Showing 1 - 16 results of 16 for search '"молекулярная визуализация"', query time: 0.57s Refine Results
  1. 1
    Report

    Contributors: Плотников, Евгений Владимирович

    File Description: application/pdf

    Relation: Юлдашева Ф. Ш. Изучение in vitro нового радиофармацевтического лекарственного препарата на основе варианта DARPin G3 с хелатными группами на основе глутаминовой кислоты и цистеина : выпускная квалификационная работа магистранта / Ф. Ш. Юлдашева; Национальный исследовательский Томский политехнический университет (ТПУ), Исследовательская школа химических и биомедицинских технологий (ИШХБМТ), Исследовательская школа химических и биомедицинских технологий (ИШХБМТ); науч. рук. Е. В. Плотников. — Томск, 2023.; http://earchive.tpu.ru/handle/11683/75238

  2. 2
    Academic Journal

    Source: Medical Visualization; Том 27, № 1 (2023); 35-45 ; Медицинская визуализация; Том 27, № 1 (2023); 35-45 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1300/770; Мерабишвили В.М. Злокачественные новообразования в Северо-Западном федеральном округе России / Под ред. проф. Беляева А.М. СПб., 2018: 16–17.; Halperin C.E. Principles and Practice of Radiation oncology. 6th ed. Halperin C.E. et al. Philadelphia: Wolters Kluer-Lippincot Williams&Wilkins, 2013: 568–590.; Ринк П. Магнитный резонанс в медицине / Под ред. проф. Ринка П.: Пер. с англ. Oxford: Blackwell, Scientific Publications, 1995: 4–29. ISNB 5-9231-0320-6; Прокоп М. Спиральная и многослойная компьютерная томография. В 3-х томах. Т. 2. Учебное пособие / Прокоп М., Галански М.: Пер. с англ. Зубарева А.В. и Шотемора Ш.Ш. М.: МЕДепресс-информ, 2006– 2007: 629–631. ISNB 978-5-98322-739-2; Канаев С.В., Новиков С.Н., Зотова О.В., Гиршович М.М., Жукова Л.А., Семиглазов В.Ф., Криворотько П.В., Иванов В.Г. Перспективы использования методов ядерной медицины у больных раком молочной железы. Вопросы онкологии. 2009: 55 (61): 661–670.; Наркевич Б.Я., Костылев В.А. Физические основы ядерной медицины. М.: АМФ-Пресс, 2001: 59.; Крылов А.С., Рыжков А.Д., Ширяев С.В., Гончаров М.О., Крылова М.А., Комановская Д.А., Билик М.Е., Каспшик С.М., Михайлова Е.В., Станякина Е.Е., Жуков Г.А. ОФЭКТ/КТ с 99m Tc-технетрилом в диагностике злокачественных опухолей головы и шеи у детей. Медицинская радиология и радиационная безопасность. 2020; 65 (1): 27–36. http://doi.org/10.12737/1024-6177-2020-65-1-27-36; Чёрная А.В., Канаев С.В., Новиков С.Н., Крживицкий П.И., Криворотько П.В., Жукова Л.А., Бусько Е.А. Диагностическая значимость маммографии и маммосцинтиграфии с 99m Тс-MIBI при выявлении минимального рака молочной железы. Вопросы онкологии. 2017; 63 (2): 274–280.; Goldsmith S.J., Parsons W., Guiberteau M.J. et al. SNM Practice Guideline for Breast Scintigraphy with Breast-Specific g-Cameras 1.0. J. Nucl. Med. Technol. 2010; 38: 219–224. https://doi.org/10.2967/jnmt.110.082271; Тицкая А.А., Чернов В.И., Слонимская Е.М., Синилкин И.Г., Зельчан Р.В. Маммосцинтиграфия с 99m Tс-МИБИ в диагностике рака молочной железы. Сибирский медицинский журнал. 2010; 25 (4): 92–95.; Чёрная А.В., Крживицкий П.И., Бусько Е.А., Криворотько П.В., Артемьева А.С., Попова Н.С., Данилов В.В., Семиглазов В.Ф., Новиков С.Н., Канаев С.В. Роль цифровой маммографии, маммосцинтиграфии с 99m Tc-метоксиизобутилизонитрилом (MIBI) и ультразвукового исследования в диагностике мультицентричного рака молочной железы. Опухоли женской репродуктивной системы. 2019; 15 (4): 12–22.; Величко С.А., Слонимская Е.М., Фролова И.Г., Бухарин Д.Г., Дорошенко А.В. Способ прогнозирования “малых” форм рака молочной железы на фоне фиброзно-кистозной болезни. Бюллетень сибирской медицины. 2017; 16 (1): 13–19.; Sun Y., Wei W., Yang H.W. et al. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: A systemic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging. 2013; 40 (3): 450–463.; Cwikla J.B., Buscombe J.R., Kolasinska A.D. et al. Correlation between uptake of 99m Tc-sestamibi and prognostic faktors of breast cancer. Anticancer Res. 1999; 19: 2299–2304.; Spanu A., Sanna D., Chessa F. et al. The usefulness of Tc-99m-tetrofosmin SPECT/CT in the detection of residual tumors and axillary lymph node metastases in breast cancer patients following neoadjuvant therapy. Clin. Nuclear Med. 2011; 36 (11): 997–1002.; Kim B.S. Usefulness of breast-specic gamma imaging as an adjunct modality in breast cancer patients with dense breast: a comparative study with MRI. Ann. Nucl. Med. 2012; 26: 131–137.; Крживицкий П.И., Новиков С.Н., Канаев С.В., Клиценко О.А., Ильин Н.Д., Попова Н.С., Пономарева О.И., Черная А.В., Труфанова Е.С., Криворотько П.В. ОФЭКТ-КТ в диагностике метастатического поражения лимфатических узлов у больных раком молочной железы. Вопросы онкологии. 2017; 63 (2): 261–273.; Novikov S.N., Krivorotko P.V., Kanaev S.V. et al. Combination of Breast Scintigraphy and Ultrasound is Promising Tool for Diagnosis and Staging of Breast Cancer. Eur. J. Cancer. 2012; 48 (Suppl. 1): 612.; https://medvis.vidar.ru/jour/article/view/1300

  3. 3
    Academic Journal

    Source: Medical Herald of the South of Russia; Том 13, № 1 (2022); 52-64 ; Медицинский вестник Юга России; Том 13, № 1 (2022); 52-64 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2022-13-1

