Duran H., Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril 2010;94:549–57.; Abu D.A., Franken D.R., Hoffman B., Henkel R. Sequential analysis of sperm functional aspects involved in fertilisation: a pilot study. Andrologia 2012;44(Suppl 1): 175–81.; Boitrelle F., Pagnier M., Athiel Y. et al. A human morphologically normal spermatozoon may have noncondensed chromatin. Andrologia 2015;47(8):879–86.; Lewis J.D., Song Y., de Jong M.E. et al. A walk through vertebrate and invertebrate protamines. Chromosoma 1999;111:473–82.; Corzett M., Mazrimas J., Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev 2002;61:519–27.; Ozmen B., Koutlaki N., Youssry M. et al. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online 2007;14:384–95.; Agarwal A., Said Tamer M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003;9:331–45.; Tarozzi N., Bizzaro D., Flamigni C., Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online 2007;14:746–57.; Manicardi G.C., Bizzaro D., Sakkas D. Basic and Clinical Aspects of Sperm Chromomycin A3 Assay. In: Zini A., Agarwal A.(Ed.). Sperm Chromatin biological and clinical application in male infertility and assisted reproduction. New York: Springer, 2011. Pp. 171–179.; Baccetti B., Bergamini M., Bernieri G. et al. Submicroscopic mathematical evaluation of spermatozoa in assisted reproduction. 4. The bovine fertilization (Notulae seminologicae 10). J Submicrosc Cytol Pathol 1997;29(4):563–82.; Bartoov B., Eltes F., Reichart M. et al. Quantitative ultramorphological analysis of human sperm: fifteen years of experience in the diagnosis and management of male factor infertility. Arch Androl 1999;43(1):13–25.; Zhang Z.H., Mu S.M., Guo M.S. et al. Dynamics of histone H2A, H4 and HS1ph during spermatogenesis with a focus on chromatin condensation and maturity of spermatozoa. Sci Rep 2016;28:25089.; Auger J., Mesbah M., Huber C., Dadoune J.P. Analine blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl 1990;13:452–62.; Sakkas D., Urner F., Bianchi P.G. et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod 1996;11(4):837–43.; Eid L.N., Lorton S.P., Parrish J.J. Paternal infl uence on S-phase in the fi rst cell cycle of the bovine embryo. Biol Reprod 1994;51:1232–7.; Zalenskaya I.A., Bradbury E.M., Zalensky A.O. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Comm 2000;279:213–8.; Puri D., Dhawan J., Mishra R.K. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin. Epigenetics 2010;5:386–91.; Ihara M., Meyer-Ficca M.L., Leu N.A. et al. Paternal poly(ADP ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet 2014;10: e1004317.; Junca A., Gonzalez Marti B., Tosti E. et al. Sperm nucleus decondensation, hyaluronic acid(HA) binding and oocyte activation capacity: different markers of sperm immaturity? Case reports. J Assist Reprod Genet 2012;29:353–5.; Dattilo M., Cornet D., Amar E. et al. The importance of the one carbon cycle nutritional support in human male fertility: a preliminary clinical report. Reprod Biol Endocrinol 2014;12:71.; Kazerooni T., Asadi N., Jadid L. et al. Evaluation of sperm’s chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J Assist Reprod Genet 2009;26:591–6.; Huszar G., Ozenci C.C., Cayli S. et al. Hyaluronic acid binding by human spermatozoa indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril 2003;79(3):1616–24.; Huszar G., Sbracia M., Vigue L. et al. Sperm plasma membrane remodeling during spermiogenetic maturation in men: relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios. Biol Reprod 1997;56:1020–4.; Evenson D.P., Jost L.K., Marshall D. et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 1999;14(4):1039–49.; Sakkas D., Alvarez J.G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 2010;93:1027–36.; Agarwal A., Majzoub A., Esteves S.C. et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 2016;5(6):935–50. 85.; Agarwal A., Varghese, A. C., Sharma R.K. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol 2009;590:377–402.; Barratt L.R., Aitken R.J., Björndahl L. et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod 2010;25:824–38.; Zini A., Sigman M. Are tests of sperm DNA damage clinically useful? pros and cons. J Androl 2009;30(3):219–29.; Davies M.J., Moore V.M., Willson K.J. et al. Reproductive technologies and the risk of birth defects. New Engl J Med 2012;366:1803–13.; Fernández-Gonzalez R., Moreira P.N., Pérez-Crespo M. et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod 2008;78:761–72.; Haghpanah T., Salehi M., Ghaffari Novin M. et al. Does sperm DNA fragmentation affect the developmental potential and the incidence of apoptosis following blastomere biopsy? Syst Biol Reprod Med 2016;62(1):1–10.; Zini A., Boman J.M., Belzile E., Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and metaanalysis. Hum Reprod 2008;23:2663–8.; Collins J.A., Barnhart K.T., Schlegel P.N. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril 2008;89:823–31.; Robinson L., Gallos I.D., Conner S.J. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 2012;27(10):2908–17.; Osman A., Alsomait H., Seshadri S. et al. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online 2015;30:120–7.; Cissen M., Wely M.V., Scholten I. et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One 2016;11(11):e0165125.; Showell M.G., Mackenzie-Proctor R., Brown J. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2014;(12):CD007411.; Menezo Y. Jr, Russo G., Tosti E. et al. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet 2007;24:513–20.; Jungwirth А., Diemer T., Dohle G.R. et al. Guidelines on Male Infertility. European Association of Urology 2015. 42 p.; Jarow J., Sigman M., Kolettis P.N. et al. The optimal evaluation of the infertile male: best practice statement reviewed and validity confirmed 2011. Available at: https://www.auanet.org/education/ guidelines/maleinfertility-d. cfm. 1; Chohan K.R., Griffin J.T., Lafromboise M. et al. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 2006;27(1):53–9.; Smith R., Kaune H., Parodi D. et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod 2006;21(4):986–93.; Tesarik J., Greco E., Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 2004;19(3):611–5.; Carrell D.T., Liu L., Peterson C.M. et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl 2003;49(1):49–55. 1; Sergerie M., Laforest G., Bujan L. et al. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod 2005;20(12):3446–51.; Tamburrino L., Marchiani S., Montoya M. et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 2012;14(1):24–31.; Руднева С.А., Брагина Е.Е., Арифулин Е.А. и др. Фрагментация ДНК в сперматозоидах и ее взаимосвязь с нарушением сперматогенеза. Андрология и генитальная хирургия 2014;(4):26–33. [Rudneva S.A., Bragina E.E., Arifulin E.A. et al. DNA fragmentation in spermatozoa and its relationship with impaired spermatogenesis. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2014;(4):26–33. (In Russ.)].; Sakkas D., Moffatt O., Manicardi G.C. et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 2002;66:1061–7.; Cho C., Willis W.D., Goulding E.H. et al. Haploinsufficiency of protamine-1 or –2 causes infertility in mice. Nat Genet 2001;8:82–6.; Aoki V.W., Moskovtsev S.I., Willis J. et al. DNA integrity is compromised in protamine-deficient human sperm. J Androl 2005;26:741–8.; Henkel R., Hoogendijk C.F., Bouic P.J., Kruger T.F. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia 2010;42(5): 305–13.; Sharbatoghli M., Rezazadeh Valojerdi M., Bahadori M.H. et al. The Relationship between Seminal Melatonin with Sperm Parameters, DNA Fragmentation and Nuclear Maturity in Intra-Cytoplasmic Sperm Injection Candidates. Cell J 2015;17(3):547–53.; Shamsi M.B., Kumar R., Dada R. Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction. Indian J Med Res 2008;127:1115–23.; Sakkas D., Mariethoz E., Manicardi G. et al. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 1999;4:31–7.; Mahfouz R.Z., Sharma R.K., Poenicke K. et al. Evaluation of poly (ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril 2009;91(5 Suppl): 2210–20.; Venkatesh S., Riyaz A.M., Shamsi M.B. et al. Clinical significance of reactive oxygen species in semen of infertile Indian men. Andrologia 2009;41:251–56.; Moskovtsev S.I., Jarvi K., Mullen J.B. et al. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril 2010;93(4):1142–6.; Gharagozloo P., Aitken R.J. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 2011;26(7):1628–40.; Menezo Y., Hazout A., Panteix G. et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 2007;14:418–21.; Menezo I., Evenson D., Cohen M., Dale B. Effect of Antioxidants on Sperm Genetic Damage. In: E. Baldi, M. Muratori(eds.), Genetic Damage in Human Spermatozoa, Advances in Experimental Medicine and Biology. New York: Springer Science+Business Media, 2014. P. 173–189.; https://agx.abvpress.ru/jour/article/view/224

  2. 2
  3. 3