Showing 1 - 20 results of 70 for search '"нелинейное уравнение Шредингера"', query time: 0.71s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Contributors: 1.This work was supported by RFBR, project No 15-02-03311 А. 2.This work was supported by RFBR, project No 18-08-01356-a., 1.Работа выполнена при финансовой поддержке РФФИ, проект № 15-02-03311 А. 2.Работа поддержана грантом РФФИ № 18-08-01356-а.

    Source: Modeling and Analysis of Information Systems; Том 25, № 1 (2018); 133-139 ; Моделирование и анализ информационных систем; Том 25, № 1 (2018); 133-139 ; 2313-5417 ; 1818-1015

    File Description: application/pdf

    Relation: https://www.mais-journal.ru/jour/article/view/638/492; Lee T.E., “Anomalous Edge State in a Non-Hermitian Lattice”, Phys. Rev. Lett., 116:13 (2016), 133903.; Leykam D., et. al, “Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems”, Phys. Rev. Lett., 118:4 (2017), 040401.; Bunkov Yu.M., Volovik G.E., “Magnon Condensation into a Q Ball in 3He−B”, Phys.Rev.Lett., 98:26 (2007), 265302.; Jackiw R., Pi S.Y., “Self-Dual Chern–Simons Solitons”, Prog. Theor. Phys. Suppl., 107 (1992), 1–40.; Aglietti U., et. al., “Anyons and chiral solitons on a line”, Phys.Rev.Lett., 77:21 (1996), 4406–4409.; Moon K., et. al., “Spontaneous interlayer coherence in double-layer quantum Hall systems: Charged vortices and Kosterlitz-Thouless phase transitions”, Phys.Rev.B., 51:8 (1995), 5138–5170.; Agalarov A.M., Magomedmirzaev R.M., “Nontrivial class of composite U(σ + µ) vector solitons”, JETP Letters, 76:7 (2002), 414–418.; Novikov S., Manakov S.V., Pitaevskii L.P., Zakharov V.E., Theory of solitons: the inverse scattering method, Springer Science, 1984.; Faddeev L., Jackiw R., “Hamiltonian reduction of unconstrained and constrained systems”, Phys.Rev.Lett., 60:17 (1988), 1692–1694.; Agalarov A., Zhulego V., Gadzhimuradov T., “Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schr¨odinger equations”, Phys.Rev.E., 91:4 (2015), 042909.; Hirota R., The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.; Zakharov V.E., Mikhailov A.V., “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, JETP, 47:6 (1978), 1017–1027.

  17. 17
  18. 18
  19. 19
  20. 20