-
1Academic Journal
Authors: I. M. Rashchupkin, T. G. Amstislavskaya, E. V. Markova, A. A. Ostanin, E. Ya. Shevela, И. М. Ращупкин, Т. Г. Амстиславская, Е. В. Маркова, А. А. Останин, Е. Я. Шевела
Contributors: The work was funded by the federal budget for fundamental scientific research (project No. 122011800324-4).
Source: Medical Immunology (Russia); Том 25, № 3 (2023); 521-526 ; Медицинская иммунология; Том 25, № 3 (2023); 521-526 ; 2313-741X ; 1563-0625
Subject Terms: нейрогенез, M2 phenotype, mice, depression, neuroregeneration, neurogenesis, М2-фенотип, мыши, депрессия, нейрорегенерация
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2731/1674; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11244; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11246; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11248; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11249; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11250; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11251; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11252; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11312; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11313; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11314; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2731/11355; Bianchi V.E., Locatelli V., Rizzi L. Neurotrophic and neuroregenerative effects of GH/IGF1. Int. J. Mol. Sci., 2017, Vol. 18, no. 11, 2441. doi:10.3390/ijms18112441.; Chernykh E.R., Shevela E.Ya., Sakhno L.V., Tikhonova M.A., Petrovsky Ya.L., Ostanin A.A. The generation and properties of human M2-like macrophages: potential candidates for CNS repair? Cell Ther. Transplant., 2010, Vol. 2, no. 6. doi:10.3205/ctt-2010-en-000080.01.; Deyama S., Duman R.S. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol. Biochem. Behav., 2020, Vol. 188, 172837. doi:10.1016/j.pbb.2019.172837.; Fan C., Song Q., Wang P., Li Y., Yang M., Yu S.Y. Neuroprotective effects of curcumin on IL-1β-induced neuronal apoptosis and depression-like behaviors caused by chronic stress in rats. Front. Cell. Neurosci., 2019, Vol. 12, 516. doi:10.3389/fncel.2018.00516; Hill A.S., Sahay A., Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 2015, Vol. 40, no. 10, pp. 2368-2378.; Hollis F., Kabbaj M. Social defeat as an animal model for depression. ILAR J., 2014, Vol. 55, no. 2, pp. 221-232.; Huang X., Li Y., Fu M., Xin H-B. Polarizing macrophages in vitro. Methods Mol. Biol., 2018, Vol. 1784, pp. 119-126.; Kuang W-H., Dong Z-Q., Tian L-T., Li J. IGF-1 defends against chronic-stress induced depression in rat models of chronic unpredictable mild stress through the PI3K/Akt/FoxO3a pathway. Kaohsiung J. Med. Sci., 2018, Vol. 34, no. 7, pp. 370-376.; Leng F., Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2020, Vol. 17, no. 3, pp. 157-172.; Lin J., Xu A., Jin J., Zhang M., Lou J., Qian C., Zhu J., Wang Y., Yang Z., Li X., Yu W., Liu B., Tao H. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression. Oncoimmunology, 2022, Vol. 11, no. 1, 2024941. doi:10.1080/2162402X.2021.2024941.; Markova E.V., Shevela E.Ya., Knyazeva M.A., Savkin I.V., Serenko E.V., Rashchupkin I.M., Amstislavskaya T.G., Ostanin A.A., Chernykh E.R. Effect of M2 macrophage-derived soluble factors on behavioral patterns and cytokine production in various brain structures in depression-like mice. Bull. Exp. Biol. Med., 2022, Vol. 172, no. 3, pp. 341-344.; Micheli L., Ceccarelli M., D’Andrea G., Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull., 2018, Vol. 143, pp. 181-193.; Rashchupkin I.M., Maksimova A.A., Sakhno L.V., Ostanin A.A., Shevela E.Ya., Chernykh E.R. Effect of M2 macrophage-derived soluble factors on proliferation and apoptosis of SH-SY5Y Cells. Bull. Exp. Biol. Med., 2021, Vol. 171, no. 1, pp. 59-63.; Troyan A.S., Levada O.A. The diagnostic value of the combination of serum brain-derived neurotrophic factor and insulin-like growth Factor-1 for major depressive disorder diagnosis and treatment efficacy. Front. Psychiatry, 2020, Vol. 11, 800. doi:10.3389/fpsyt.2020.00800.; Warner-Schmidt J.L., Duman R.S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl Acad. Sci USA, 2007, Vol. 104, no. 11, pp. 4647-4652.; https://www.mimmun.ru/mimmun/article/view/2731
-
2Academic Journal
Authors: I. M. Rashchupkin, E. Ya. Shevela, E. R. Chernykh, И. М. Ращупкин, Е. Я. Шевела, Е. Р. Черных
Contributors: The work was carried out at the expense of the federal budget for fundamental research on the topic “Justification and development of new technologies for immunomodulation, stimulation of reparative processes and correction of behavioral and addictive disorders based on the use of myeloid, lymphoid and stem cells and/or their secretome products”.
