Showing 1 - 20 results of 60 for search '"лекарственная резистентность"', query time: 0.56s Refine Results
  1. 1
    Academic Journal

    Contributors: Исследование выполнено с привлечением средств гранта Российского научного фонда № 22-15-00117, https://rscf.ru/project/22-15-00117

    Source: HIV Infection and Immunosuppressive Disorders; Том 16, № 2 (2024); 7-22 ; ВИЧ-инфекция и иммуносупрессии; Том 16, № 2 (2024); 7-22 ; 2077-9828 ; 10.22328/2077-9828-2024-16-2

    File Description: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/906/585; Palmer S., Maldarelli F., Wiegand A., Bernstein B., Hanna G.J., Brun S.C., Kempf D.J., Mellors J.W., Coffin J.M., King M.S. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy // Proceedings of the National Academy of Sciences of the United States of America. 2008. Vol. 105, No. 10. Р. 3879–3884.; Perelson A.S., Ribeiro R.M. Modeling the within-host dynamics of HIV infection // BMC Biol. 2013. Vol. 11. Р. 96.; Arnaout R.A., Nowak M.A., Wodarz D. HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing? Proceedings Biological sciences // The Royal Society. 2000. Vol. 267, No. 1450. Р. 1347–1354.; Sahu G.K. Potential implication of residual viremia in patients on effective antiretroviral therapy // AIDS research and human retroviruses. 2015. Vol. 31, No. 1. Р. 25–35.; Service R.R. Low-level HIV viremia: Definitions, predictors, mechanisms, and clinical outcomes // Toronto O.N. The Ontario HIV Treatment Network. Vol. 2022. Available from: https://www.ohtn.on.ca/wp-content/uploads/2022/01/RR166_Low-level-viremia_version2.pdf. Accessed on March 26, 2024.; WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. 2nd ed. 2016 [11.02.2024]. Available from: https://www.who.int/publications/i/item/9789241549684. Accessed on March 26, 2024.; Министерство здравоохранения РФ. Клинические рекомендации «ВИЧ-инфекция у взрослых» 2020. Available from: https://cr.minzdrav.gov.ru/recomend/79_1. Accessed on March 26, 2024.; Ryscavage P., Kelly S., Li J.Z., Harrigan P.R., Taiwo B. Significance and clinical management of persistent low-level viremia and very-low-level viremia in HIV-1-infected patients // Antimicrobial agents and chemotherapy. 2014. Vol. 58, No. 7. Р. 3585–3598.; Wu F., Simonetti F.R. Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure // Current HIV/AIDS reports. 2023. Vol. 20, No. 6. Р. 428–439.; Bouchard A., Bourdeau F., Roger J., Taillefer V.T., Sheehan N.L., Schnitzer M., Wang G., Jean Baptiste François I.J., Therrien R. Predictive Factors of Detectable Viral Load in HIV-Infected Patients // AIDS research and human retroviruses. 2022. Vol. 38, No. 7. Р. 552–560.; Crespo-Bermejo C., de Arellano E.R., Lara-Aguilar V., Valle-Millares D., Gomez-Lus M.L., Madrid R., Martin-Carbonero L., Briz V. Persistent low-Level viremia in persons living with HIV undertreatment: An unresolved status // Virulence. 2021. Vol. 12, No. 1. Р. 2919–2931.; Bai R., Lv S., Wu H., Dai L. Low-level Viremia in Treated HIV-1 Infected Patients: Advances and Challenges // Current HIV research. 