    File Description: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1498/869; https://www.medicalherald.ru/jour/article/downloadSuppFile/1498/564; Reincke M. Subclinical Cushing’s syndrome. Endocrinol Metab Clin North Am. 2000;29(1):43-56. DOI:10.1016/s0889-8529(05)70115-8; Agrawal A, Rangarajan V, Shah S, Puranik A, Purandare N. MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol. 2018;91(1091):20180103. DOI:10.1259/bjr.20180103; Vallabhajosula S, Nikolopoulou A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin Nucl Med. 2011;41(5):324-33. DOI:10.1053/j.semnuclmed.2011.05.003; ECopy, Inc. - Food and Drug Administration [Internet]. [cited 2021Dec18]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/022290s000_ClinPharmR.pdf; Green M, Lowe J, Kadirvel M, McMahon A, Westwood N, et al. Radiosynthesis of no-carrier-added meta-[124I] iodobenzylguanidine for PET imaging of metastatic neuroblastoma. J Radioanal Nucl Chem. 2017;311(1):727732. DOI:10.1007/s10967-016-5073-1; Hartung-Knemeyer V, Rosenbaum-Krumme S, Buchbender C, Pöppel T, Brandau W, et al. Malignant pheochromocytoma imaging with [124I]mIBG PET/MR. J Clin Endocrinol Metab. 2012;97(11):3833-4. DOI:10.1210/jc.2012-1958; Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev Cent East Eur. 2015;18(2):102-6. DOI:10.5603/NMR.2015.0024; Francis I.R., Mayo-Smith W.W. Adrenal Imaging. In: Hodler J., Kubik-Huch R., von Schulthess G. (eds) Diseases of the Abdomen and Pelvis 2018-2021. IDKD Springer Series. Springer, Cham; 2018. DOI:10.1007/978-3-319-75019-4_9; Mariani-Costantini R, editor. Paraganglioma: A Multidisciplinary Approach [Internet]. Brisbane (AU): Codon Publications; 2019. PMID: 31294937.; Gimenez-Roqueplo AP, Caumont-Prim A, Houzard C, Hignette C, Hernigou A, et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators. J Clin Endocrinol Metab. 2013;98(1):E162-73. DOI:10.1210/jc.2012-2975; Naji M, Zhao C, Welsh SJ, Meades R, Win Z, et al. 68Ga-DOTATATE PET vs. 123I-MIBG in identifying malignant neural crest tumours. Mol Imaging Biol. 2011;13(4):769-75. DOI:10.1007/s11307-010-0396-8; Kroiss A, Shulkin BL, Uprimny C, Frech A, Gasser RW, et al. (68)Ga-DOTATOC PET/CT provides accurate tumour extent in patients with extraadrenal paraganglioma compared to (123)I-MIBG SPECT/CT. Eur J Nucl Med Mol Imaging. 2015;42(1):33-41. DOI:10.1007/s00259-014-2892-6; van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EP. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2014;80(4):487-501. DOI:10.1111/cen.12341; Rao D, van Berkel A, Piscaer I, Young WF, Gruber L, et al. Impact of 123 I-MIBG scintigraphy on clinical decision making in pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2019:jc.2018-02355. DOI:10.1210/jc.2018-02355. Epub ahead of print; Vyakaranam AR, Crona J, Norlén O, Granberg D, GarskeRomán U, et al. Favorable Outcome in Patients with Pheochromocytoma and Paraganglioma Treated with 177Lu-DOTATATE. Cancers (Basel). 2019;11(7):909. DOI:10.3390/cancers11070909; Granberg D, Juhlin CC, Falhammar H. Metastatic Pheochromocytomas and Abdominal Paragangliomas. J Clin Endocrinol Metab. 2021;106(5):e1937-e1952. DOI:10.1210/clinem/dgaa982; Loh KC, Fitzgerald PA, Matthay KK, Yeo PP, Price DC. Th e treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine (131I-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Invest. 1997;20(11):648-58. DOI:10.1007/BF03348026; Gonias S, Goldsby R, Matthay KK, Hawkins R, Price D, et al. Phase II study of high-dose [131I]metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J Clin Oncol. 2009;27(25):4162-8. DOI:10.1200/JCO.2008.21.3496; Pryma DA, Chin BB, Noto RB, Dillon JS, Perkins S, et al. Efficacy and Safety of High-Specifi c-Activity 131I-MIBG Th erapy in Patients with Advanced Pheochromocytoma or Paraganglioma. J Nucl Med. 2019;60(5):623-630. DOI:10.2967/jnumed.118.217463; Barrett JA, Joyal JL, Hillier SM, Maresca KP, Femia FJ, et al. Comparison of high-specifi c-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharm. 2010;25(3):299-308. DOI:10.1089/cbr.2009.0695; Nastos K, Cheung VTF, Toumpanakis C, Navalkissoor S, Quigley AM, et al. Peptide Receptor Radionuclide Treatment and (131)I-MIBG in the management of patients with metastatic/progressive phaeochromocytomas and paragangliomas. J Surg Oncol. 2017;115(4):425-434. DOI:10.1002/jso.24553; Ohshima Y, Sudo H, Watanabe S, Nagatsu K, Tsuji AB, et al. Antitumor eff ects of radionuclide treatment using α-emitting meta-211At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur J Nucl Med Mol Imaging. 2018;45(6):999-1010. DOI:10.1007/s00259-017-3919-6; Chauhan A, El-Khouli R, Waits T, Agrawal R, Siddiqui F, et al. Post FDA approval analysis of 200 gallium-68 DOTATATE imaging: A retrospective analysis in neuroendocrine tumor patients. Oncotarget. 2020;11(32):3061-3068. DOI:10.18632/oncotarget.27695; Srirajaskanthan R, Kayani I, Quigley AM, Soh J, Caplin ME, Bomanji J. Th e role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal fi ndings on 111In-DTPA-octreotide scintigraphy. J Nucl Med. 2010;51(6):875-82. DOI:10.2967/jnumed.109.066134; Han S, Suh CH, Woo S, Kim YJ, Lee JJ. Performance of 68Ga-DOTA-Conjugated Somatostatin Receptor-Targeting Peptide PET in Detection of Pheochromocytoma and Paraganglioma: A Systematic Review and Metaanalysis. J Nucl Med. 2019;60(3):369-376. DOI:10.2967/jnumed.118.211706; Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, Reubi JC, Caplin ME. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54(3):364-72. DOI:10.2967/jnumed.112.111724; Gild ML, Naik N, Hoang J, Hsiao E, McGrath RT, et al. Role of DOTATATE-PET/CT in preoperative assessment of phaeochromocytoma and paragangliomas. Clin Endocrinol (Oxf). 2018;89(2):139-147. DOI:10.1111/cen.13737; Chang CA, Pattison DA, Tothill RW, Kong G, Akhurst TJ, et al. (68) Ga-DOTATATE and (18)F-FDG PET/CT in Paraganglioma and Pheochromocytoma: utility, patterns and heterogeneity. Cancer Imaging. 2016;16(1):22. DOI:10.1186/s40644-016-0084-2; Janssen I, Blanchet EM, Adams K, Chen CC, Millo CM, et al. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res. 2015;21(17):3888-95. DOI:10.1158/1078-0432.CCR-14-2751; Janssen I, Chen CC, Millo CM, Ling A, Taieb D, et al. PET/CT comparing (68)Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2016;43(10):1784-91. DOI:10.1007/s00259016-3357-x; Janssen I, Chen CC, Taieb D, Patronas NJ, Millo CM, et al. 68GaDOTATATE PET/CT in the Localization of Head and Neck Paragangliomas Compared with Other Functional Imaging Modalities and CT/MRI. J Nucl Med. 2016;57(2):186-91. DOI:10.2967/jnumed.115.161018; Janssen I, Chen CC, Zhuang Z, Millo CM, Wolf KI, et al. Functional Imaging Signature of Patients Presenting with Polycythemia/Paraganglioma Syndromes. J Nucl Med. 2017;58(8):1236-1242. DOI:10.2967/jnumed.116.187690; Jha A, Ling A, Millo C, Gupta G, Viana B, et al. Superiority of 68Ga-DOTATATE over 18F-FDG and anatomic imaging in the detection of succinate dehydrogenase mutation (SDHx )-related pheochromocytoma and paraganglioma in the pediatric population. Eur J Nucl Med Mol Imaging. 2018;45(5):787-797. DOI:10.1007/s00259-017-3896-9; Jha A, de Luna K, Balili CA, Millo C, Paraiso CA, et al. Clinical, Diagnostic, and Treatment Characteristics of SDHA-Related Metastatic Pheochromocytoma and Paraganglioma. Front Oncol. 2019;9:53. DOI:10.3389/fonc.2019.00053; Jha A, Ling A, Millo C, Chen C, Gonzales M, et al. 2019b Diagnostic performance of PET/CT utilizing 68Ga-DOTATATE, 18F-FDG, 18F-DOPA, and 18F-FDA, and anatomic imaging in the detection of sporadic primary pheochromocytoma - A comparative prospective study. Journal of Nuclear Medicine. 2019:439.; Kroiss A, Putzer D, Frech A, Decristoforo C, Uprimny C, et al. A retrospective comparison between 68Ga-DOTA-TOC PET/ CT and 18F-DOPA PET/CT in patients with extra-adrenal paraganglioma. Eur J Nucl Med Mol Imaging. 2013;40(12):18008. DOI:10.1007/s00259-013-2548-y; Herrmann K, Czernin J, Wolin EM, Gupta P, Barrio M, et al. Impact of 68Ga-DOTATATE PET/CT on the management of neuroendocrine tumors: the referring physician’s perspective. J Nucl Med. 2015;56(1):70-5. DOI:10.2967/jnumed.114.148247; McGowan A, An JY, Tanakchi S, Maruf M, Muthigi A, et al. Multiple Recurrent Paraganglioma in a Pediatric Patient with Germline SDH-B Mutation. Urol Case Rep. 2017;13:107-109. DOI:10.1016/j.eucr.2017.03.017; Krebs S, Pandit-Taskar N, Reidy D, Beattie BJ, Lyashchenko SK, et al. Biodistribution and radiation dose estimates for 68GaDOTA-JR11 in patients with metastatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2019;46(3):677-685. DOI:10.1007/s00259-018-4193-y; Zhu W, Cheng Y, Wang X, Yao S, Bai C, et al. Head-to-Head Comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in Patients with Metastatic, Well-Diff erentiated Neuroendocrine Tumors: A Prospective Study. J Nucl Med. 2020;61(6):897-903. DOI:10.2967/jnumed.119.235093; Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376(2):125-135. DOI:10.1056/NEJMoa1607427; Strosberg J, Wolin E, Chasen B, Kulke M, Bushnell D, et al. Health-Related Quality of Life in Patients With Progressive Midgut Neuroendocrine Tumors Treated With 177LuDotatate in the Phase III NETTER-1 Trial. J Clin Oncol. 2018;36(25):2578-2584. DOI:10.1200/JCO.2018.78.5865; Brabander T, van der Zwan WA, Teunissen JJM, Kam BLR, Feelders RA, et al. Long-Term Efficacy, Survival, and Safety of [177Lu-DOTA0,Tyr3]octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine Tumors. Clin Cancer Res. 2017;23(16):4617-4624. DOI:10.1158/1078-0432.CCR-16-2743; Yadav MP, Ballal S, Bal C. Concomitant 177Lu-DOTATATE and capecitabine therapy in malignant paragangliomas. EJNMMI Res. 2019;9(1):13. DOI:10.1186/s13550-019-0484-y; Kong G, Grozinsky-Glasberg S, Hofman MS, Callahan J, Meirovitz A, et al. Efficacy of Peptide Receptor Radionuclide Th erapy for Functional Metastatic Paraganglioma and Pheochromocytoma. J Clin Endocrinol Metab. 2017;102(9):3278-3287. DOI:10.1210/jc.2017-00816; Zandee WT, Feelders RA, Smit Duijzentkunst DA, Hofl and J, Metselaar RM, et al. Treatment of inoperable or metastatic paragangliomas and pheochromocytomas with peptide receptor radionuclide therapy using 177Lu-DOTATATE. Eur J Endocrinol. 2019;181(1):45-53. DOI:10.1530/EJE-18-0901; Satapathy S, Mittal BR, Bhansali A. ‘Peptide receptor radionuclide therapy in the management of advanced pheochromocytoma and paraganglioma: A systematic review and meta-analysis’. Clin Endocrinol (Oxf). 2019;91(6):718727. DOI:10.1111/cen.14106; Öksüz MÖ, Winter L, Pfannenberg C, Reischl G, Müssig K, et al. Peptide receptor radionuclide therapy of neuroendocrine tumors with (90)Y-DOTATOC: is treatment response predictable by pre-therapeutic uptake of (68)Ga-DOTATOC? Diagn Interv Imaging. 2014;95(3):289-300. DOI:10.1016/j.diii.2013.07.006; Lau J, Jacobson O, Niu G, Lin KS, Bénard F, Chen X. Bench to Bedside: Albumin Binders for Improved Cancer Radioligand Th erapies. Bioconjug Chem. 2019;30(3):487-502. DOI:10.1021/acs.bioconjchem.8b00919; Bandara N, Jacobson O, Mpoy C, Chen X, Rogers BE. Novel Structural Modifi cation Based on Evans Blue Dye to Improve Pharmacokinetics of a Somastostatin-Receptor-Based Th eranostic Agent. Bioconjug Chem. 2018;29(7):2448-2454. DOI:10.1021/acs.bioconjchem.8b00341; Wang H, Cheng Y, Zhang J, Zang J, Li H, et al. Response to Single Low-dose 177Lu-DOTA-EB-TATE Treatment in Patients with Advanced Neuroendocrine Neoplasm: A Prospective Pilot Study. Th eranostics. 2018;8(12):3308-3316. DOI:10.7150/thno.25919; van Berkel A, Rao JU, Kusters B, Demir T, Visser E, et al. Correlation between in vivo 18F-FDG PET and immunohistochemical markers of glucose uptake and metabolism in pheochromocytoma and paraganglioma. J Nucl Med. 2014;55(8):1253-9. DOI:10.2967/jnumed.114.137034; Maurea S, Mainolfi C, Bazzicalupo L, Panico MR, Imparato C, et al. Imaging of adrenal tumors using FDG PET: comparison of benign and malignant lesions. AJR Am J Roentgenol. 1999;173(1):25-9. DOI:10.2214/ajr.173.1.10397094; Kim SJ, Lee SW, Pak K, Kim IJ, Kim K. Diagnostic accuracy of 18F-FDG PET or PET/CT for the characterization of adrenal masses: a systematic review and meta-analysis. Br J Radiol. 2018;91(1086):20170520. DOI:10.1259/bjr.20170520; Ma G, Zhang X, Wang M, Xu X, Xu B, Guan Z. Role of 18F-FDG PET/CT in the diff erential diagnosis of primary benign and malignant unilateral adrenal tumors. Quant Imaging Med Surg. 2021;11(5):2013-2018. DOI:10.21037/qims20-875; Claimon A, Tantranont N, Claimon T. 18F-fl uoro-2-deoxy-Dglucose positron emission tomography/computed tomography for preoperative planning in a rare case of hyperfunctional bilateral adrenocortical carcinoma and review of literatures. World J Nucl Med. 2020;19(3):301-305. DOI:10.4103/wjnm.WJNM_86_19; Ecénarro-Montiel A, Baleato-González S, Santiago-Pérez MI, Sánchez-González J, Montesinos P, García-Figueiras R. Using the modifi ed Dixon technique to evaluate incidental adrenal lesions on 3T MRI. Radiologia (Engl Ed). 2018;60(6):485-492. DOI:10.1016/j.rx.2018.06.001; Dong A, Cui Y, Wang Y, Zuo C, Bai Y. (18)F-FDG PET/CT of adrenal lesions. AJR Am J Roentgenol. 2014;203(2):245-52. DOI:10.2214/AJR.13.11793; Leboulleux S, Dromain C, Bonniaud G, Aupérin A, Caillou B, et al. Diagnostic and prognostic value of 18-fl uorodeoxyglucose positron emission tomography in adrenocortical carcinoma: a prospective comparison with computed tomography. J Clin Endocrinol Metab. 2006;91(3):920-5. DOI:10.1210/jc.2005-1540; Ardito A, Massaglia C, Pelosi E, Zaggia B, Basile V, et al. 18F-FDG PET/CT in the post-operative monitoring of patients with adrenocortical carcinoma. Eur J Endocrinol. 2015;173(6):749-56. DOI:10.1530/EJE-15-0707; Papadakis GZ, Millo C, Stratakis CA. Benign hormonesecreting adenoma within a larger adrenocortical mass showing intensely increased activity on 18F-FDG PET/CT. Endocrine. 2016;54(1):269-270. DOI:10.1007/s12020-016-0969-7; Shimizu A, Oriuchi N, Tsushima Y, Higuchi T, Aoki J, Endo K. High [18F] 2-fl uoro-2-deoxy-D-glucose (FDG) uptake of adrenocortical adenoma showing subclinical Cushing’s syndrome. Ann Nucl Med. 2003;17(5):403-6. DOI:10.1007/BF03006609; Ansquer C, Scigliano S, Mirallié E, Taïeb D, Brunaud L, et al. 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation. Eur J Nucl Med Mol Imaging. 2010;37(9):1669-78. DOI:10.1007/s00259-010-1471-8; Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, et al. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fl uorodeoxyglucose (18F-FDG) positron emission tomography. J Natl Cancer Inst. 2012;104(9):700-8. DOI:10.1093/jnci/djs188; Tiwari A, Shah N, Sarathi V, Malhotra G, Bakshi G, et al. Genetic status determines 18 F-FDG uptake in pheochromocytoma/ paraganglioma. J Med Imaging Radiat Oncol. 2017;61(6):745752. DOI:10.1111/1754-9485.12620; Kundu S, Kand P, Basu S. Comparative evaluation of iodine-131 metaiodobenzylguanidine and 18-fl uorodeoxyglucose positron emission tomography in assessing neural crest tumors: Will they play a complementary role? South Asian J Cancer. 2017;6(1):31-34. DOI:10.4103/2278-330X.202556; Kunikowska J, Matyskiel R, Toutounchi S, Grabowska-Derlatka L, Koperski L, Królicki L. What parameters from 18F-FDG PET/ CT are useful in evaluation of adrenal lesions? Eur J Nucl Med Mol Imaging. 2014;41(12):2273-80. DOI:10.1007/s00259-0142844-1; Patel D, Mehta A, Nilubol N, Dieckmann W, Pacak K, Kebebew E. Total 18F-FDG PET/CT Metabolic Tumor Volume Is Associated With Postoperative Biochemical Response in Patients With Metastatic Pheochromocytomas and Paragangliomas. Ann Surg. 2016;263(3):582-7. DOI:10.1097/SLA.0000000000001018; Nockel P, El Lakis M, Gaitanidis A, Merkel R, Patel D, et al. Preoperative 18F-FDG PET/CT in Pheochromocytomas and Paragangliomas Allows for Precision Surgery. Ann Surg. 2019;269(4):741-747. DOI:10.1097/SLA.0000000000002671; Koopman D, van Dalen JA, Stigt JA, Slump CH, Knollema S, Jager PL. Current generation time-of-fl ight (18)F-FDG PET/CT provides higher SUVs for normal adrenal glands, while maintaining an accurate characterization of benign and malignant glands. Ann Nucl Med. 2016;30(2):145-52. DOI:10.1007/s12149-015-1041-z; Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, et al. Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun. 2013;34(12):1141-9. DOI:10.1097/MNM.0000000000000008; Santhanam P, Taïeb D. Role of (18) F-FDOPA PET/ CT imaging in endocrinology. Clin Endocrinol (Oxf). 2014;81(6):789-98. DOI:10.1111/cen.12566; Noordzij W, Glaudemans AWJM, Schaafsma M, van der Horst-Schrivers ANA, Slart RHJA, et al. Adrenal tracer uptake by 18F-FDOPA PET/CT in patients with pheochromocytoma and controls. Eur J Nucl Med Mol Imaging. 2019;46(7):1560-1566. DOI:10.1007/s00259-01904332-5; Archier A, Varoquaux A, Garrigue P, Montava M, Guerin C, et al. Prospective comparison of (68)Ga-DOTATATE and (18)F-FDOPA PET/CT in patients with various pheochromocytomas and paragangliomas with emphasis on sporadic cases. Eur J Nucl Med Mol Imaging. 2016;43(7):124857. DOI:10.1007/s00259-015-3268-2; Taïeb D, Jha A, Treglia G, Pacak K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer. 2019;26(11):R627-R652. DOI:10.1530/ERC-19-0165; Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, et al. Current Management of Pheochromocytoma/ Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers (Basel). 2019;11(10):1505. DOI:10.3390/cancers11101505; Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46(10):2112-2137. DOI:10.1007/s00259019-04398-1; Tepede AA, Welch J, Lee M, Mandl A, Agarwal SK, et al. 18F-FDOPA PET/CT accurately identifi es MEN1-associated pheochromocytoma. Endocrinol Diabetes Metab Case Rep. 2020;2020:19-0156. DOI:10.1530/EDM-19-0156. Epub ahead of print; Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, et al. Comparison of 18F-fl uoro-L-DOPA, 18F-fl uorodeoxyglucose, and 18F-fl uorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94(12):475767. DOI:10.1210/jc.2009-1248; Timmers HJ, Eisenhofer G, Carrasquillo JA, Chen CC, Whatley M, et al. Use of 6-[18F]-fl uorodopamine positron emission tomography (PET) as fi rst-line investigation for the diagnosis and localization of non-metastatic and metastatic phaeochromocytoma (PHEO). Clin Endocrinol (Oxf). 2009;71(1):11-7. DOI:10.1111/j.1365-2265.2008.03496.x; Timmers HJ, Carrasquillo JA, Whatley M, Eisenhofer G, Chen CC, et al. Usefulness of standardized uptake values for distinguishing adrenal glands with pheochromocytoma from normal adrenal glands by use of 6-18F-fl uorodopamine PET. J Nucl Med. 2007;48(12):1940-4. DOI:10.2967/jnumed.107.043281; Kaji P, Carrasquillo JA, Linehan WM, Chen CC, Eisenhofer G, et al. Th e role of 6-[18F]fl uorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel-Lindau syndrome. Eur J Endocrinol. 2007;156(4):483-7. DOI:10.1530/EJE-06-0712; Pacak K, Eisenhofer G, Ilias I. Diagnosis of pheochromocytoma with special emphasis on MEN2 syndrome. Hormones (Athens). 2009;8(2):111-6. DOI:10.14310/horm.2002.1227; Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med. 2013;54(6):903-12. DOI:10.2967/jnumed.112.112201; Chalkidou A, Landau DB, Odell EW, Cornelius VR, O’Doherty MJ, Marsden PK. Correlation between Ki-67 immunohistochemistry and 18F-fl uorothymidine uptake in patients with cancer: A systematic review and metaanalysis. Eur J Cancer. 2012;48(18):3499-513. DOI:10.1016/j.ejca.2012.05.001; Giammarile F, Billotey C, Lombard-Bohas C, Le Bars D, Bournaud C, et al. 18F-FLT and 18F-FDG positron emission tomography for the imaging of advanced well-diff erentiated gastroentero-pancreatic endocrine tumours. Nucl Med Commun. 2011;32(2):91-7. DOI:10.1097/MNM.0b013e3283412143; Nakajo M, Nakajo M, Kajiya Y, Jinguji M, Mori S, et al. High FDG and low FLT uptake in a thyroid papillary carcinoma incidentally discovered by FDG PET/CT. Clin Nucl Med. 2012;37(6):607-8. DOI:10.1097/RLU.0b013e318252d80f; Nakajo M, Nakajo M, Jinguji M, Tani A, Kajiya Y, et al. Diagnosis of metastases from postoperative diff erentiated thyroid cancer: comparison between FDG and FLT PET/CT studies. Radiology. 2013;267(3):891-901. DOI:10.1148/radiol.13121546; Blanchet EM, Taieb D, Millo C, Martucci V, Chen CC, et al. 18F-FLT PET/CT in the Evaluation of Pheochromocytomas and Paragangliomas: A Pilot Study. J Nucl Med. 2015;56(12):184954. DOI:10.2967/jnumed.115.159061; Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4(4):435-43. DOI:10.1161/CIRCIMAGING.110.962126; Yu M, Bozek J, Lamoy M, Kagan M, Benites P, et al. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment. Eur J Nucl Med Mol Imaging. 2012;39(12):1910-9. DOI:10.1007/s00259-012-2204-y; Gaertner FC, Wiedemann T, Yousefi BH, Lee M, Repokis I, et al. Preclinical evaluation of 18F-LMI1195 for in vivo imaging of pheochromocytoma in the MENX tumor model. J Nucl Med. 2013;54(12):2111-7. DOI:10.2967/jnumed.113.119966; Rischpler C, Schlitter A, Herz M, Yousefi B, Von Werder A, Tauber R. First experience using LMI1195 PET in patients with the suspicion of pheochromocytoma or paraganglioma. Journal of Nuclear Medicine. 2018:59.; Yen RF, Wu VC, Liu KL, Cheng MF, Wu YW, et al. 131I-6betaiodomethyl-19-norcholesterol SPECT/CT for primary aldosteronism patients with inconclusive adrenal venous sampling and CT results. J Nucl Med. 2009;50(10):1631-7. DOI:10.2967/jnumed.109.064873; Chen YC, Chiu JS, Wang YF. NP-59 SPECT/CT imaging in stage 1 hypertensive and atypical primary aldosteronism: a 5-year retrospective analysis of clinicolaboratory and imaging features. Scientifi cWorldJournal. 2013;2013:317934. DOI:10.1155/2013/317934; Chen YC, Su YC, Wei CK, Chiu JS, Tseng CE, et al. Diagnostic value of I-131 NP-59 SPECT/CT scintigraphy in patients with subclinical or atypical features of primary aldosteronism. J Biomed Biotechnol. 2011;2011:209787. DOI:10.1155/2011/209787; Lee J, Ha J, Lee SK, Park HL, Kim SH, et al. Feasibility of Iodine-131 6β-Methyl-Iodo-19 Norcholesterol (NP-59) Scintigraphy to Complement Adrenal Venous Sampling in Management of Primary Aldosteronism: A Case Series. Int J Gen Med. 2021;14:673-680. DOI:10.2147/IJGM.S288774; Prado-Wohlwend S; Grupo de Trabajo de Endocrinología de la SEMNIM. Functional imaging of adrenal cortex. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2020;39(6):393-404. DOI:10.1016/j.remn.2020.08.010.; Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med. 1984;310(22):1415-21. DOI:10.1056/NEJM198405313102202; Bergström M, Bonasera TA, Lu L, Bergström E, Backlin C, et al. In vitro and in vivo primate evaluation of carbon-11etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med. 1998;39(6):982-9. PMID: 9627330; Khan TS, Sundin A, Juhlin C, Långström B, Bergström M, Eriksson B. 11C-metomidate PET imaging of adrenocortical cancer. Eur J Nucl Med Mol Imaging. 2003;30(3):403-10. DOI:10.1007/s00259-002-1025-9; Burton TJ, Mackenzie IS, Balan K, Koo B, Bird N, et al. Evaluation of the sensitivity and specifi city of (11)C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s adenomas. J Clin Endocrinol Metab. 2012;97(1):100-9. DOI:10.1210/jc.2011-1537; O’Shea PM, O’Donoghue D, Bashari W, Senanayake R, Joyce MB, et al. 11 C-Metomidate PET/CT is a useful adjunct for lateralization of primary aldosteronism in routine clinical practice. Clin Endocrinol (Oxf). 2019;90(5):670-679. DOI:10.1111/cen.13942; Soinio M, Luukkonen AK, Seppänen M, Kemppainen J, Seppänen J, et al. Functional imaging with 11C-metomidate PET for subtype diagnosis in primary aldosteronism. Eur J Endocrinol. 2020;183(6):539-550. DOI:10.1530/EJE-20-0532; Hennings J, Sundin A, Hägg A, Hellman P. 11C-metomidate positron emission tomography aft er dexamethasone suppression for detection of small adrenocortical adenomas in primary aldosteronism. Langenbecks Arch Surg. 2010;395(7):963-7. DOI:10.1007/s00423-010-0681-7; Mendichovszky IA, Powlson AS, Manavaki R, Aigbirhio FI, Cheow H, et al. Targeted Molecular Imaging in Adrenal Disease-An Emerging Role for Metomidate PET-CT. Diagnostics (Basel). 2016;6(4):42. DOI:10.3390/diagnostics6040042; Powlson AS, Gurnell M, Brown MJ. Nuclear imaging in the diagnosis of primary aldosteronism. Curr Opin Endocrinol Diabetes Obes. 2015;22(3):150-6. DOI:10.1097/MED.0000000000000148; Bergström M, Juhlin C, Bonasera TA, Sundin A, Rastad J,et al. PET imaging of adrenal cortical tumors with the 11beta-hydroxylase tracer 11C-metomidate. J Nucl Med. 2000;41(2):275-82. PMID: 10688111; Minn H, Salonen A, Friberg J, Roivainen A, Viljanen T, et al. Imaging of adrenal incidentalomas with PET using (11) C-metomidate and (18)F-FDG. J Nucl Med. 2004;45(6):972-9. PMID: 15181132; Zolle IM, Berger ML, Hammerschmidt F, Hahner S, Schirbel A, Peric-Simov B. New selective inhibitors of steroid 11betahydroxylation in the adrenal cortex. Synthesis and structureactivity relationship of potent etomidate analogues. J Med Chem. 2008;51(7):2244-53. DOI:10.1021/jm800012w; Erlandsson M, Karimi F, Lindhe O, Långström B. (18) F-labelled metomidate analogues as adrenocortical imaging agents. Nucl Med Biol. 2009;36(4):435-45. DOI:10.1016/j.nucmedbio.2009.01.014; Bongarzone S, Basagni F, Sementa T, Singh N, Gakpetor C, et al. Development of [18F]FAMTO: A novel fl uorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands. Nucl Med Biol. 2019;68-69:14-21. DOI:10.1016/j.nucmedbio.2018.11.002; Hahner S, Kreissl MC, Fassnacht M, Haenscheid H, Bock S, et al. Functional characterization of adrenal lesions using [123I] IMTO-SPECT/CT. J Clin Endocrinol Metab. 2013;98(4):150818. DOI:10.1210/jc.2012-3045; Sander K, Gendron T, Cybulska KA, Sirindil F, Zhou J, et al. Development of [18F]AldoView as the First Highly Selective Aldosterone Synthase PET Tracer for Imaging of Primary Hyperaldosteronism. J Med Chem. 2021;64(13):93219329. DOI:10.1021/acs.jmedchem.1c00539; Heinze B, Fuss CT, Mulatero P, Beuschlein F, Reincke M, et al. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension. 2018;71(2):317-325. DOI:10.1161/HYPERTENSIONAHA.117.09975; Walenkamp AME, Lapa C, Herrmann K, Wester HJ. CXCR4 Ligands: Th e Next Big Hit? J Nucl Med. 2017;58(Suppl 2):77S-82S. DOI:10.2967/jnumed.116.186874; Ding J, Zhang Y, Wen J, Zhang H, Wang H, et al. Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. Eur J Nucl Med Mol Imaging. 2020;47(11):2656-2665. DOI:10.1007/s00259-020-04722-0; Cui Y, Zhang Y, Ding J, Wang H, Ma X, et al. A Rare AldosteroneProducing Adenoma Detected by 68Ga-pentixafor PETCT: A Case Report and Literature Review. Front Endocrinol (Lausanne). 2019;10:810. DOI:10.3389/fendo.2019.00810; https://www.medicalherald.ru/jour/article/view/1498

  4. 4
    Academic Journal

    Source: Regulatory Research and Medicine Evaluation; Том 12, № 4 (2022); 364-378 ; Регуляторные исследования и экспертиза лекарственных средств; Том 12, № 4 (2022); 364-378 ; 3034-3453 ; 3034-3062

    File Description: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/423/650; https://www.vedomostincesmp.ru/jour/article/view/423/955; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/423/220; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/423/221; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/423/238; Radchenko V, Morgenstern A, Jalilian AR, Ramogida CF, Cutler C, Duchemin C, et al. Production and supply of α-particle-emitting radionuclides for targeted α-therapy. J Nucl Med. 2021;62(11):1495–503. https://doi.org/10.2967/jnumed.120.261016; Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9. https://doi.org/10.7150/ijms.3635; Jalilian AR, Osso JA. Production, applications and status of zirconium-89 immunoPET agents. J Radioanal Nucl Chem. 2017;314:7–21. https://doi.org/10.1007/s10967-017-5358-z; Jalilian AR, Gizawy MA, Alliot C, Takacs S, Chakarborty S, Rovais MRA, et al. IAEA activities on 67 Cu, 186 Re, 47 Sc theranostic radionuclides and radiopharmaceuticals. Curr Radiopharm. 2021;14(4):306–14. https://doi.org/10.2174/1874471013999200928162322; Jalilian AR, Osso Jr JA, Vera-Araujo J, Kumar V, Harris MJ, Gutfilen B, et al. IAEA contribution to the development of 64 Cu radiopharmaceuticals for theranostic applications. Q J Nucl Med Mol Imaging. 2020;64(4):338–45. https://doi.org/10.23736/S1824-4785.20.03302-6; https://www.vedomostincesmp.ru/jour/article/view/423

  5. 5
    Academic Journal

    Contributors: Источник финансирования. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-115-50333

    Source: Bulletin of Siberian Medicine; Том 21, № 3 (2022); 166-180 ; Бюллетень сибирской медицины; Том 21, № 3 (2022); 166-180 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-3

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4919/3266; Lauri C., Leone A., Cavallini M., Signore A., Giurato L., Uccioli L. Diabetic foot infections: the diagnostic challenges. J. Clin. Med. 2020;9(6):1779. DOI:10.3390/jcm9061779.; Llewellyn A., Kraft J., Holton C., Harden M., Simmonds M. Imaging for detection of osteomyelitis in people with diabetic foot ulcers: A systematic review and meta-analysis. Eur. J. Radiol. 2020;131:109215. DOI:10.1016/j.ejrad.2020.109215.; Chantelaua E.A., Antoniou S., Zweck B., Haage P. Follow up of MRI bone marrow edema in the treated diabetic Charcot foot – a review of patient charts. Diabet. Foot Ankle. 2018;9(1):1466611. DOI:10.1080/2000625X.2018.1466611.; Ruiz-Bedoya C.A., Gordon O., Mota F. et al. Molecular imaging of diabetic foot infections: new tools for old questions. Int. J. Mol. Sci. 2019;20(23):5984. DOI:10.3390/ijms20235984.; Massel D.H., Jenkins N.W., Rush A.J. 3rd et al. MRI and clinical risk indicators for osteomyelitis. Foot and Ankle Specialist. 2014;14(5):415–426. DOI: 0.1177/1938640020921572.; Duryea D., Bernard S., Flemming D., Walker E., French C. Outcomes in diabetic foot ulcer patients with isolated T2 marrow signal abnormality in the underlying bone: should the diagnosis of «osteitis» be changed to «early osteomyelitis»? Skeletal Radiol. 2017;46(10):1327–1333. DOI:10.1007/s00256-017-2666-x.; Jang Y.H., Park S., Park Y.U., Kwack K.S., Jeon S.W., Lee H.Y. Multivariate analyses of MRI findings for predicting osteomyelitis of the foot in diabetic patients. Acta Radiol. 2020;61(9):1205–1212. DOI:10.1177/0284185119897351.; Kotecha H.M., Lo H.S., Vedantham S., Shin H., Cerniglia C.A. Abbreviated MRI of the foot in patients with suspected osteomyelitis. Emerg. Radiol. 2020;27(1):9–16. DOI:10.1007/s10140-019-01722-y.; La Fontaine J., Bhavan K., Jupiter D., Lavery L.A., Chhabra A. Magnetic resonance imaging of diabetic foot osteomyelitis: imaging accuracy in biopsy-proven disease. J. Foot Ankle Surg. 2021;60(1):17–20. DOI:10.1053/j.jfas.2020.02.012; Jbara M., Gokli A., Beshai S. et al. Does obtaining an initial magnetic resonance imaging decrease the reamputation rates in the diabetic foot? Diabet. Foot Ankle. 2016;7:31240. DOI:10.3402/dfa.v7.31240.; Lauri C., Glaudemans A.W.J.M., Signore A. Leukocyte imaging of the diabetic foot. Curr. Pharm. Des. 2018;24(12):1270– 1276. DOI:10.2174/1381612824666180227094116.; Diez A.I.G., Fuster D., Morata L. et al. Comparison of the diagnostic accuracy of diffusion-weighted and dynamic contrast-enhanced MRI with 18F-FDG PET/CT to differentiate osteomyelitis from Charcot neuro-osteoarthropathy in diabetic foot. Eur. J. Radiol. 2020;132:109299. DOI:10.1016/j.ejrad.2020.109299.; Çildağ M.B., Ertuğrul M.B., Köseoğlu Ö.F., Armstrong D.G. A Factor increasing venous contamination on bolus chase three-dimensional magnetic resonance imaging: Charcot neuroarthropathy. J. Clin. Imaging Sci. 2018;8:13. DOI:10.4103/jcis.JCIS_77_17.; Uccioli L., Meloni M., Izzo V., Giurato L., Merolla S., Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc. Health Risk Manag. 2018;14:63–74. DOI:10.2147/VHRM.S125065.; Zamyshevskaya M., Zavadovskaya V., Zorkaltsev M., Udodov V., Grigorev E. 3D DCE-MRA of pedal arteries in patients with diabetes mellitus. Journal of Physics Conference Series. 2016;677(1):012010. DOI:10.1088/17426596/677/1/012010; Liao D., Xie L., Han Y. et al. Dynamic contrast-enhanced magnetic resonance imaging for differentiating osteomyelitis from acute neuropathic arthropathy in the complicated diabetic foot. Skeletal Radiol. 2018;47(10):1337–1347. DOI:10.1007/s00256-018-2942-4.; Zhang N., Fan Z., Luo N. et al. Noncontrast MR angiography (MRA) of infragenual arteries using flow-sensitive dephasing (FSD)-prepared steady-state free precession (SSFP) at 3.0 Tesla: comparison with contrast-enhanced MRA. J. Magn. Reson. Imaging. 2016;43(2):364–372. DOI:10.1002/jmri.25003.; Lam A., Perchyonok Y., Ranatunga D. et al. Accuracy of non-contrast quiescent-interval single-shot and quiescent-interval single-shot arterial spin-labelled magnetic resonance angiography in assessment of peripheral arterial disease in a diabetic population. J. Med. Imaging Radiat. Oncol. 2020;64(1):35–43. DOI:10.1111/1754-9485.12987.; Abdel Razek A.A.K., Samir S. Diagnostic performance of diffusion-weighted MR imaging in differentiation of diabetic osteoarthropathy and osteomyelitis in diabetic foot. Eur. J. Radiol. 2017;89:221–225. DOI:10.1016/j.ejrad.2017.02.015.; Eren M.A., Karakaş E., Torun A.N., Sabuncu T. The Clinical value of diffusion-weighted magnetic resonance imaging in diabetic foot infection. J. Am. Podiatr. Med. Assoc. 2019;109(4):277–281. DOI:10.7547/17-066.; Lauri C., Tamminga M., Glaudemans A.W.J.M. et al. Detection of Osteomyelitis in the Diabetic Foot by Imaging Techniques: A Systematic Review and Meta-analysis Comparing MRI, White Blood Cell Scintigraphy, and FDG-PET. Diabetes Care. 2017;40(8):1111–1120. DOI:10.2337/dc17-0532.; Signore A., Jamar F., Israel O., Buscombe J., Martin-Comin J., Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur. J. Nucl. Med. Mol. Imaging. 2018;45(10):1816–1831. DOI:10.1007/s00259-018-4052-x.; Lauri C., Glaudemans A.W.J.M., Campagna G. et al. Comparison of White Blood Cell Scintigraphy, FDG PET/CT and MRI in Suspected Diabetic Foot Infection: Results of a Large Retrospective Multicenter Study. J. Clin. Med. 2020;9(6):1645. DOI:10.3390/jcm9061645.; Ahmed N., Fatima S., Saeed M.A., Zia M., Irfan Ullah J. 99m Tc-ceftizoxime: synthesis, characterization and its use in diagnosis of diabetic foot osteomyelitis. J. Med. Imaging Radiat. Oncol. 2019;63(1):61–68. DOI:10.1111/1754-9485.12841.; Ankrah A.O., Klein H.C., Elsinga P.H. New imaging tracers for the infected diabetic foot (nuclear and optical imaging). Curr. Pharm. Des. 2018;24(12):1287–1303. DOI:10.2174/1381612824666180227094454.; Vouillarmet J., Moret M., Morelec I., Michon P., Dubreuil J. Application of white blood cell SPECT/CT to predict remission after a 6 or 12 week course of antibiotic treatment for diabetic foot osteomyelitis. Diabetologia. 2017;60(12):2486– 2494. DOI:10.1007/s00125-017-4417-x.; Jeffcoate W.J. Osteomyelitis of the foot: non-surgical management, SPECT/CT scanning and minimizing the duration of antibiotic use. Diabetologia. 2017;60(12):2337–2340. DOI:10.1007/s00125-017-4429-6.; Ahluwalia R., Bilal A., Petrova N. et al. The role of bone scintigraphy with SPECT/CT in the characterization and early diagnosis of stage 0 Charcot neuroarthropathy. J. Clin. Med. 2020;9(12):4123. DOI:10.3390/jcm9124123.; Yang H., Zhuang H., Rubello D., Alavi A. Mild-to-moderate hyperglycemia will not decrease the sensitivity of 18F-FDG PET imaging in the detection of pedal osteomyelitis in diabetic patients. Nucl. Med. Commun. 2016;37(3):259–262. DOI:10.1097/MNM.0000000000000434.; Glaudemans A.W.J.M., Jutte P.C., Cataldo M.A. et al. Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur. J. Nucl. Med. Mol. Imaging. 2019;46(4):957–970. DOI:10.1007/s00259-019-4262-x.; Удодов В.Д., Зоркальцев М.А., Завадовская М.А. и др. Гибридная ОФЭКТ/МРТ в диагностике синдрома диабетической стопы. Медицинская визуализация. 2016;2:36–42.; Meacock L., Petrova N.L., Donaldson A. et al. Novel semi quantitative bone marrow oedema score and fracture score for the magnetic resonance imaging assessment of the active Charcot foot in diabetes. J. Diabetes Res. 2017;2017:8504137. DOI:10.1155/2017/8504137.; Alvelo J.L., Papademetris X., Mena-Hurtado C. et al. Radiotracer imaging allows for noninvasive detection and quantification of abnormalities in angiosome foot perfusion in diabetic patients with critical limb ischemia and nonhealing wounds. Circ. Cardiovasc. Imaging. 2018;11(5):e006932. DOI:10.1161/CIRCIMAGING.117.006932; Mahendra M., Singh R. Diagnostic accuracy and surgi cal utility of MRI in complicated diabetic foot. J. Clin. Diagn. Res. 2017;11(7):RC01–RC04. DOI:10.7860/JCDR/2017/25902.10154.; Chou T.H., Atway S.A., Bobbey A.J., Sarac T.P., Go M.R., Stacy M.R. SPECT/CT imaging a noninvasive approach for evaluating serial changes in angiosome foot perfusion in critical limb ischemia. Adv. Wound Care (New Rochelle). 2020;9(3):103–110. DOI:10.1089/wound.2018.0924; Chen H.J., Roy T.L., Wright G.A. Perfusion measures for symptom severity and differential outcome of revascularization in limb ischemia: preliminary results with arterial spin labeling reactive hyperemia. J. Magn. Reson. Imaging. 2018;47(6):1578–1588. DOI:10.1002/jmri.25910.; Zheng J., Muccigrosso D., Zhang X. et al. Oximetric angiosome imaging in diabetic feet. J. Magn. Reson. Imaging. 2016;44(4):940–946. DOI:10.1002/jmri.25220.; Edalati M., Hastings M.K., Muccigrosso D. et al. Intravenous contrast-free standardized exercise perfusion imag ing in diabetic feet with ulcers. J. Magn. Reson. Imaging. 2019;50(2):474–480. DOI:10.1002/jmri.26570.; Stacy M.R., Qiu M., Papademetris X. et al. Application of BOLD Magnetic Resonance Imaging for Evaluating Regional Volumetric Foot Tissue Oxygenation: A Feasibility Study in Healthy Volunteers. Eur. J. Vasc. Endovasc. Surg. 2016;51(5):743–749. DOI:10.1016/j.ejvs.2016.02.008.; Forsythe R.O., Apelqvist J., Boyko E.J. et al. Performance of Prognostic Markers in the Prediction of Wound Hea ling or Amputation among Patients with Foot Ulcers in Diabetes: A Systematic Review. Diabetes/Metabolism Research and Reviews. 2020;36(Suppl.1):e3278. DOI:10.1002/dmrr.3278.; Lung C.W., Wu F.L., Liao F., Pu F., Fan Y. et al. Emerg ing technologies for the prevention and management of diabetic foot ulcers. J. Tissue Viability. 2020;29(2):61–68. DOI:10.1016/j.jtv.2020.03.003.; Golledge J., Fernando M., Lazzarini P. et al. The potential role of sensors, wearables and telehealth in the remote management of diabetes-related foot disease. Sensors. 2020;20(16):4527. DOI:10.3390/s20164527.; Bus S.A., Lavery L.A., Monteiro-Soares M. et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020;36 (Suppl.1):e3269. DOI:10.1002/dmrr.3269.; Lung C.W., Hsiao-Wecksler E.T., Burns S., Lin F., Jan Y.K. Quantifying dynamic changes in plantar pressure gradient in diabetics with peripheral neuropathy. Front Bioeng Biotechnol. 2016;4:54. DOI:10.3389/fbioe.2016.00054.; Bus S.A., Maas J.C., Otterman N.M. Lower-extremity dynamics of walking in neuropathic diabetic patients who wear a forefoot-offloading shoe. Clin. Biomech. (Bristol, Avon). 2017;50:21–26. DOI:10.1016/j.clinbiomech.2017.10.003; Abbott C.A., Chatwin K.E., Foden P. et al. Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: a prospective, randomised, proof-of-con cept study. Lancet Digit Health. 2019;1(6):e308–e318. DOI:10.1016/S2589-7500(19)30128-1.; Fernando M.E., Crowther R.G., Lazzarini P.A. et al. Gait in people with nonhealing diabetes-related plantar ulcers. Phys. Ther. 2019;99(12):1602–1615. DOI:10.1093/ptj/pzz119.; Brodie M.A., Okubo Y., Annegarn J., Wieching R., Lord S.R., Delbaere K. Disentangling the health benefits of walking from increased exposure to falls in older people using remote gait monitoring and multi-dimensional analysis. Physiol. Meas. 2017;38(1):45–62. DOI:10.1088/1361-6579/38/1/45; Lee S.H., Lee H.J., Chang W.H. et al. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults. J. Neuroeng. Rehabil. 2017;14(1):123. DOI:10.1186/s12984-017-0333-z.; Kang S., Cho H., Jeon D. et al. A Matrix metalloproteinase sensing biosensor for the evaluation of chronic wounds. Bio. Chip. J. 2019;13:323–332. DOI:10.1007/s1206-019-3403-4.; Luanraksa S., Jindatanmanusan P., Boonsiri T., Nimmanon T., Chaovanalikit T., Arnutti P. An MMP/TIMP ratio scoring system as a potential predictive marker of diabetic foot ulcer healing. J. Wound Care. 2018;27(12):849–855. DOI:10.12968/jowc.2018.27.12.849.; Krisp C., Jacobsen F., McKay M.J., Molloy M.P., Steinstraesser L., Wolters D.A. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics. 2013;13(17):2670–2681. DOI:10.1002/pmic.201200502.; Jones J.I., Nguyen T.T., Peng Z., Chang M. Targeting MMP-9 in diabetic foot ulcers. Pharmaceuticals (Basel). 2019;12(2):79. DOI:10.3390/ph12020079.; Ramirez-Acuña J.M., Cardenas-Cadena S.A., Marquez Salas P.A. et al. Diabetic foot ulcers: current advances in antimicrobial therapies and emerging treatments. Antibiotics (Basel). 2019;8(4):193. DOI:10.3390/antibiotics8040193.; Shao M., Hussain Z., Thu H.E. et al. Emerging trends in therapeutic algorithm of chronic wound healers: recent advances in drug delivery systems, concepts-to-clinical application and future prospects. Critical Reviews in Therapeutic Drug Carrier Systems.2017;34(5):387–452. DOI:10.1615/critrevtherdrugcarriersyst.2017016957.; Jneid J., Cassir N., Schuldiner S. et al. Exploring the microbiota of diabetic foot infections with culturomics. Front Cell Infect. Microbiol. 2018;8:282. DOI:10.3389/fcimb.2018.00282.; Malone M., Johani K., Jensen S.O. et al. Next generation DNA sequencing of tissues from infected diabetic foot ulcers. eBioMedicine. 2017;21:142–149. DOI:10.1016/j.ebiom.2017.06.026.; Park J.U., Oh B., Lee J.P., Choi M.H., Lee M.J., Kim B.S. Influence of microbiota on diabetic foot wound in comparison with adjacent normal skin based on the clinical features. Biomed. Res. Int. 2019;2019:7459236. DOI:10.1155/2019/7459236.; https://bulletin.tomsk.ru/jour/article/view/4919