Source: Medical Immunology (Russia); Том 23, № 4 (2021); 677-684 ; Медицинская иммунология; Том 23, № 4 (2021); 677-684 ; 2313-741X ; 1563-0625
Subject Terms: нейрорегенерация, M2 phenotype, SH-SY5Y cells, differentiation, retinoic acid, neuroregeneration, М2 фенотип, клетки SH-SY5Y, дифференцировка, ретиноевая кислота
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2416/1433; Agholme L., Lindstrom T., Kagedal K., Marcusson J., Hallbeck L. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J. Alzheimers Dis., 2010, Vol. 20, no. 4, pp. 1069-1082.; Butovsky O., Ziv Y., Schwartz A., Landa G., Talpalar A.E., Pluchino S., Martino G., Schwartz M. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/ progenitor cells. Mol. Cell. Neurosci., 2006, Vol. 31, no. 1, pp. 149-160.; Chernykh E.R., Shevela E.Ya., Sakhno L.V., Tikhonova M.A., Petrovsky Ya.L., Ostanin A.A. The generation and properties of human M2-like macrophages: potential candidates for CNS repair? Cell Ther. Transplant., 2010, Vol. 2, no. 6. doi:10.3205/ctt-2010-en-000080.01.; Chernykh E.R., Shevela E.Ya., Starostina N.M., Morozov S.A., Davydova M.N., Menyaeva E.V., Ostanin A.A. Safety and therapeutic potential of M2-macrophages in stroke treatment. Cell Transplant., 2016, Vol. 25, no. 8, pp. 1461-1471.; Encinas M., Iglesias M., Liu Y., Wang H., Muhaisen A., Cena V., Gallego C., Comella J.X. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J. Neurochem., 2000, Vol. 75, no. 3, pp. 991-1003.; Fanti Z., Martinez-Perez M.E., De-Miguel F.F. NeuronGrowth, a software for automatic quantification of neurite and filopodial dynamics from time-lapse sequences of digital images. Dev. Neurobiol., 2013, Vol. 71, no. 10, pp. 870-881.; Huang D., Shen S., Cai M., Jin L., Lu J., Xu K., Zhang J., Feng G., Hu Y., Zheng K., Feng X. Role of mTOR complex in IGF-1 induced neural differentiation of DPSCs. J. Mol. Histol., 2019, Vol. 50, no. 3, pp. 273-283.; Jacobi А., Bareyre F.M. Regulation of axonal remodeling following spinal cord injury. Neural Regen. Res., 2015, Vol. 10, no. 10, pp. 1555-1557.; Jin K., Zhu Y., Sun Y., Mao X.O., Xie L., Greenberg D.A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in svivo. Proc. Natl Acad. Sci. USA, 2002, Vol. 99, no. 18, pp. 11946-11950.; Lange C., Storkebaum E., De Almodóvar C.R., Dewerchin M., Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat. Rev. Neurol., 2016, Vol. 12, no. 8, pp. 439-454.; Lavenius E., Parrow V., Nanberg E., Pahlman S. Basic FGF and IGF-I promote differentiation of human SHSY5Y neuroblastoma cells in culture. Growth Factors, 1994, Vol. 10, no. 1, pp. 29-39.; Louissaint (Jr) A., Rao S., Leventhal C., Goldman S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 2002, Vol. 34, no. 6, pp. 945-960.; Mattsson M.E., Enberg G., Ruusala A.I., Hall K., Pahlman S. Mitogenic response of human SH-SY5Y neuroblastoma cells to insulin-like growth factor I and II is dependent on the stage of differentiation. J. Cell Biol., 1986, Vol. 102, no. 5., pp. 1949-1954.; Miron V.E., Boyd A., Zhao J.W., Yuen T.J., Ruckh J.M., Shadrach J.L., van Wijngaarden P., Wagers A.J., Williams A., Franklin R.J. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci., 2013, Vol. 16, no. 9, pp. 1211-1218.; Nicoletti J.N., Shah S.K., McCloskey D.P., Goodman J.H., Elkady A., Atassi H., Hylton D., Rudge J.S., Scharfman H.E., Croll S.D. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience, 2008, Vol. 151, no. 1, pp. 232-241.; Peng B., Kong G., Yang C., Ming Y. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis., 2020, Vol. 11, no. 2, 79. doi:10.1038/s41419-020-2276-8.; Popova D., Karlsson J., Jacobsson S.O.P. Comparison of neurons derived from mouse P19, rat PC12 and human SH-SY5Y cells in the assessment of chemical- and toxin-induced neurotoxicity. BMC Pharmacol Toxicol., 2017, Vol. 18, no.1, p. 42.; Pregi N., Vittori D., Pérez G., Pérez Leirós C., Nesse A. Effect of erythropoietin on staurosporine-induced apoptosis and differentiation of SH-SY5Y neuroblastoma cells. Biochim. Biophys. Acta, 2006, Vol. 1763, no. 2, pp. 238-246.; Rashchupkin I.M., Maksimova A.A., Sakhno L.V., Ostanin A.A., Shevela E.Ya., Chernykh E.R. The effect of M2 macrophage-derived soluble factors on proliferation and apoptosis of SH-SY5Y cells. Bulletin of Experimental Biology and Medicine, 2021, Vol. 171, no. 1, pp. 59-63. (In Russ.); Rawji K.S., Mishra M.K., Yong V.W. Regenerative capacity of macrophages for remyelination. Front Cell Dev. Biol., 2016, Vol. 4, 47. doi:10.3389/fcell.2016.00047.; Ross R.A., Spengler B.A., Biedler J.L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J. Natl Cancer Inst., 1983, Vol. 71, no. 4, pp. 741-747.; Sakhno L.V., Shevela E.Y., Tikhonova M.A., Ostanin A.A., Chernykh E.R. The phenotypic and functional features of human M2 macrophages generated under low serum conditions. Scand. J. Immunol., 2016, Vol. 83, no. 2, pp. 151-159.; Shevela E., Davydova M., Starostina N., Yankovskaya A., Ostanin A., Chernykh Е. Intranasal delivery of M2 macrophage-derived soluble products reduces neuropsychological deficit in patients with cerebrovascular disease: a Pilot Study. J. Neurorestoratol., 2019, Vol. 7, no. 2, pp. 89-100.; Ulrich H., Resende R. Mechanisms of neural differentiation and integration. Semin. Cell Dev. Biol., 2019, Vol. 93, pp. 1-3.; Xiang X., Li Y., Fu M., Xin H-B. Polarizing macrophages in vitro. Methods Mol. Biol., 2018, Vol. 1784, pp. 119-126.; Xiong X.Y., Liu L., Yang Q.W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol., 2016, Vol. 142, pp. 23-44.; Yuste V., Sánchez-López I., Solé C., Encinas M., Bayascas J., Boix J., Comella J. The prevention of the staurosporine-induced apoptosis by Bcl-xL, but not by Bcl-2 or caspase inhibitors, allows the extensive differentiation of human neuroblastoma cells. J. Neurochem., 2002, Vol. 80, no. 1, pp. 126-139.; Zhu Y., Jin K., Mao X.O., Greenberg D.A. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J., 2003, Vol. 17, no. 2, pp. 186-193.; https://www.mimmun.ru/mimmun/article/view/2416
-
3
-
4Academic Journal
Source: Medical Immunology (Russia); Том 19, № 1 (2017); 7-18 ; Медицинская иммунология; Том 19, № 1 (2017); 7-18 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2017-1
Subject Terms: регенеративная иммунотерапия, macrophages, microglia, monocyte-derived macrophages, functional phenotypes, neuroprotection, neuroregeneration, angiogenesis, cerebral palsy, stroke, regenerative immunotherapy, макрофаги, микроглия, макрофаги моноцитарного происхождения, функциональные фенотипы, нейропротекция, нейрорегенерация, ангиогенез, ДЦП, инсульт