2022. Vol. 20, No. 2. Р. 111–119.; Maggiolo F., Di Filippo E., Comi L., Callegaro A., Colombo G.L., Di Matteo S., Valsecchi D., Rizzi M. Reduced adherence to antiretroviral therapy is associated with residual low-level viremia // Pragmat. Obs. Res. 2017. Vol. 8. Р. 91–97.; Elvstam O., Malmborn K., Elen S., Marrone G., Garcia F., Zazzi M., Sonnerborg A., Bohm M., Seguin-Devaux C., Bjorkman P. Virologic Failure Following Low-level Viremia and Viral Blips During Antiretroviral Therapy: Results From a European Multicenter Cohort // Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2023. Vol. 76, No. 1. Р. 25–31.; Taramasso L., Magnasco L., Bruzzone B., Caligiuri P., Bozzi G., Mora S., Balletto E., Tatarelli P., Giacomini M., Di Biagio A. How relevant is the HIV low level viremia and how is its management changing in the era of modern ART? A large cohort analysis // Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2020. Vol. 123. Р. 104255.; Inzaule S.C., Bertagnolio S., Kityo C.M., Siwale M., Akanmu S., Wellington M., de Jager M., Ive P., Mandaliya K., Stevens W., Boender T.S., Ondoa P., Sigaloff K.C.E., Rinke de Wit T.F., Hamers R.L. The relative contributions of HIV drug resistance, nonadherence and low-level viremia to viremic episodes on antiretroviral therapy in sub-Saharan Africa // AIDS (London, England). 2020. Vol. 34, No. 10. Р. 1559–1566.; Castillo-Mancilla J.R., Morrow M., Coyle R.P., Coleman S.S., Zheng J.H., Ellison L., Bushman L.R., Kiser J.J., Anderson P.L., MaWhinney S. Low-Level Viremia Is Associated With Cumulative Adherence to Antiretroviral Therapy in Persons With HIV // Open forum infectious diseases. 2021. Vol. 8, No. 9. Р. ofab463.; Konstantopoulos C., Ribaudo H., Ragland K., Bangsberg DR., Li JZ. Antiretroviral regimen and suboptimal medication adherence are associated with low-level human immunodeficiency virus viremia // Open forum infectious diseases. 2015. Vol. 2, No. 1. Р. ofu119.; Taiwo B., Gallien S., Aga E., Ribaudo H., Haubrich R., Kuritzkes D.R., Eron J.J., Jr. Antiretroviral drug resistance in HIV-1-infected patients experiencing persistent low-level viremia during first-line therapy // The Journal of infectious diseases. 2011. Vol. 204, No. 4. Р. 515–520.; Hsu J.Y., Sun H.Y., Hsieh T.W., Chang S.Y., Chuang Y.C., Huang Y.S., Hsiao C.Y., Su Y.C., Liu W.C., Chang S.F., Hung C.C. Incidence of low-level viremia and its impact on virologic failure among people living with HIV-1 who switched to elvitegravir-based antiretroviral therapy // J. Glob Antimicrob. Resist. 2022. Vol. 29. Р. 7–16.; Mohammadi A., Etemad B., Zhang X., Li Y., Bedwell G.J., Sharaf R., Kittilson A., Melberg M., Wong C., Fajnzylber J., Worrall D.P., Rosenthal A., Jordan H., Jilg N., Kaseke C., Giguel F., Lian X., Deo R., Gillespie E., Chishti R., Abrha S., Adams T., Siagian A., Anderson P.L., Deeks S.G., Lederman M.M., Yawetz S., Kuritzkes D.R., Lichterfeld M.D., Tsibris A., Carrington M., Brumme Z.L., Castillo-Mancilla J.R., Engelman A.N., Gaiha G.D., Li J.Z. Viral and Host Mediators of Non-Suppressible HIV-1 Viremia. medRxiv. 2023.; Бобкова М.Р. Латентность ВИЧ. М.: Человек, 2021. 228 p.; Бобкова М.Р. Стратегии излечения ВИЧ-инфекции: основные методологические подходы и проблемы их реализации // ВИЧ-инфекция и иммуносупрессии. 2020. Vol. 12, No. 1. Р. 22–31.; Bai R., Lv S., Wu H., Dai L. Insights into the HIV-1 Latent Reservoir and Strategies to Cure HIV-1 Infection // Dis Markers. 2022. Vol. 2022. Р. 6952286.; Virgilio M.C., Collins K.L. The Impact of Cellular Proliferation on the HIV-1 Reservoir // Viruses. 2020. Vol. 12, No. 2.; Lorenzo-Redondo R., Fryer H.R., Bedford T., Kim E.Y., Archer J., Pond S.L.K., Chung Y.S., Penugonda S., Chipman J., Fletcher C.V., Schacker T.W., Malim M.H., Rambaut A., Haase A.T., McLean A.R., Wolinsky S.M. Persistent HIV-1 replication maintains the tissue reservoir during therapy // Nature. 2016. Vol. 530, No. 7588. Р. 51–56.; Simonetti F.R,, Kearney M.F. Review: Influence of ART on HIV genetics // Current opinion in HIV and AIDS. 2015. Vol. 10, No. 1. Р. 49–54.; Bui J.K, Sobolewski M.D., Keele B.F., Spindler J., Musick A., Wiegand A. Luke B.T., Shao W., Hughes SH, Coffin J.M., Kearney M.F., Mellors J.W. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir // PLoS pathogens. 2017. Vol. 13, No. 3. Р. e1006283.; Linden N., Jones R.B. Potential multi-modal effects of provirus integration on HIV-1 persistence: lessons from other viruses // Trends in immunology. 2022. Vol. 43, No. 8. Р. 617–629.; Maldarelli F. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard // The Journal of clinical investigation. 2016. Vol. 126, No. 2. Р. 438–447.; Halvas E.K., Joseph K.W., Brandt L.D., Guo S., Sobolewski M.D., Jacobs J.L., Tumiotto C., Bui J.K., Cyktor J.C., Keele B.F., Morse G.D., Bale M.J., Shao W., Kearney M.F., Coffin J.M., Rausch J.W., Wu X., Hughes S.H., Mellors J.W. HIV-1 viremia not suppressible by antiretroviral therapy can originate from large T cell clones producing infectious virus // The Journal of clinical investigation. 2020. Vol. 130, No. 11. Р. 5847–5857.; Maldarelli F., Wu X., Su L., Simonetti F.R., Shao W., Hill S., Spindler J., Ferris A.L., Mellors J.W., Kearney M.F., Coffin J.M., Hughes S.H. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells // Science (New York, NY). 2014. Vol. 345, No. 6193. Р. 179–183.; Lyons D.E., Kumar P., Roan N.R., Defechereux P.A., Feschotte C., Lange U.C., Murthy N., Sameshima P., Verdin E., Ake J.A., Parsons M.S., Nath A., Gianella S., Smith D.M., Kallas E.G., Villa T.J., Strange R., Mwesigwa B., Furler O’Brien R.L., Nixon D.F., Ndhlovu L.C., Valente S.T., Ott M. HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing // Viruses. 2023. Vol. 15, No. 11.; Ho Y.C., Shan L., Hosmane N.N., Wang J., Laskey S.B., Rosenbloom D.I., Lai J., Blankson J.N., Siliciano J.D., Siliciano R.F. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure // Cell. 2013. Vol. 155, No. 3. Р. 540–551.; Bruner K.M., Murray A.J., Pollack R.A., Soliman M.G., Laskey S.B., Capoferri A.A., Lai J., Strain M.C., Lada S.M., Hoh R., Ho Y.C., Richman D.D., Deeks S.G., Siliciano J.D., Siliciano R.F. Defective proviruses rapidly accumulate during acute HIV-1 infection // Nature medicine. 2016. Vol. 22, No. 9. Р. 1043–1049.; White J.A., Wu F., Yasin S., Moskovljevic M., Varriale J., Dragoni F., Camilo-Contreras A., Duan J., Zheng M.Y., Tadzong N.F., Patel H.B., Quiambao J.M.C., Rhodehouse K., Zhang H., Lai J., Beg S.A., Delannoy M., Kilcrease C., Hoffmann C.J., Poulin S., Chano F., Tremblay C., Cherian J., Barditch-Crovo P., Chida N., Moore R.D., Summers M.F., Siliciano R.F., Siliciano J.D., Simonetti F.R. Clonally expanded HIV-1 proviruses with 5’-leader defects can give rise to nonsuppressible residual viremia // The Journal of clinical investigation. 2023. Vol. 133, No. 6.; Genoyer E., López C.B. The Impact of Defective Viruses on Infection and Immunity // Annual review of virology, 2019, Vol. 6, No. 1. Р. 547–566.; Kuniholm J., Coote C., Henderson A.J. Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology. 2022. Vol. 19, No. 1. Р. 13.; Etemad B., Sun X., Li Y., Melberg M., Moisi D., Gottlieb R., Ahmed H., Aga E., Bosch R.J., Acosta E.P., Yuki Y., Martin M.P., Carrington M., Gandhi R.T., Jacobson J.M., Volberding P., Connick E., Mitsuyasu R., Frank I., Saag M., Eron J.J., Skiest D., Margolis D.M., Havlir D., Schooley R.T., Lederman M.M., Yu X.G., Li J.Z. HIV post-treatment controllers have distinct immunological and virological features // Proceedings of the National Academy of Sciences of the United States of America. 2023. Vol. 120, No. 11. Р. e2218960120.; Kanapathipillai R., McManus H., Cuong DD., Ng OT., Kinh NV., Giles M., Read T., Woolley I. The significance of low-level viraemia in diverse settings: analysis of the Treat Asia HIV Observational Database (TAHOD) and the Australian HIV Observational Database (AHOD) // HIV medicine. 2014. Vol. 15, No. 7. Р. 406–416.; Antiretroviral Therapy Cohort C., Vandenhende M.A., Ingle S., May M., Chene G., Zangerle R., Van Sighem A., Gill M.J., Schwarze-Zander C., Hernandez-Novoa B., Obel N., Kirk O., Abgrall S., Guest J., Samji H., D’Arminio Monforte A., Llibre J.M., Smith C., Cavassini M., Burkholder G.A., Shepherd B., Crane H.M., Sterne J., Morlat P. Impact of low-level viremia on clinical and virological outcomes in treated HIV-1-infected patients // AIDS (London, England). 2015. Vol. 29, No. 3. Р. 373–383.; Fleming J., Mathews W.C., Rutstein R.M., Aberg J., Somboonwit C., Cheever L.W., Berry S.A., Gebo K.A., Moore R.D., Network HIVR. Lowlevel viremia and virologic failure in persons with HIV infection treated with antiretroviral therapy // AIDS (London, England). 2019. Vol. 33., No. 13. Р. 2005–2012.; Sarmati L., D’Ettorre G., Parisi S.G., Andreoni M. HIV Replication at Low Copy Number and its Correlation with the HIV Reservoir: A Clinical Perspective // Current HIV research. 2015. Vol. 13., No. 3. Р. 250–257.; Esber A., Polyak C., Kiweewa F., Maswai J., Owuoth J., Maganga L., Adamu Y., Hickey P.W., Ake J.A., Crowell T.A. Persistent Low-level Viremia Predicts Subsequent Virologic Failure: Is It Time to Change the Third 90? // Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2019. Vol. 69., No. 5. Р. 805–812.; Bandera A., Colella E., Rizzardini G., Gori A., Clerici M. Strategies to limit immune-activation in HIV patients // Expert review of anti-infective therapy. 2017. Vol. 15., No. 1. Р. 43–54.; Liu P., You Y., Liao L., Feng Y., Shao Y., Xing H., Lan G., Li J., Ruan Y., Li D. Impact of low-level viremia with drug resistance on CD4 cell counts among people living with HIV on antiretroviral treatment in China // BMC infectious diseases. 2022. Vol. 22, No. 1. Р. 426.; Younas M., Psomas C., Reynes C., Cezar R., Kundura L., Portalès P., Merle C., Atoui N., Fernandez C., Le Moing V., Barbuat C., Sotto A., Sabatier R., Winter A., Fabbro P., Vincent T., Reynes J., Corbeau P. Residual Viremia Is Linked to a Specific Immune Activation Profile in HIV1-Infected Adults Under Efficient Antiretroviral Therapy // Frontiers in immunology. 2021. Vol. 12. Р. 663843.; Bai R., Lv S., Hua W., Su B., Wang S., Shao Y., Li Z., Liu A., Sun L., Dai L. Factors associated with human immunodeficiency virus-1 low-level viremia and its impact on virological and immunological outcomes: A retrospective cohort study in Beijing., China // HIV medicine. 2022. Vol. 23, Suppl. 1. Р. 72–83.; Karlsson A.C., Younger S.R., Martin J.N., Grossman Z., Sinclair E., Hunt P.W., Hagos E., Nixon D.F., Deeks S.G. Immunologic and virologic evolution during periods of intermittent and persistent low-level viremia // AIDS (London., England). 2004. Vol. 18., No. 7. Р. 981–989.; Deeks S.G., Martin J.N., Sinclair E., Harris J., Neilands T.B., Maecker H.T., Hagos E., Wrin T., Petropoulos C.J., Bredt B., McCune J.M. Strong cell-mediated immune responses are associated with the maintenance of low-level viremia in antiretroviral-treated individuals with drugresistant human immunodeficiency virus type 1 // The Journal of infectious diseases. 