  6. 6
  7. 7
    Academic Journal

    Source: Siberian journal of oncology; Том 20, № 4 (2021); 108-115 ; Сибирский онкологический журнал; Том 20, № 4 (2021); 108-115 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-4

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1872/890; Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019 Apr; 10(2): 63–89. doi:10.14740/wjon1191.; World Health Organization. Global cancer observatory: cancer today [Internet]. URL: https://gco.iarc.fr/today (cited 16.11.2020).; Pernar C.H., Ebot E.M., Wilson K.M., Mucci L.A. The Epidemiology of Prostate Cancer. Cold Spring Harb Perspect Med. 2018 Dec 3; 8(12): a030361. doi:10.1101/cshperspect.a030361.; Алексеев Б.Я., Каприн А.Д., Колонтарев К.Б.,Матвеев В.Б., Пушкарь Д.Ю., Раснер П.И., Харчилава Р.Р. Клинические рекомендации. Рак предстательной железы. 2018. 7.; Pieters B. Randomized trial for the evaluation of erectile dysfunction after whole or partial gland prostate brachytherapy. 2018. 25 p.; Chen F.Z., Zhao X.K. Prostate cancer: current treatment and prevention strategies. Iran Red Crescent Med J. 2013; 15(4): 279–84. doi:10.5812/ircmj.6499.; Vidal-Sicart S., Valdés Olmos R., Nieweg O.E, Faccini R., Grootendorst M.R., Wester H.J., Navab N., Vojnovic B., van der Poel H., Martínez-Román S., Klode J., Wawroschek F., van Leeuwen F.W.B. From interventionist imaging to intraoperative guidance: New perspectives by combining advanced tools and navigation with radio-guided surgery. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2018 Jan-Feb; 37(1): 28–40. doi:10.1016/j.remn.2017.06.004.; Maurer T., Graefen M., van der Poel H., Hamdy F., Briganti A., Eiber M., Wester H.J., van Leeuwen F.W.B. Prostate-Specific Membrane Antigen-Guided Surgery. J Nucl Med. 2020; 61(1): 6–12. doi:10.2967/jnumed.119.232330.; Povoski S.P., Neff R.L., Mojzisik C.M., O'Malley D.M., Hinkle G.H., Hall N.C., Murrey D.A.Jr., Knopp M.V., Martin E.W.Jr. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009 Jan 27; 7: 11. doi:10.1186/1477-7819-7-11.; Parris C.C., Bigelow R.R., Francis J.E., Kelly G.G., Bell P.R. A Csi(Ti)-crystal surgical scintillation probe. Nucleonics. 1956; 14: 102–108.; Descotes J.L. Diagnosis of prostate cancer. Asian J Urol. 2019 Apr; 6(2): 129–136. doi:10.1016/j.ajur.2018.11.007.; Wawroschek F., Vogt H., Weckermann D., Wagner T., Harzmann R. The sentinel lymph node concept in prostate cancer – first results of gamma probe-guided sentinel lymph node identification. Eur Urol. 1999 Dec; 36(6): 595–600. doi:10.1159/000020054.; Silver D.A., Pellicer I., Fair W.R., Heston W.D., Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997 Jan; 3(1): 81–5.; Hovels A.M., Heesakkers R.A., Adang E.M., Jager G.J., Strum S., Hoogeveen Y.L., Severens J.L. , Barentsz J.O. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008; 63: 387–395.; De Visschere P.J.L., Standaert C., Fütterer J.J., Villeirs G.M., Panebianco V., Walz J., Maurer T., Hadaschik B.A., Lecouvet F.E., Giannarini G., Fanti S. A Systematic Review on the Role of Imaging in Early Recurrent Prostate Cancer. Eur Urol Oncol. 2019 Feb; 2(1): 47–76. doi:10.1016/j.euo.2018.09.010.; van Leeuwen F.W.B., Winter A., van Der Poel H.G., Eiber M., Suardi N., Graefen M., Wawroschek F., Maurer T. Technologies for imageguided surgery for managing lymphatic metastases in prostate cancer. Nat Rev Urol. 2019 Mar; 16(3): 159–171. doi:10.1038/s41585-018-0140-8.; Litwin M.S., Tan H.J. The Diagnosis and Treatment of Prostate Cancer: A Review. JAMA. 2017; 317(24): 2532–2542. doi:10.1001/jama.2017.7248.; Wallitt K.L., Khan S.R., Dubash S., Tam H.H., Khan S., Barwick T.D. Clinical PET Imaging in Prostate Cancer. Radiographics. 2017 Sep-Oct; 37(5): 1512–1536. doi:10.1148/rg.2017170035.; Rauscher I., Krönke M., König M., Gafita A., Maurer T., Horn T., Schiller K., Weber W., Eiber M. Matched-Pair Comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence After Radical Prostatectomy. J Nucl Med. 2020 Jan; 61(1): 51–57. doi:10.2967/jnumed.119.229187.; Maurer T., Robu S., Schottelius M., Schwamborn K., Rauscher I., van den Berg N.S., van Leeuwen F.W.B., Haller B., Horn T., Heck M.M., Gschwend J.E., Schwaiger M., Wester H.J., Eiber M. 99mTechnetiumbased Prostate-specific Membrane Antigen-radioguided Surgery in Recurrent Prostate Cancer. Eur Urol. 2019 Apr; 75(4): 659–666. doi:10.1016/j.eururo.2018.03.013.; Watson A.A. The discovery of Cherenkov radiation and its use in the detection of extensive air showers. Nuclear Physics. 2011; 212–213: 13–19. doi:10.1016/j.nuclphysbps.2011.03.003.; Olde Heuvel J., de Wit-van der Veen B.J., Vyas K.N., Tuch D.S., Grootendorst M.R., Stokkel M.P.M., Slump C.H. Performance evaluation of Cerenkov luminescence imaging: a comparison of 68Ga with 18F. EJNMMI Phys. 2019 Oct 24; 6(1): 17. doi:10.1186/s40658-019-0255-x.; Olde Heuvel J., de Wit-van der Veen B.J., van der Poel H.G., Bekers E.M., Grootendorst M.R., Vyas K.N., Slump C.H., Stokkel M.P.M. 68Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: first-in-man series. Eur J Nucl Med Mol Imaging. 2020 Oct; 47(11): 2624–2632. doi:10.1007/s00259-020-04783-1.; Todd R., Nightingale J., Everett D. A proposed Gamma camera. Nature. 1974; 251: 132–134. doi:10.1038/251132a0.; Schonefelder V., Diehl R., Lichti G.G., Steinle H., Swanenburg B.N., Deerenberg A.J.M., Aarts H., Lockwood J., Webber W. The imaging Compton telescope COMPTEL on the gamma ray observatory. IEEE Trans. Nucl. Sci. 1984; 66–70. doi:10.1109/TNS.1984.4333363.; https://www.siboncoj.ru/jour/article/view/1872

  8. 8
    Academic Journal

    Contributors: This research was financially supported by the Ministry of Science and Higher education of Russian Federetion (grant № 075-15-2019-1925) «Development of target molecules based on scaffold proteins for the diagnosis and therapy of malignant neoplasms: theranostic approach»., Работа выполнена в рамках гранта Министерства науки и высшего образования, соглашение № 075- 15-2019-1925 по теме «Разработка таргетных молекул на основе каркасных белков для диагностики и терапии злокачественных новообразований: тераностический подход».

    Source: Siberian journal of oncology; Том 20, № 5 (2021); 170-178 ; Сибирский онкологический журнал; Том 20, № 5 (2021); 170-178 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-5

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1930/915; Поляновский О.Л., Лебеденко Е.Н., Деев С.М. ERBB онкогены – мишени моноклональных антител. Биохимия. 2012; 77 (3): 289–311.; Zavyalova M., Vtorushin S.V., Telegina N., Krakhmal N., Savelieva O., Tashireva L., Bragina O., Denisov E.V., Kaigorodova E.V., Slonimskaya E., Choynzonov E.L., Perelmuter V.M. Clinicopathological features of nonspecific invasive breast cancer according to its molecular subtypes. Experimental Oncology. 2016: 38 (2): 122–127.; Гервас П.А., Литвяков Н.В., Попова Н.О., Добродеев А.Ю., Тарасова А.С., Юмов Е.Л., Иванова Ф.Г., Черемисина О.В., Афанасьев С.Г., Гольдберг В.Е., Чердынцева Н.В. Проблемы и перспективы совершенствования молекулярно-генетической диагностики для назначения таргетных препаратов в онкологии. Сибирский онкологический журнал. 2014; 2: 46–55.; Babyshkina N., Malinovskaya E., Patalyak S., Bragina O., Tarabanovskaya N., Doroshenko A., Slonimskaya E., Perelmuter V., Cherdyntseva N. Neoadjuvant chemotherapy for different molecular breast cancer subtypes: a retrospective study in Russian population. Med Oncol. 2014 Sep; 31(9): 165. doi:10.1007/s12032-014-0165-7.; Wolff A.C., Hammond M.E., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M., Bilous M., Fitzgibbons P., Hanna W., Jenkins R.B., Mangu P.B., Paik S., Perez E.A., Press M.F., Spears P.A., Vance G.H., Viale G., Hayes D.F.; American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013 Nov 1; 31(31): 3997–4013. doi:10.1200/JCO.2013.50.9984.; Raica M., Cîmpean A.M., Ceausu R.A., Fulga V., Nica C., Rudico L., Saptefrati L. Hormone receptors and HER2 expression in primary breast carcinoma and corresponding lymph node metastasis: do we need both? Anticancer Res. 2014 Mar; 34(3): 1435–40.; Lower E.E., Glass E., Blau R., Harman S. HER-2/neu expression in primary and metastatic breast cancer. Breast Cancer Res Treat. 2009 Jan; 113(2): 301–6. doi:10.1007/s10549-008-9931-6.; Turner N.H., Di Leo A. HER2 discordance between primary and metastatic breast cancer: assessing the clinical impact. Cancer Treat Rev. 2013 Dec; 39(8): 947–57. doi:10.1016/j.ctrv.2013.05.003.; Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойнзонов Е.Л. Ядерная медицина в диагностике и адресной терапии злокачественных образований. Бюллетень сибирской медицины. 2018; 17(1): 220–231. doi:10.20538/1682-0363-2018-1-220-231.; Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr Pharm Des. 2008; 14(28): 2999–3019. doi:10.2174/138161208786404290.; Tolmachev V., Orlova A., Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol Biol. 2014; 1060: 309–30. doi:10.1007/978-1-62703-586-6_16.; Krasniqi A., D'Huyvetter M., Devoogdt N., Frejd F.Y., Sörensen J., Orlova A., Keyaerts M., Tolmachev V. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. J Nucl Med. 2018 Jun; 59(6): 885–891. doi:10.2967/jnumed.117.199901.; Брагина О.Д., Чернов В.И., Зельчан Р.В., Синилкин И.Г., Медведева А.А., Ларкина М.С. Альтернативные каркасные белки в радионуклидной диагностике злокачественных образований. Бюллетень сибирской медицины. 2019; 18(3): 125–133. doi:10.20538/1682-0363-2019-3-125-133.; Azhar A., Ahmad E., Zia Q., Rauf M.A., Owais M., Ashraf G.M. Recent advances in the development of novel protein scaffolds based therapeutics. Int J Biol Macromol. 2017; 102: 630–641. doi:10.1016/j.ijbiomac.2017.04.045.; Брагина О.Д., Ларькина М.С., Стасюк Е.С., Чернов В.И., Юсубов М.С., Скуридин В.С., Деев С.М., Зельчан Р.В., Булдаков М.А., Подрезова Е.В., Белоусов М.В. Разработка высокоспецифического радиохимического соединения на основе меченных 99mTc рекомбинантных адресных молекул для визуализации клеток с гиперэкспрессией Her2/neu. Бюллетень сибирской медицины. 2017; 16(3): 25–33. doi:10.20538/1682-0363-2017-3-25-33.; Vorobyeva A., Schulga A., Konovalova E., Güler R., Löfblom J., Sandström M., Garousi J., Chernov V., Bragina O., Orlova A., Tolmachev V., Deyev S.M. Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Sci Rep. 2019 Jun 28; 9(1): 9405. doi:10.1038/s41598-019-45795-8.; Nilvebrant J., Åstrand M., Georgieva-Kotseva M., Björnmalm M., Löfblom J., Hober S. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS One. 2014 Aug 4; 9(8): e103094. doi:10.1371/journal.pone.0103094.; Garousi J., Lindbo S., Nilvebrant J., Åstrand M., Buijs J., Sandström M., Honarvar H., Orlova A., Tolmachev V., Hober S. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers. Cancer Res. 2015 Oct 15; 75(20): 4364–71. doi:10.1158/0008-5472.CAN-14-3497.; Lindbo S., Garousi J., Åstrand M., Honarvar H., Orlova A., Hober S., Tolmachev V. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins. Bioconjug Chem. 2016 Mar 16; 27(3): 716–26. doi:10.1021/acs.bioconjchem.5b00677.; Bragina O., von Witting E., Garousi J., Zelchan R., Sandström M., Orlova A., Medvedeva A., Doroshenko A., Vorobyeva A., Lindbo S., Borin J., Tarabanovskaya N., Sörensen J., Hober S., Chernov V., Tolmachev V. Phase I Study of 99mTc-ADAPT6, a Scaffold Protein-Based Probe for Visualization of HER2 Expression in Breast Cancer. J Nucl Med. 2021 Apr; 62(4): 493–499. doi:10.2967/jnumed.120.248799.; Брагина О.Д., Чернов В.И., Гарбуков Е.Ю., Дорошенко А.В., Воробьева А.Г., Орлова А.М., Толмачев В.М. Возможности радионуклидной диагностики Her2-позитивного рака молочной железы с использованием меченных технецием-99m таргетных молекул: первый опыт клинического применения. Бюллетень сибирской медицины. 2021; 20(1): 23–30. doi:10.20538/1682-0363-2021-1-23-30.; Sandström M., Lindskog K., Velikyan I., Wennborg A., Feldwisch J., Sandberg D., Tolmachev V., Orlova A., Sörensen J., Carlsson J., Lindman H., Lubberink M. Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule 68Ga-ABY-025 in Breast Cancer Patients. J Nucl Med. 2016 Jun; 57(6): 867–71. doi:10.2967/jnumed.115.169342.; Sörensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V., Orlova A., Sandström M., Lubberink M., Olofsson H., Carlsson J., Lindman H. Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [68Ga]ABY-025 Affibody PET/CT. Theranostics. 2016 Jan 1; 6(2): 262–71. doi:10.7150/thno.13502.; Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F.P., Gevaert T., Simon P., Schallier D., Fontaine C., Vaneycken I., Vanhove C., De Greve J., Lamote J., Caveliers V., Lahoutte T. Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. J Nucl Med. 2016 Jan; 57(1): 27–33. doi:10.2967/jnumed.115.162024.; https://www.siboncoj.ru/jour/article/view/1930

  9. 9
  10. 10
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; № 2 (2019); 15-23 ; Лучевая диагностика и терапия; № 2 (2019); 15-23 ; 2079-5343 ; 10.22328/2079-5343-2019-2

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/409/340; Чиссов В.И., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2010 году (заболеваемость и смертность). М.: Изд-во МНИОИ им. П. А. Герцена, 2012. 12 с.; Карташев А.В., Петрова А.Б. Возможности навигационной транскраниальной магнитной стимуляции в подготовке больных с опухолями головного мозга к курсу лучевой терапии // Лучевая диагностика и терапия. 2017. № 2. С. 52–53.; Коновалов А.Н., Корниенко В.Н., Пронин И.Н. Магнитнорезонансная томография в нейрохирургии. Общество с ограниченной ответственностью «Видар», 1997.; Server A., Orheim T.E., Graff B.A., Josefsen R., Kumar T., Nakstad P.H. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis // Neuroradiology. 2011. May 1; Vol. 53 (5). Р. 319–330. https://doi.org/10.1007/s00234-010-0740-3.; Butzen J., Prost R., Chetty V., Donahue K., Neppl R., Bowen W., Li S.J., Haughton V., Mark L., Kim T., Mueller W. Discrimination between neoplastic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model // American journal of neuroradiology. 2000. Jun 1; Vol. 21 (7). Р. 1213–1219.; Möller-Hartmann W., Herminghaus S., Krings T., Marquardt G., Lanfermann H., Pilatus U., Zanella F. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions // Neuroradiology. 2002. May 1. Vol. 44 (5). Р. 371–381. https://doi.org/10.1007/s00234-001-0760-0.; Сергеев П.В., Поляев Ю.А., Юдин А.Л., Шимановский Н.Л. Контрастные средства. М.: Известия, 2007.; Takenaka S., Asano Y., Shinoda J., Nomura Y., Yonezawa S., Miwa K., Yano H., Iwama T. Comparison of 11C-methionine, 11Ccholine, and 18F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis // Neurologia medico-chirurgica. 2014. Vol. 54 (4). Р. 280–289. https://doi.org/10.2176/nmc.oa2013-0117.; Brandsma D, van den Bent M.J. Peudoprogression and pseudoresponse in the treatment of gliomas // Current opinion in neurology. 2009. Dec 1; Vol. 22 (6) Р. 633–638. https://doi.org/10.1097/WCO.0b013e328332363e.; Бывальцев В.А., Степанов И.А., Белых Е.Г., Яруллина А.И. Молекулярные аспекты ангиогенеза в глиобластомах головного мозга // Вопросы онкологии. 2017. № 63 (1). С. 19–27.; Guan L.M., Qi X.X., Xia B., Li Z.H., Zhao Y., Xu K. Early changes measured by CT perfusion imaging in tumor microcirculation following radiosurgery in rat C6 brain gliomas // Journal of neurosurgery. 2011. Jun; Vol. 114 (6). Р. 1672–1680. https://doi.org/10.3171/2011.1.JNS101513.; Корниенко В.Н., Пронин И.Н., Арутюнов Н.В., Захарова Н.Е., Подопригора А.Е., Серков С.В., Фадеева Л.М., Родионов П.В., Такуш С.В. Нейрорадиология в начале XXI века. Достижения и перспективы развития // Лучевая диагностика и терапия. 2012. № 3. С. 8–19.; Грибанова Т.Г., Фокин В.А., Мартынов Б.В., Труфанов Г.Е., Пашкова А.А. Возможности магнитно-резонансной перфузии в дифференциальной диагностике рецидива глиальных опухолей головного мозга и постлучевых изменений // Вестник Российской военно-медицинской академии. 2014. № 4. С. 54–57.; Granov А.T.L., Schwartz T. Positron emission tomography. Heideberg, Berlin: Springer-Verlag, 2013. 384 p.; Лишманов Ю.Б., Чернов В.И. и др. Национальное руководство по радионуклидной диагностике. В 2 т. Томск: STT, 2010.; Декан В.С., Мартынов Б.В., Труфанов Г.Е., Свистов Д.В. Возможности усовершенствованной методики однофотонной эмиссионной компьютерной томографии головного мозга с 99mTc-метоксиизобутилизонитрилом в определении степени злокачественности глиальных опухолей // Бюллетень сибирской медицины. 2008. № 7 (5–1).; Декан В.С., Парфенов В.Е., Труфанов Г.Е., Мартынов Б.В., Свистов Д.В., Романов Г.Г. Выявление злокачественных новообразований головного мозга методом однофотонной эмиссионной компьютерной томографии и совмещенной ОФЭКТ МРТ // Лучевая диагностика и терапия. 2010. № 4. С. 28–36.; Chaskis C., Neyns B., Michotte A., De Ridder M., Everaert H. Pseudoprogression after radiotherapy with concurrent temozolomide for high-grade glioma: clinical observations and working recommendations // Surgical neurology. 2009. Oct. 1; Vol. 72 (4). Р. 423–428. https://doi.org/10.1016/j.surneu.2008.09.023.; Vander Borght T., Asenbaum S., Bartenstein K. EANM Procedure Guidelines for Brain Tumour Imaging using Labelled Amino Acid Analogues // EANM-2016. URL: https://www.eanm.org/publications/guidelines/gl_neuro_brain_tumor_060327.pdf; Skuridin V.S., Stasyuk E.S., Ilyina E.A., Rogov A.S. Obtaining Technetium-99m-Labeled Glucose Derivatives // Advanced Materials Research. 2014. Nov. 16. 1084 р.; Хмелев А.В. Позитронная эмиссионная томография: физико-технические аспекты. М.: Тровант, 2016. ISBN 978-5-89513-392-7.; Taggart M.P., Tarn M.D., Esfahani M.M., Schofield D.M., Brown N.J., Archibald S.J., Deakin T., Pamme N., Thompson L.F. Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals // Lab on a Chip. 2016. Vol. 16 (9). Р. 1605–1616.; Burt T., Yoshida K., Lappin G., Vuong L., John C., de Wildt SN., Sugiyama Y., Rowland M. Microdosing and other phase 0 clinical trials: facilitating translation in drug development. // Clinical and translational science. 2016 Apr 1; Vol. 9 (2). Р. 74–88. https://doi.org/10.1111/cts.12390.; Holzgreve A., Brendel M., Gu S., Carlsen J., Mille E., Böning G., Mastrella G., Unterrainer M., Gildehaus F.J., Rominger A., Bartenstein P. Monitoring of Tumor Growth with [18F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches // Frontiers in neuroscience. 2016. Jun. 14; Vol. 10, 260 р. https://doi.org/10.3389/fnins.2016.00260.; Trikalinos N.A., Nihashi T., Evangelou E., Terasawa T. Positron emission tomography (PET) for prediction of glioma histology: protocol for an individual-level data meta-analysis of test performance // BMJ open. 2018. Feb. 1, Vol. 8 (2). e020187. http://dx.doi.org/10.1136/bmjopen-2017-020187.; Скворцова Т.Ю., Бродская З.Л, Савинцева Ж.И. Современные методы нейровизуализации в дифференциальной диагностике лучевых поражений головного мозга у больных с церебральными опухолями // Бюллетень сибирской медицины. 2011. № 10 (4). С. 130–136.; Костеников Н.А., Фадеев Н.П., Тютин Л.А. и др. Сравнительное изучение особенностей визуализации глиальных опухолей при ПЭТ с различными туморотропными радиофармпрепаратами // Медицинская визуализация. 2013. № 2. С. 83–90.; Костеников Н.А., Тютин Л.А., Фадеев Н.П., Панфиленко А.Ф., Зыков Е.М., Илющенко Ю.Р., Макеева О.Ю. Дифферен циальная диагностика глиом головного мозга методом позитронной эмиссионной томографии с различными радиофармпрепаратами // Вестник рентгенологии и радиологии. 2016. № 28 (5). С. 13–18. https://doi.org/10.20862/0042-4676-2014-0-5-13-18.; Скворцова Т.Ю., Захс Д.В., Гурчин А.Ф. ПЭТ с 11С-метионином в диагностике глиальных опухолей головного мозга. Вестник РОНЦ им. Н. Н. Блохина РАМН, 2016. № 27 (4), С. 61–69; Скворцова Т.Ю., Бродская З.Л., Гурчин А.Ф. Возможности позитронно-эмиссионной томографии c 11С-метионином в распознавании псевдопрогрессии церебральных глиом после комбинированного лечения // Вопросы нейрохирургии им. Н. Н. Бур денко. 2014. № 78 (4). С. 50–58.; Filss C.P., Cicone F., Shah N.J., Galldiks N., Langen K.J. Amino acid PET and MR perfusion imaging in brain tumours // Clinical and translational imaging. 2017. Jun. 1; Vol. 5 (3). Р. 209–223. https://doi.org/10.1007/s40336-017-0225-z.; Bush N.O., Cha S., Chang S., Clarke J.L. Pseudo-Progression in Neuro-Oncology: Overview, Pathophysiology, and Interpretation // Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy. 2nd еd. 2018. Р. 729–746. https://doi.org/10.1016/B978-0-12-812100-9.00058-9.; Jansen N.L., Suchorska B., Wenter V., Eigenbrod S., SchmidTannwald C., Zwergal A., Niyazi M., Drexler M., Bartenstein P., Schnell O., Tonn J.C. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients // Journal of Nuclear Medicine. 2014. Feb. 1. jnumed-113. https://doi.org/10.2967/jnumed.113.122333.; Grosu A.L., Astner S.T., Riedel E., Nieder C., Wiedenmann N., Heinemann F., Schwaiger M., Molls M., Wester H.J., Weber W.A. An interindividual comparison of O-(2-[18F] fluoroethyl)-L-tyrosine (FET)–and L-[methyl-11C] methionine (MET)–PET in patients with brain gliomas and metastases // International Journal of Radiation Oncology, Biology, Physics. 2011. Nov 15, Vol. 81 (4). Р. 1049–1058. https://doi.org/10.1016/j.ijrobp.2010.07.002.; Dunet V., Rossier C., Buck A., Stupp R., Prior J.O. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis // Journal of Nuclear Medicine. 2012. Feb. 1, Vol. 53 (2). Р. 207–214. https://doi.org/10.2967/jnumed.111.096859.; Jansen N.L., Graute V., Armbruster L., Suchorska B., Lutz J., Eigenbrod S., Cumming P., Bartenstein P., Tonn J.C., Kreth F.W., La Fougère C. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? // European journal of nuclear medicine and molecular imaging. 2012. Jun. 1, Vol. 39 (6). Р. 1021–1029. https://doi.org/10.1007/s00259-012-2109-9.; Harat M., Małkowski B., Makarewicz R. Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: a prospective study // Radiotherapy and Oncology. 2016. Aug. 1, Vol. 120 (2). Р. 241–247. https://doi.org/10.1016/j.radonc.2016.06.004.; Albert N.L., Winkelmann I., Suchorska B., Wenter V., SchmidTannwald C., Mille E., Todica A., Brendel M., Tonn J.C., Bartenstein P., La Fougere C. Early static 18F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans // European journal of nuclear medicine and molecular imaging. 2016. Jun. 1, Vol. 43 (6). Р. 1105–1114. https://doi.org/10.1007/s00259-015-3276-2.; Poulsen S.H., Urup T., Grunnet K., Christensen I.J., Larsen V.A., Jensen M.L., af Rosenschöld P.M., Poulsen H.S., Law I. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma // European journal of nuclear medicine and molecular imaging. 2017. Mar. 1, Vol. 44 (3). Р. 373–381. https://doi.org/10.1007/s00259-016-3494-2.; Lundemann M., Costa J.C., Law I., Engelholm S.A., Muhic A., Poulsen H.S., af Rosenschold P.M. Patterns of failure for patients with glioblastoma following O-(2-[18F] fluoroethyl)-L-tyrosine PET-and MRI-guided radiotherapy // Radiotherapy and Oncology. 2017. Mar. 1; Vol. 122 (3). Р. 380–386. https://doi.org/10.1016/j.radonc.2017.01.002.; Люосев А.С., Долгушин М.Б., Пронин А.И., Оджарова А.А., Михайлов А.И., Бекяшев А.Х., Невзоров Д.И., Нечипай Э.А., Ильялов С.Р. ПЭТ/КТ с 18F-ФЭТ в дифференциальной диагностике рецидивов и постлучевых изменений при метастатическом поражении головного мозга // Медицинская визуализация. 2016. № 6. С. 15–25.; Wardak M., Schiepers C., Cloughesy T.F., Dahlbom M., Phelps M.E., Huang S.C. 18F-FLT and 18F-FDOPA PET kinetics DIAGNOSTIC RADIOLOGY AND RADIOTHERAPY № 2 (10) 2019 22in recurrent brain tumors // European journal of nuclear medicine and molecular imaging. 2014, Jun 1, Vol. 41 (6). Р. 1199–1209. https://doi.org/10.1007/s00259-013-2678-2.; Yamamoto Y., Ono Y., Aga F., Kawai N., Kudomi N., Nishiyama Y. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas // Journal of Nuclear Medicine. 2012. Dec. 1; Vol. 53 (12). Р. 1911. https://doi.org/10.2967/jnumed.112.104729.; Hatazawa J. 11C-acetate PET/CT: a potential alternative of transcranial biopsy for grading cerebral gliomas // European journal of nuclear medicine and molecular imaging. 2018. Vol. 45 (6). Р. 1011. http://dx.doi.org/10.1007%2Fs00259-018-3950-2.; Долгушин М.Б., Оджарова А.А., Тулин П.Е., Вихрова Н.Б., Невзоров Д., Меньков М.А., Нечипай Э.А., Кобякова Е.А., Бекяшев А.Х. ПЭТ с 18F-холином в диагностике глиальных опухолей головного мозга // Медицинская визуализация. 2014. № 3. С. 73–83.

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Relation: Ермолицкий, Н. М. Молекулярная визуализация в лучевой диагностике / Н. М. Ермолицкий // Проблемы здоровья и экологии. - 2015. - № 4(46). - С. 105-108.; http://elib.gsmu.by/handle/GomSMU/128