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1158/896; Bachstetter A.D., Pabon M.M., Cole M.J., Hudson C.E., Sanberg P.R., Willing A.E., Bickford P.C., Gemma C. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci., 2008, Vol. 9, no. 22, 9 p.; Beers D.R., Henkel J.S., Zhao W., Wang J., Huang A., Wen S., Liao B., Appel S.H. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain, 2011, Vol. 134, no. 5, pp. 1293-1314.; Brown B.N., Sicari B.M., Badylak S.F. Rethinking regenerative medicine: amacrophage-centered approach. Front Immunol., 2014, Vol. 5, Article 510, 11 p.; Burger D., Molnarfi N., Weber M.S., Brandt K.J., Benkhoucha M., Gruaz L., Chofflon M., Zamvil S.S., Lalive P.H. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1b in human monocytes and multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2009, Vol. 106, no. 11, pp. 4355-4359.; Butovsky O., Ziv Y., Schwartz A., Landa G., Talpalar A.E., Pluchino S., Martino G., Schwartz M. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/ progenitor cells. Mol. Cell. Neurosci., 2006, Vol. 31, no. 1, pp. 149-160.; Chazaud B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology, 2014, Vol. 219, no. 3, pp. 172-178.; Chen C.T., Foo N.H., Liu W.S., Chen S.H. Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Pediatr Neonatol., 2008, Vol. 49, no. 3, pp. 77-83.; Chernykh E.R., Shevela E.Ya., Sakhno L.V., Tikhonova M.A., Petrovsky Ya.L., Ostanin A.A. The generation and properties of human M2-like macrophages: potential candidates for CNS repair? Cell. Ther. Transplant., 2010, Vol. 2, no. 6, e000080.01.; Chernykh E.R., Kafanova M.Yu., Shevela E.Y., Adonina E.I., Sakhno L.V., Tikhonova M.A., Ostanin A.A. Autologous M2-like macrophage applications in children with cerebral palsy. Cell. Ther. Transplant., 2011, Vol. 3, no. 11, e000092.01.; Chernykh E.R., Kafanova M.Yu., Shevela E.Ya., Sirota S.I., Adonina E.A., Ostanin A.A., Kozlov V.A. Clinical experience with autologous M2-macrophages in children with severe cerebral palsy. Cell. Transplant., 2014, Vol. 23, Suppl. 1, pp. 97-104.; Chernykh E.R., Shevela E.Ya., Starostina N.M., Morozov S.A., Davydova M.N., Menyaeva E.V., Ostanin A.A. Safety and therapeutic potential of M2-macrophages in stroke treatment. Cell. Transplant., 2016, Vol. 25, no. 8, pp. 1461-1471.; Corraliza I. Recruiting specialized macrophages across the borders to restore brain functions. Front. Cell. Neurosci., 2014, Vol. 8, Article 262, 7 p.; Cotten C.M., Murtha A.P., Goldberg R.N., Grotegut C.A., Smith P.B., Goldstein R.F., Fisher K.A., Gustafson K.E., Waters-Pick B., Swamy G.K., Rattray B., Tan S., Kurtzberg J. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J. Pediatr., 2014, Vol. 164, no. 5, pp. 973-979.; Darlington D., Deng J., Giunta B., Hou H., Sanberg C.D., Kuzmin-Nichols N., Zhou H., Mori T., Ehrhart J., Sanberg P.R., Tan J. Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-beta-associated neuropathology in Alzheimer mice. Stem Cells Dev., 2013, Vol. 22, no. 3, pp. 412-421.; David S., Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci., 2011, Vol. 12, no. 7, pp. 388-399.; Derecki N.C., Quinnies K.V., Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav. Immun., 2011, Vol. 25, no. 3, pp. 379-385.; Donnelly D.J., Popovich P.G. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol., 2008, Vol. 209, no. 2, pp. 378-388. doi:10.1016/j.expneurol.2007.06.009; Eggenhofer E., Hoogduijn M.J. Mesenchymal stem cell-educated macrophages. Transplant. Res., 2012, Vol. 1, p. 12.; Garbuzova-Davis S., Rodrigues M.C., Mirtyl S., Turner S., Mitha S., Sodhi J. Multiple intravenous administrations of human umbilical cord blood cells benefit in a mouse model of ALS. PLoS One, 2012, Vol. 7, no. 2, e31254.; Garbuzova-Davis S., Xie Y., Danias P., Sanberg C.D., Klasko