2004. Vol. 189., No. 2. Р. 312–321.; Zheng L., Taiwo B., Gandhi R.T., Hunt P.W., Collier A.C., Flexner C., Bosch R.J. Factors associated with CD8+ T-cell activation in HIV-1- infected patients on long-term antiretroviral therapy // Journal of acquired immune deficiency syndromes. 2014. Vol. 67, No. 2. Р. 153–160.; Han J., Mu W., Zhao H., Hao Y., Song C., Zhou H., Sun X., Li G., Dai G., Zhang Y., Zhang F., Zeng H. HIV-1 low-level viremia affects T cell activation rather than T cell development in school-age children., adolescents., and young adults during antiretroviral therapy // International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases. 2020. Vol. 91. Р. 210–217.; Utay N.S., Hunt P.W. Role of immune activation in progression to AIDS // Current opinion in HIV and AIDS. 2016. Vol. 11, No. 2. Р. 131–137.; Delaugerre C., Gallien S., Flandre P., Mathez D., Amarsy R., Ferret S., Timsit J., Molina J.M., de Truchis P. Impact of low-level-viremia on HIV-1 drug-resistance evolution among antiretroviral treated-patients // PloS Оne. 2012. Vol. 7, No. 5. Р. e36673.; Chaussade H., Tumiotto C., Le Marec F., Leleux O., Lefèvre L., Lazaro E., Lafon M.E., Nyamankolly E., Duffau P., Neau D., Bellecave P., Bonnet F. A Low Level of Darunavir Resistance-Associated Mutation Emergence in Patients With Virological Failure During Long-term Use of Darunavir in People With HIV. The ANRS CO3 Aquitaine Cohort // Open forum infectious diseases. 2020. Vol. 7, No. 12. Р. ofaa567.; Vandenhende M., Ingle S., May М. et al. Impact of Low-Level Viremia On Clinical and Virological Outcomes in Treated HIV Infected Patients. 21st Conference on Retrovirus and Opportunistic Infection (CROI 2014). Boston, 2014.; Elvstam O., Marrone G., Medstrand P., Treutiger C.J., Sönnerborg A., Gisslén M., Björkman P. All-Cause Mortality and Serious Non-AIDS Events in Adults With Low-level Human Immunodeficiency Virus Viremia During Combination Antiretroviral Therapy: Results From a Swedish Nationwide Observational Study // Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2021. Vol. 72, No. 12. Р. 2079–2086.; Elvstam O., Medstrand P., Jansson M., Isberg P.E., Gisslén M., Björkman P. Is low-level HIV-1 viraemia associated with elevated levels of markers of immune activation., coagulation and cardiovascular disease? // HIV medicine. 2019. Vol. 20, No. 9. Р. 571–580.; Zhang S., van Sighem A., Kesselring A., Gras L., Smit C., Prins J.M., Kauffmann R., Richter C., de Wolf F., Reiss P. Episodes of HIV viremia and the risk of non-AIDS diseases in patients on suppressive antiretroviral therapy // Journal of acquired immune deficiency syndromes. 2012. Vol. 60, No. 3. Р. 265–272.; UNAIDS. «Undetectable = untransmittable». Available from: https://www.unaids.org/en/resources/presscentre/featurestories/2018/july/undetectable-untransmittable. Accessed on March 26., 2024.; Broyles L.N., Luo R., Boeras D., Vojnov L. The risk of sexual transmission of HIV in individuals with low-level HIV viraemia: a systematic review // Lancet. 2023. Vol. 402., No. 10400. Р. 464–471.; Lambert-Niclot S., Tubiana R., Beaudoux C., Lefebvre G., Caby F., Bonmarchand M., Naouri M., Schubert B., Dommergues M., Calvez V., Flandre P., Poirot C., Marcelin A.G. Detection of HIV-1 RNA in seminal plasma samples from treated patients with undetectable HIV-1 RNA in blood plasma on a 2002–2011 survey // AIDS (London., England). 2012. Vol. 26, No. 8. Р. 971–975.; Cu-Uvin S., DeLong A.K., Venkatesh K.K., Hogan J.W., Ingersoll J., Kurpewski J., De Pasquale M.P., D’Aquila R., Caliendo A.M. Genital tract HIV-1 RNA shedding among women with below detectable plasma viral load // AIDS (London, England). 2010. Vol. 24, No. 16. Р. 2489–2497.; Myer L., Phillips T.K., McIntyre J.A., Hsiao N.Y., Petro G., Zerbe A., Ramjith J., Bekker L.G., Abrams E.J. HIV viraemia and mother-to-child transmission risk after antiretroviral therapy initiation in pregnancy in Cape Town., South Africa // HIV medicine. 2017. Vol. 18, No. 2. Р. 80–88.; Weichseldorfer M., Reitz M., Latinovic O.S. Past HIV-1 Medications and the Current Status of Combined Antiretroviral Therapy Options for HIV1 Patients // Pharmaceutics. 2021. Vol. 13, No. 11.; Nicol M.R., McRae M. Treating viruses in the brain: Perspectives from NeuroAIDS // Neurosci Lett. 2021. Vol. 748. Р. 135691.; Hanners E.K., Benitez-Burke J., Badowski M.E. HIV: how to manage low-level viraemia in people living with HIV // Drugs in context. 2022. Vol. 11.; Nzivo M.M., Waruhiu C.N., Kang’ethe J.M., Budambula N.LM. HIV Virologic Failure among Patients with Persistent Low-Level Viremia in Nairobi, Kenya: It Is Time to Review the >1000 Virologic Failure Threshold // BioMed research international. 2023. Vol. 2023. Р. 8961372.; Puertas M.C., Massanella M., Llibre J.M., Ballestero M., Buzon M.J., Ouchi D., Esteve A., Boix J., Manzardo C., Miró J.M., Gatell J.M., Clotet B., Blanco J., Martinez-Picado J. Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection // AIDS (London, England). 2014. Vol. 28, No. 3. Р. 325–334.; Hatano H., Strain M.C., Scherzer R., Bacchetti P., Wentworth D., Hoh R., Martin J.N., McCune J.M., Neaton J.D., Tracy R.P., Hsue P.Y., Richman D.D., Deeks S.G. Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized., placebo-controlled trial // The Journal of infectious diseases. 2013. Vol. 208, No. 9. Р. 1436–1442.

  2. 2
  3. 3
    Academic Journal

    Source: Medical Genetics; Том 21, № 7 (2022); 11-14 ; Медицинская генетика; Том 21, № 7 (2022); 11-14 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2097/1564; Havel J.J., Chowell D., Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer. 2019;19(3):133-150.; Chen Q., Li T., Yue W. Drug response to PD-1/PD-L1 blockade: based on biomarkers. OncoTargets and Therapy. 2018;11:4673-4683.; Ding H., Lv Z., Yuan Y. et al. MiRNA Polymorphisms and Cancer Prognosis: A Systematic Review and Meta-Analysis. Front. Oncol. 2018;8(596):1-14.; Yi M., Xu L., Jiao Y. et al.The role of cancer-derived microRNAs in cancer immune escape. Journal of Hematology & Oncology. 2020;13(25):1-14.; Huber V., Vallacchi V., Fleming V. et al. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J Clin Invest. 2018;128:5505-5516.; Huang Z., Lu Z., Tian J. et al. Effect of a functional polymorphism in the pre-miR-146a gene on the risk and prognosis of renal cell carcinoma. Molecular Medicine Reports. 2015;12(5):6997-7004.; Yang L., Zhao G., Wang F. et al. Hypoxia-Regulated miR-146a Targets Cell Adhesion Molecule 2 to Promote Proliferation, Migration, and Invasion of Clear Cell Renal Cell Carcinoma. Cell Physiol Biochem. 2018;49(3):920-931.; El-Akhrasa B.A., Ali Y.B.M., El-Masry S.A et al. Mir-146a genetic polymorphisms in systemic lupus erythematosus patients:Correlation with disease manifestations. Non-coding RNA Research 2022;7(3):142-149.; He B., Pan Y., Cho W.C. The Association between Four Genetic Variants in MicroRNAs (rs11614913, rs2910164, rs3746444, rs2292832) and Cancer Risk: Evidence from Published Studies. PLoS One. 2012;7(11):e49032; Lin J., Horikawa Y., Tamboli P. et al. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis. 2010;(10):1805-1812.

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20