S.K., Sanberg P.R. Transplantation of cord blood monocyte/ macrophage cells to treat Sanfilippo type B. Cell. Transplant., 2008, Vol. 17, no. 4, pp. 466-467.; Gensel J.C., Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res., 2015, Vol. 1619, pp. 1-11.; Gong D., Shi W., Yi S.J., Chen H., Groffen J., Heisterkamp N. TGF-beta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol., 2012, Vol. 13, p. 31.; Greenwood J., Heasman S.J., Alvarez J.I., Prat A., Lyck R., Engelhardt B. Leukocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol. Appl. Neurobiol., 2011, Vol. 37, no. 1, pp. 24-39.; Guerrero A.R., Uchida K., Nakajima H., Watanabe S., Nakamura M., Johnson W.E., Baba H. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J. Neuroinflammation, 2012, Vol. 9, p. 40.; Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. Wound repair and regeneration. Nature, 2008, Vol. 453, no. 7193, pp. 314-321.; Hikawa N., Horie H., Takenaka T. Macrophage-enhanced neurite regeneration of adult dorsal root ganglia neurones in culture. Neuroreport., 1993, Vol. 5, no. 1, pp. 41-44.; Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S., Gao Y., Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, Vol 43, no. 11, pp. 3063-3070.; Hu X., Leak R.K., Shi J., Suenaga J., Gao Y., Zheng P., Chen J. Microglial and macrophage polarization – new prospects for brain repair. Nat. Rev. Neurol., 2015, Vol. 11, no. 1, pp. 56-64.; Jacobi А., Bareyre F.M. Regulation of axonal remodeling following spinal cord injury. Neural Regen. Res., 2015, Vol. 10, no. 10, pp. 1555-1557.; Jiang M.H., Chung E., Chi G.F., Ahn W., Lim J.E., Hong H.S., Kim D.W., Choi H., Kim J., Son Y. Substance P induces M2-type macrophages after spinal cord injury. Neuroreport., 2012, Vol. 23, no. 13, pp. 786-792.; Kang M., Min K., Jang J., Kim S.C., Kang M.S., Jang S.J., Lee J.Y., Kim S.H., Kim M.K., An S.A., Kim M. Involvement of immune responses in the efficacy of cord blood cell therapy for cerebral palsy. Stem Cells Dev., 2015, Vol. 24, no. 19, pp. 2259-2268.; Kieseier B.C. The mechanism of action of interferon-beta in relapsing multiple sclerosis. CNS Drugs, 2011, Vol. 25, no. 6, pp. 491-502.; Kigerl K.A., Gensel J.C., Ankeny D.P., Alexander J.K., Donnelly D.J., Popovich P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci., 2009, Vol. 29, no. 43, pp. 13435-13444.; Koh T.J., DiPietro L.A. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med., 2011, Vol. 13, e23.; Kwon M.J., Kim J., Shin H., Jeong S.R., Kang Y.M., Choi J.Y., Hwang D.H., Kim B.G. Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J. Neurosci., 2013, Vol. 33, no. 38, pp. 15095-15108.; Kwon M.J., Shin H.Y., Cui Y., Kim H., Thi A.H., Choi J.Y., Kim E.Y., Hwang D.H., Kim B.G. CCL2 Mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J. Neurosci., 2015, Vol. 35, no. 48, pp. 15934-15947.; Larochelle C., Alvarez J.I., Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett., 2011, Vol. 585, no. 23, pp. 3770-3780.; Lech M., Anders H-J. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim. Biophys. Acta, 2013, Vol. 1832, no. 7, pp. 989-997.; Lee C.H., Park O.K., Yoo K.Y., Byun K., Lee B., Choi J.H., Hwang I.K., Kim Y.M., Won M.H. The role of peroxisome proliferator-activated receptor γ, and effects of its agonist, rosiglitazone, on transient cerebral ischemic damage. J. Neurol. Sci., 2011, Vol. 300, no. 1-2, pp. 120-129.; Lo E.H. Degeneration and repair in central nervous system disease. Nat. Med., 2010, Vol. 16, no. 11, pp. 1205-1209.; London A., Cohen M., Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell. Neurosci., 2013, Vol. 7, Article 34, 10 p.; London A., Itskovich E., Benhar I., Kalchenko V., Mack M., Jung S. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med., 2011, Vol. 208, no. 1, pp. 23-39.; Lopes Pinheiro M.A., Kooij G., Mizee M.R., Kamermans A., Enzmann G., Lyck R., Schwaninger M., Engelhardt B., de Vries H.E. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim. Biophys. Acta., 2016, Vol. 1862, no. 3, pp. 461-471.; Lu D., Sanberg P.R., Mahmood A., Li Y., Wang L., Sanchez-Ramos J., Chopp M. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell. Transplant., 2002, Vol. 11, no. 3, pp. 275-281.; Lu W., Fu C., Song L., Yao Y., Zhang X., Chen Z., Li Y., Ma G., Shen C. Exposure to supernatants of macrophages that phagocytized dead mesenchymal stem cells improves hypoxic cardiomyocytes survival. Int. J. Cardiol., 2013, Vol. 165, no. 2, pp. 333-340; Lucas S.-M., Rothwell N.J., Gibson R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol., 2006, Vol. 147, Suppl. 1, S232-S240.; Lv Y.T., Zhang Y., Liu M., Qiuwaxi J.N., Ashwood P., Cho S.C., Huan Y., Ge R.C., Chen X.W., Wang Z.J., Kim B.J., Hu X. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J. Transl. Med., 2013, Vol. 11, p. 196.; Maiorino C., Khorooshi R., Ruffini F., Løbner M., Bergami A., Garzetti L., Martino G., Owens T., Furlan R. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia. Gene Ther., 2013, Vol. 20, no. 5, pp. 487-496.; Mandrekar-Colucci S., Sauerbeck A., Popovich P.G., McTigue D.M. PPAR agonists as therapeutics for CNS trauma and neurological diseases. ASN Neuro, 2013, Vol. 5, no. 5, e00129.; Marchetti V., Yanes O., Aguilar E., Wang M., Friedlander D., Moreno S., Storm K, Zhan M., Naccache S., Nemerow G., Siuzdak G., Friedlander M. Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. Sci Rep., 2011, Vol. 1, p. 76.; Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep., 2014, Vol. 6, p. 13.; Meeker R.B., Williams K., Killebrew D.A., Hudson L.C. Cell trafficking through the choroid plexus. Cell Adhes Migr., 2012, Vol. 6, no. 5, pp. 390-396.; Meier C., Middelanis J., Wasielewski B., Neuhoff S., Roth-Haerer A., Gantert M., Dinse H.R., Dermietzel R., Jensen A. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res., 2006, Vol. 59, no. 2, pp. 244-249.; Mikita J., Dubourdieu-Cassagno N., Deloire M.S., Vekris A., Biran M., Raffard G., Brochet B., Canron M.H., Franconi J.M., Boiziau C., Petry K.G. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler., 2011, Vol.17, no. 1, pp. 2-15.; Mildner A., Mack M., Schmidt H., Bruck W., Djukic M., Zabel M.D., Hille A., Priller J., Prinz M. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain, 2009, Vol. 132, pp. 2487-2500.; Min K., Song J., Kang J.Y., Ko J., Ryu J.S., Kang M.S., Jang S.J., Kim S.H., Oh D., Kim M.K., Kim S.S., Kim M. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells, 2013, Vol. 31, no. 3, pp. 581-591.; Miron V.E., Boyd A., Zhao J.W., Yuen T.J., Ruckh J.M., Shadrach J.L., van Wijngaarden P., Wagers A.J., Williams A., Franklin R.J. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci., 2013, Vol. 16, no. 9, pp. 1211-1218.; Moehle M.S., West A.B. M1 and M2 immune activation in Parkinson’s Disease: Foe and ally? Neuroscience, 2015, Vol. 302, pp. 59-73.; Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, Vol. 8, no. 12, pp. 958-969.; Narantuya D., Nagai A., Sheikh A.M., Masuda J., Kobayashi S., Yamaguchi S., Kim S.U. Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One, 2010, Vol. 5, no. 7, e11746.; Pimentel-Coelho P.M., Magalhaes E.S., Lopes L.M., de Azevedo L.C., Santiago M.F., Mendez-Otero R. Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev., 2010, Vol. 19, no. 3, pp. 351-358.; Prinz M., Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci., 2014, Vol. 15, no. 5, pp. 300-312.; Protti A. , Mongue-Din H., Mylonas K.J., Sirker A., Sag C.M., Swim M.M., Maier L., Sawyer G., Dong X, Botnar R., Salisbury J., Gray J.A., Shah A.M. Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction. J. Mol. Cell. Cardiol., 2016, Vol. 90, pp. 120-128.; Rapalino O., Lazarov-Spiegler O., Agranov E., Velan G.J., Yoles E., Fraidakis M., Solomon A., Gepstein R., Katz A., Belkin M., Hadani M., Schwartz M. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med., 1998, Vol. 4, no. 7, pp. 814-821.; Rawji K.S., Yong. V.W. The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin. Dev. Immunol., 2013, Vol. 2013, Article 948976, 13 p.; Rawji K.S., Mishra M.K., Yong V.W. Regenerative capacity of macrophages for remyelination. Front Cell Dev. Biol., 2016, Vol. 4, p. 47.; Rocher C., Singla D.K. SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS One, 2013, Vol. 8, no. 12, e84009.; Rolls A. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med., 2008, Vol. 5, no. 8, e171.; Sakhno L.V., Shevela E.Y., Tikhonova M.A., Ostanin A.A., Chernykh E.R. The phenotypic and functional features of human M2 macrophages generated under low serum conditions. Scand. J. Immunol., 2016, Vol. 83, no. 2, pp. 151-159.; Sanberg P.R., Park D-H., Kuzmin-Nichols N., Cruz E., Hossne N.A. Jr, Buffolo E., Willing A.E. Monocyte transplantation for neural and cardiovascular ischemia repair. J. Cell. Mol. Med., 2010, Vol. 14, no. 3, pp. 553-563.; Shahaduzzaman M.D., Mehta V., Golden J.E., Rowe D.D., Green S., Tadinada R., Foran E.A., Sanberg P.R., Pennypacker R.R., Willing A.E. Human umbilical cord blood cells induce neuroprotective change in gene expression profile in neurons after ischemia through activation of Akt pathway. Cell. Transplant., 2015, Vol. 24, no. 4, pp. 721-735.; Shechter R., London A., Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat. Rev. Immunol., 2013, Vol. 13, no. 3, pp. 206-218.; Shechter R., London A., Varol C., Raposo C., Cusimano M., Yovel G., Rolls A., Mack M., Pluchino S., Martino G., Jung S., Schwartz M. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med., 2009, Vol. 6, no. 7, e1000113.; Shechter R., Miller O., Yovel G., Rosenzweig N., London A., Ruckh J., Kim K.W., Klein E., Kalchenko V., Bendel P., Lira S.A., Jung S., Schwartz M. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity, 2013, Vol. 38, no. 3, pp. 555-569.; Shechter R., Schwartz M. Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if ’ but ‘how’. J. Pathol., 2013, Vol. 229, pp. 332-346.; Simard A.R., Soulet D., Gowing G., Julien J.P., Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 2006, Vol. 49, no. 4, pp. 489-502.; Starossom S.C., Mascanfroni I.D., Imitola J., Cao L., Raddassi K., Hernandez S.F., Bassil R., Croci D.O., Cerliani J.P., Delacour D., Wang Y., Elyaman W., Khoury S.J., Rabinovich G.A. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity, 2012, Vol. 37, no. 2, pp. 249-263.; Stefater J.A., Ren S., Lang R.A., Duffield J.S. Metchnikoff ’s policemen: macrophages in development, homeostasis and regeneration. Trends Mol. Med., 2011, Vol. 17, no. 12, pp. 743-752.; Thored P., Heldmann U., Gomes-Leal W., Gisler R., Darsalia V., Taneera J., Nygren J.M., Jacobsen S.E., Ekdahl C.T., Kokaia Z., Lindvall O. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia, 2009, Vol. 57, no. 8, pp. 835-849.; Vendrame M., Gemma C., de Mesquita D., Collier L., Bickford P.C., Sanberg C.D., Sanberg P.R., Pennypacker K.R., Willing A.E. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev., 2005, Vol. 14, no. 5, pp. 595-604.; Verma S., Nakaoke R., Dohgu S., Banks W.A. Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain Behav. Immun., 2006, Vol. 20, no. 5, pp. 449-455.; Walker P.A., Shah S.K., Jimenez F., Aroom K.R., Harting M.T., Cox C.S. Jr. Bone marrow-derived stromal cell therapy for traumatic brain injury is neuroprotective via stimulation of non-neurologic organ systems. Surgery, 2012, Vol. 152, no. 5, pp. 790-793.; Wang G., Zhang J., Hu X., Zhang L., Mao L., Jiang X., Chen J. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab., 2013, Vol. 33, no. 12, pp. 1864-1874.; Wang X., Cao K., Sun X., Chen Y., Duan Z., Sun L., Guo L., Bai P., Sun D., Fan J., He X., Young W., Ren Y. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia, 2015, Vol. 63, no. 4, pp. 635-651.; Womble T.A., S. Green M., Shahaduzzaman J., Grieco P.R., Sanberg K.R., Pennypacker A.E., Willing A.E. Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol. Cell. Neurosci., 2014, Vol. 59, pp. 76-84.; Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, Vol. 44, no. 3, pp. 450-462.; Xiong X.Y., Liu L., Yang Q.W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol., 2016, Vol. 142, pp. 23-44.; Yang J., Ding S., Huang W., Hu J., Huang S., Zhang Y., Zhuge Q. Interleukin-4 ameliorates the functional recovery of intracerebral hemorrhage through the alternative activation of microglia/macrophage. Front Neurosci., 2016, Vol. 10, p. 61.; Yin Y., Henzl M.T., Lorber B., Nakazawa T., Thomas T.T., Jiang F., Langer R., Benowitz L.I. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci., 2006, Vol. 9, no. 6, pp. 843-852.; Zhu W., Fan Y., Frenzel T., Gasmi M., Bartus R. T., Young W. L., Chen, Y. Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice. Stroke, 2008, Vol. 39, no. 4, pp. 1254-1261.; https://www.mimmun.ru/mimmun/article/view/1158
-
5
-
6Electronic Resource
Additional Titles: Клинический случай геморрагического инсульта у беременной вследствие разрыва церебральной артериовенозной мальформации
Clinical case of hemorrhagic stroke in pregnant woman as a result of ruptured cerebral arteriovenous malformationAuthors: Onopriienko, O.P.; Brovary Central District Hospital of Kyiv Region, Brovary, Ukraine, Hanych, Ye.M.; Brovarsky Neurosurgical Center, Brovary, Ukraine, Ostroverkhova, M.R.; Brovarsky Maternity Hospital, Brovary, Ukraine
Source: INTERNATIONAL NEUROLOGICAL JOURNAL; № 8.94 (2017); 59-64; МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; 2307-1419; 2224-0713
Index Terms: геморагічний інсульт, інсульт-гематома, кома, вагітність, нейрохірургічна тактика, кесарів розтин, нейропротекція, нейрорегенерація, геморрагический инсульт, инсульт-гематома, беременность, нейрохирургическая тактика, кесарево сечение, нейропротекция, нейрорегенерация, hemorrhagic stroke, stroke-hematoma, coma, pregnancy, neurosurgical approach, cesarean section, neuroprotection, neuroregeneration, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion