-
1Academic Journal
Authors: T. V. Beketova, E. L. Nasonov, M. A. Alekseev, E. I. Shchepikhin, Yu. N. Philippovich, A. S. Kruzhalov, A. Yu. Philippovich, V. A. Kulbak, D. A. Argunova, P. G. Shakhnovich, T. A. Prazdnichnykh, M. P. Obidin, T. N. Krasnova, N. N. Vladimirova, Т. В. Бекетова, Е. Л. Насонов, М. А. Алексеев, Е. И. Щепихин, Ю. Н. Филиппович, А. С. Кружалов, А. Ю. Филиппович, В. А. Кульбак, Д. А. Аргунова, П. Г. Шахнович, Т. А. Праздничных, М. П. Обидин, Т. Н. Краснова, Н. Н. Владимирова
Source: Rheumatology Science and Practice; Vol 63, No 1 (2025); 24-36 ; Научно-практическая ревматология; Vol 63, No 1 (2025); 24-36 ; 1995-4492 ; 1995-4484
Subject Terms: цифровые технологии, systemic vasculitis, rheumatic diseases, interstitial lung disease, biomarkers of medical images, radiomic model, texture analysis, digital technologies, системные васкулиты, ревматические заболевания, интерстициальное заболевание легких, биомаркеры медицинских изображений, радиомическая модель, текстурный анализ
File Description: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3701/2433; Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: The process and the challenges. Magn Reson Imaging. 2012;30(9):1234-1248. doi:10.1016/j.mri.2012.06.010; Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. doi:10.1038/nrclinonc.2017.141; Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics. 2017;37(5):1483-1503. doi:10.1148/rg.2017170056; Shiri I, Salimi Y, Pakbin M, Hajianfar G, Avval AH, Sanaat A, et al. COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Comput Biol Med. 2022;145:105467. doi:10.1016/j.compbiomed.2022.105467; Song J, Yin Y, Wang H, Chang Z, Liu Z, Cui L. A review of original articles published in the emerging field of radiomics. Eur J Radiol. 2020;127:108991. doi:10.1016/j.ejrad.2020.108991; Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM. The rise of radiomics and implications for oncologic management. J Natl Cancer Inst. 2017;109(7). doi:10.1093/jnci/djx055; Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics. 2019;9(5):1303-1322. doi:10.7150/thno.30309; Galloway MM. Texture analysis using gray level run lengths. Comp Graphics Image Process. 1975;4(2):172-179. doi:10.1016/S0146-664X(75)80008-6; Kaizer H. A quantification of textures on aerial photographs. Tech Note. Boston University Research Lab. 1955;121:69484.; Hall EL, Kruger RP, Dwyer SJ, Hall DL, Mclaren RW, Lodwick GS. A survey of preprocessing and feature extraction techniques for radiographic images. IEEE Transact Comp. 1971;C-20(9):1032-1044. doi:10.1109/T-C.1971.223399; Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, O’Connor JPB, et al. Radiomics in oncology: A practical guide. Radiographics. 2021;41(6):1717-1732. doi:10.1148/rg.2021210037; Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441-446. doi:10.1016/j.ejca.2011.11.036; Yang B, Guo L, Lu G, Shan W, Duan L, Duan S. Radiomic signature: A non-invasive biomarker for discriminating invasive and non-invasive cases of lung adenocarcinoma. Cancer Manag Res. 2019;11:7825-7834. doi:10.2147/CMAR.S217887; Литвин АА, Буркин ДА, Кропинов АА, Парамзин ФН. Радиомика и анализ текстур цифровых изображений в онкологии (обзор). Современные технологии в медицине. 2021;13(2):97-106. doi:10.17691/stm2021.13.2.11; Ye L, Miao S, Xiao Q, Liu Y, Tang H, Li B, et al. A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors. Rheumatology (Oxford). 2022;61(4):1440-1447. doi:10.1093/rheumatology/keab542; Shi Z, Yang Z, Su D, Cheng J, Shi Z, Wang M, et al. Prediction of the activity of early ankylosing spondylitis using radiomics texture analysis on short tau inversion recovery (STIR). Clin Exp Rheumatol. 2024;42(7):1427-1434. doi:10.55563/clinexprheumatol/99pc16; Jiang T, Lau SH, Zhang J, Chan LC, Wang W, Chan PK, et al. Radiomics signature of osteoarthritis: Current status and perspective. J Orthop Translat. 2024;45:100-106. doi:10.1016/j.jot.2023.10.003; Davey MS, Davey MG, Kenny P, Gheiti AJC. The use of radiomic analysis of magnetic resonance imaging findings in predicting features of early osteoarthritis of the knee – A systematic review and meta-analysis. Irish J Med Sci. 2024;193(5):2525-2530. doi:10.1007/s11845-024-03714-5; Zhang L, Chen Z, Feng L, Guo L, Liu D, Hai J, et al. Preliminary study on the application of renal ultrasonography radiomics in the classification of glomerulopathy. BMC Med Imaging. 2021;21(1):115. doi:10.1186/s12880-021-00647-8; Qin X, Xia L, Zhu C, Hu X, Xiao W, Xie X, et al. Noninvasive evaluation of lupus nephritis activity using a radiomics machine learning model based on ultrasound. J Inflamm Res. 2023;16:433-441. doi:10.2147/JIR.S398399; Choi YH, Kim JE, Lee RW, Kim B, Shin HC, Choe M, et al. Histopathological correlations of CT-based radiomics imaging biomarkers in native kidney biopsy. BMC Med Imaging. 2024;24(1):256. doi:10.1186/s12880-024-01434-x; Venerito V, Manfredi A, Lopalco G, Lavista M, Cassone G, Scardapane A, et al. Radiomics to predict the mortality of patients with rheumatoid arthritis-associated interstitial lung disease: A proof-of-concept study. Front Med (Lausanne). 2023;9:1069486. doi:10.3389/fmed.2022.1069486; Насонов ЕЛ, Ананьева ЛП, Авдеев СН. Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517-534. doi:10.47360/1995-4484-2022-1; Mohammad AJ, Mortensen KH, Babar J, Smith R, Jones RB, Nakagomi D, et al. Pulmonary involvement in antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis: The influence of ANCA subtype. J Rheumatol. 2017;44(10):1458-1467. doi:10.3899/jrheum.161224; Акулкина ЛА, Бровко МЮ, Шоломова ВИ, Янакаева АШ, Буланов НМ, Новиков ПИ, и др. АНЦА-ассоциированные интерстициальные заболевания легких: актуальные вопросы диагностики и лечения. Клиническая фармакология и терапия. 2019;28(4):76-82. doi:10.32756/0869-5490-2019-4-76-82; Бекетова ТВ. Гранулематоз с полиангиитом, патогенетически связанный с антинейтрофильными цитоплазматическими антителами: особенности клинического течения. Научно-практическая ревматология. 2012;50(6):19-28. doi:10.14412/1995-4484-2012-1288; Бекетова ТВ. Микроскопический полиангиит, ассоциированный с антинейтрофильными цитоплазматическими антителами: особенности клинического течения. Терапевтический архив. 2015;87(5):33-46. doi:10.17116/terarkh201587533-46; Ronneberger O, Fischer P. Brox T. U-net: Convolutional networks for biomedical image segmentation. arXiv. 2015;1505.04597 doi:10.1007/978-3-319-24574-4_28; Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imag. 2012;3(6):573-589. doi:10.1007/s13244-012-0196-6; O’Brien H, Williams MC, Rajani R, Niederer S. Radiomics and machine learning for detecting scar tissue on CT delayed enhancement imaging. Front Cardiovasc Med. 2022;9:847825. doi:10.3389/fcvm.2022.847825; Shi L, Sheng M, Wei Z, Liu L, Zhao J. CT-based radiomics predicts the malignancy of pulmonary nodules: A systematic review and meta-analysis. Acad Radiol. 2023;30(12):3064-3075. doi:10.1016/j.acra.2023.05.026; Shang H, Li J, Jiao T, Fang C, Li K, Yin D, et al. Differentiation of lung metastases originated from different primary tumors using radiomics features based on CT imaging. Acad Radiol. 2023;30(1):40-46. doi:10.1016/j.acra.2022.04.008; Qi J, Deng Z, Sun G, Qian S, Liu L, Xu B. One-step algorithm for fast-track localization and multi-category classification of histological subtypes in lung cancer. Eur J Radiol. 2022;154:110443. doi:10.1016/j.ejrad.2022.110443; Lovinfosse P, Ferreira M, Withofs N, Jadoul A, Derwael C, Frix AN, et al. Distinction of lymphoma from sarcoidosis on 18F-FDG PET/CT: Evaluation of radiomics-feature-guided machine learning versus human reader performance. J Nucl Med. 2022;63(12):1933-1940. doi:10.2967/jnumed.121.263598; Li T, Gan T, Wang J, Long Y, Zhang K, Liao M. Application of CT radiomics in brain metastasis of lung cancer: A systematic review and meta-analysis. Clin Imaging. 2024;114:110275. doi:10.1016/j.clinimag.2024.110275; Li Y, Lyu B, Wang R, Peng Y, Ran H, Zhou B, et al. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis. Thorac Cancer. 2024;15(6):466-476. doi:10.1111/1759-7714.15216; Dong Q, Wen Q, Li N, Tong J, Li Z, Bao X, et al. Radiomics combined with clinical features in distinguishing non-calcifying tuberculosis granuloma and lung adenocarcinoma in small pulmonary nodules. PeerJ. 2022;10:e14127. doi:10.7717/peerj.14127; Feng B, Chen X, Chen Y, Lu S, Liu K, Li K, et al. Solitary solid pulmonary nodules: A CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol. 2020;30(12):6497-6507. doi:10.1007/s00330-020-07024-z; Cui EN, Yu T, Shang SJ, Wang XY, Jin YL, Dong Y, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World J Clin Cases. 2020;8(21):5203-5212. doi:10.12998/wjcc.v8.i21.5203; Zhao W, Xiong Z, Jiang Y, Wang K, Zhao M, Lu X, et al. Radiomics based on enhanced CT for differentiating between pulmonary tuberculosis and pulmonary adenocarcinoma presenting as solid nodules or masses. J Cancer Res Clin Oncol. 2023;149(7):3395-3408. doi:10.1007/s00432-022-04256-y; Yao W, Liao Y, Li X, Zhang F, Zhang H, Hu B, et al. Noninvasive method for predicting the expression of Ki67 and prognosis in non-small-cell lung cancer patients: Radiomics. J Healthc Eng. 2022;2022:7761589. doi:10.1155/2022/7761589; Felfli M, Liu Y, Zerka F, Voyton C, Thinnes A, Jacques S, et al. Systematic review, meta-analysis and radiomics quality score assessment of CT radiomics-based models predicting tumor EGFR mutation status in patients with non-small-cell lung cancer. Int J Mol Sci. 2023;24(14):11433. doi:10.3390/ijms241411433; Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol. 2023;93:97-113. doi:10.1016/j.semcancer.2023.05.004; Hao P, Deng BY, Huang CT, Xu J, Zhou F, Liu ZX, et al. Predicting anaplastic lymphoma kinase rearrangement status in patients with non-small cell lung cancer using a machine learning algorithm that combines clinical features and CT images. Front Oncol. 2022;12:994285. doi:10.3389/fonc.2022.994285; Shao J, Ma J, Zhang S, Li J, Dai H, Liang S, et al. Radiogenomic system for non-invasive identification of multiple actionable mutations and PD-L1 expression in non-small cell lung cancer based on CT images. Cancers (Basel). 2022;14(19):4823. doi:10.3390/cancers14194823; Zhu ZC, Chen MJ, Song L, Wang JH, Hu G, Han W, et al. [CT-based weighted radiomic score predicts tumor response to immunotherapy in non-small cell lung cancer]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2023;45(5):794-802 (In Chinese). doi:10.3881/j.issn.1000-503X.15705; Chang R, Qi S, Zuo Y, Yue Y, Zhang X, Guan Y, et al. Predicting chemotherapy response in non-small-cell lung cancer via computed tomography radiomic features: Peritumoral, intratumoral, or combined? Front Oncol. 2022;12:915835. doi:10.3389/fonc.2022.915835; Luo T, Yan M, Zhou M, Dekker A, Appelt AL, Ji Y, et al. Improved prognostication of overall survival after radiotherapy in lung cancer patients by an interpretable machine learning model integrating lung and tumor radiomics and clinical parameters. Radiol Med. 2024 Nov 14. doi:10.1007/s11547-024-01919-3; Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier C, et al. Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis. Eur Respir J. 2022;59(5):2004503. doi:10.1183/13993003.04503-2020; Martini K, Baessler B, Bogowicz M, Blüthgen C, Mannil M, Tanadini-Lang S, et al. Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: Proof of concept. Eur Radiol. 2021;31(4):1987-1998. doi:10.1007/s00330-020-07293-8; Haga A, Iwasawa T, Misumi T, Okudela K, Oda T, Kitamura H, et al. Correlation of CT-based radiomics analysis with pathological cellular infiltration in fibrosing interstitial lung diseases. Jpn J Radiol. 2024;42(10):1157-1167. doi:10.1007/s11604-024-01607-2; Feng DY, Zhou YQ, Xing YF, Li CF, Lv Q, Dong J, et al. Selection of glucocorticoid-sensitive patients in interstitial lung disease secondary to connective tissue diseases population by radiomics. Ther Clin Risk Manag. 2018;14:1975-1986. doi:10.2147/TCRM.S181043; Chen J, Meng T, Xu J, Ooi JD, Eggenhuizen PJ, Liu W, et al. Development of a radiomics nomogram to predict the treatment resistance of Chinese MPO-AAV patients with lung involvement: A two-center study. Front Immunol. 2023;14:1084299. doi:10.3389/fimmu.2023.1084299; Falde S, Specks U, Bartholmai BJ, Rajagopalan S, Cartin-Ceba R, Peikert T. Predicting disease relapse in ANCA associated vasculitis with radiomics. Am J Respir Crit Care Med. 2024;209:A4502. doi:10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4502; Renaud A, Pautre R, Morla O, Achille A, Durant C, Espitia O, et al. Thoracic lymphadenopathies in diffuse systemic sclerosis: An observational study on 48 patients using computed tomography. BMC Pulm Med. 2022;22(1):44. doi:10.1186/s12890-022-01837-y; Rotondo C, Urso L, Praino E, Cacciapaglia F, Corrado A, Cantatore FP, et al. Thoracic lymphadenopathy as possible predictor of the onset of interstitial lung disease in systemic sclerosis patients without lung involvement at baseline visit: A retrospective analysis. J Scleroderma Relat Disord. 2020;5(3):210-218. doi:10.1177/2397198320923545; Sgalla G, Larici AR, Golfi N, Calvello M, Farchione A, Del Ciello A, et al. Mediastinal lymph node enlargement in idiopathic pulmonary fibrosis: Relationships with disease progression and pulmonary function trends. BMC Pulm Med. 2020;20(1):249. doi:10.1186/s12890-020-01289-2; Han N, Guo Z, Zhu D, Zhang Y, Qin Y, Li G, et al. A nomogram model combining computed tomography-based radiomics and Krebs von den Lungen-6 for identifying low-risk rheumatoid arthritis-associated interstitial lung disease. Front Immunol. 2024;15:1417156. doi:10.3389/fimmu.2024.1417156; He W, Cui B, Chu Z, Chen X, Liu J, Pang X, et al. Radiomics based on HRCT can predict RP-ILD and mortality in anti-MDA5+dermatomyositis patients: A multi-center retrospective study. Respir Res. 2024;25(1):252. doi:10.1186/s12931-024-02843-w; Li Y, Deng W, Zhou Y, Luo Y, Wu Y, Wen J, et al. A nomogram based on clinical factors and CT radiomics for predicting anti-MDA5+ DM complicated by RP-ILD. Rheumatology (Oxford). 2024;63(3):809-816. doi:10.1093/rheumatology/kead263; Ryan SM, Fingerlin TE, Mroz M, Barkes B, Hamzeh N, Maier LA, et al. Radiomic measures from chest high-resolution computed tomography associated with lung function in sarcoidosis. Eur Respir J. 2019;54(2):1900371. doi:10.1183/13993003.00371-2019; Węcławek M, Ziora D, Jastrzębski D. Imaging methods for pulmonary sarcoidosis. Adv Respir Med. 2020;88(1):18-27. doi:10.5603/ARM.2020.0074; Shaikh F, Abtin FG, Lau R, Saggar R, Belperio JA, Lynch JP 3rd. Radiographic and histopathologic features in sarcoidosis: A pictorial display. Semin Respir Crit Care Med. 2020;41(5):758-784. doi:10.1055/s-0040-1712534; Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol. 2017;24(1):86-99. doi:10.1007/s12350-016-0502-7; Mushari NA, Soultanidis G, Duff L, Trivieri MG, Fayad ZA, Robson P, et al. An assessment of PET and CMR radiomic features for the detection of cardiac sarcoidosis. Front Nucl Med. 2024;4:1324698. doi:10.3389/fnume.2024.1324698; Antonopoulos AS, Boutsikou M, Simantiris S, Angelopoulos A, Lazaros G, Panagiotopoulos I, et al. Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes. Sci Rep. 2021;11(1):23596. doi:10.1038/s41598-021-02971-z; Chen Q, Li H, Xie W, Abudukeremu A, Wen K, Liu W, et al. Lipid-related radiomics of low-echo carotid plaques is associated with diabetic stroke and non-diabetic coronary heart disease. Int J Cardiovasc Imaging. 2025;41(1):123-136. doi:10.1007/s10554-024-03296-4; Imamura H, Sekiguchi Y, Iwashita T, Dohgomori H, Mochizuki K, Aizawa K, et al. Painless acute aortic dissection. Diagnostic, prognostic and clinical implications. Circ J. 2011;75(1):59-66. doi:10.1253/circj.cj-10-0183; Boileau A, Lindsay M, Michel JB, Devaux Y. Epigenetics in ascending thoracic aortic aneurysm and dissection. AORTA. 2018;06(01):1-12. doi:10.1055/s-0038-1639610; Nienaber CA, Clough RE. Management of acute aortic dissection. The Lancet. 2015;385(9970):800-811. doi:10.1016/S0140-6736(14)61005-9; Zhou Z, Yang J, Wang S, Li W, Xie L, Li Y, et al. The diagnostic value of a non-contrast computed tomography scan-based radiomics model for acute aortic dissection. Medicine (Baltimore). 2021;100(22):e26212. doi:10.1097/MD.0000000000026212; Guo Y, Chen X, Lin X, Chen L, Shu J, Pang P, et al. Non-contrast CT-based radiomic signature for screening thoracic aortic dissections: A multicenter study. Eur Radiol. 2021;31(9):7067-7076. doi:10.1007/s00330-021-07768-2; Liang L, Liu M, Martin C, Elefteriades JA, Sun W. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomech Model Mechanobiol. 2017;16(5):1519-1533. doi:10.1007/s10237-017-0903-9; Rezaeitaleshmahalleh M, Lyu Z, Mu N, Zhang X, Rasmussen TE, McBane RD 2nd, et al. Characterization of small abdominal aortic aneurysms’ growth status using spatial pattern analysis of aneurismal hemodynamics. Sci Rep. 2023;13(1):13832. doi:10.1038/s41598-023-40139-z; Rezaeitaleshmahalleh M, Mu N, Lyu Z, Zhou W, Zhang X, Rasmussen TE, et al. Radiomic-based textural analysis of intraluminal thrombus in aortic abdominal aneurysms: A demonstration of automated workflow. J Cardiovasc Transl Res. 2023;16(5):1123-1134. doi:10.1007/s12265-023-10404-7; Wang Y, Liu F, Wu S, Sun K, Gu H, Wang X. CTA-based radiomics and area change rate predict infrarenal abdominal aortic aneurysms patients events: A multicenter study. Acad Radiol. 2024;31(8):3165-3176. doi:10.1016/j.acra.2024.01.017; Ma Z, Jin L, Zhang L, Yang Y, Tang Y, Gao P, et al. Diagnosis of acute aortic syndromes on non-contrast CT images with radiomics-based machine learning. Biology (Basel). 2023;12(3):337. doi:10.3390/biology12030337; Salmasi MY, Al-Saadi N, Hartley P, Jarral OA, Raja S, Hussein M, et al. The risk of misdiagnosis in acute thoracic aortic dissection: A review of current guidelines. Heart. 2020;106(12):885-891. doi:10.1136/heartjnl-2019-316322; Huellebrand M, Jarmatz L, Manini C, Laube A, Ivantsits M, Schulz-Menger J, et al. Radiomics-based aortic flow profile characterization with 4D phase-contrast MRI. Front Cardiovasc Med. 2023;10:1102502. doi:10.3389/fcvm.2023.1102502; Aghayev A, Weber B, Lins de Carvalho T, Glaudemans AWJM, Nienhuis PH, van der Geest KSM, et al. Multimodality imaging to assess diagnosis and evaluate complications of large vessel arteritis. J Nucl Cardiol. 2024;37:101864. doi:10.1016/j.nuclcard.2024.101864; Duff L, Scarsbrook AF, Mackie SL, Frood R, Bailey M, Morgan AW, et al. A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis. J Nucl Cardiol. 2022;29(6):3315-3331. doi:10.1007/s12350-022-02927-4; Duff LM, Scarsbrook AF, Ravikumar N, Frood R, van Praagh GD, Mackie SL, et al. An automated method for artifical intelligence assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images. Biomolecules. 2023;13(2):343. doi:10.3390/biom13020343; Badesha AS, Frood R, Bailey MA, Coughlin PM, Scarsbrook AF. A scoping review of machine-learning derived radiomic analysis of CT and PET imaging to investigate atherosclerotic cardiovascular disease. Tomography. 2024;10(9):1455-1487. doi:10.3390/tomography10090108; Zaccagna F, Ganeshan B, Arca M, Rengo M, Napoli A, Rundo L, et al. CT texture-based radiomics analysis of carotid arteries identifies vulnerable patients: A preliminary outcome study. Neuroradiology. 2021;63(7):1043-1052. doi:10.1007/s00234-020-02628-0; Le EPV, Wong MYZ, Rundo L, Tarkin JM, Evans NR, Weir-McCall JR, et al. Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach. Eur J Radiol Open. 2024;13:100594. doi:10.1016/j.ejro.2024.100594; Liu M, Chang N, Zhang S, Du Y, Zhang X, Ren W, et al. Identification of vulnerable carotid plaque with CT-based radiomics nomogram. Clin Radiol. 2023;78(11):e856-e863. doi:10.1016/j.crad.2023.07.018; Dong Z, Zhou C, Li H, Shi J, Liu J, Liu Q, et al. Radiomics versus conventional assessment to identify symptomatic participants at carotid computed tomography angiography. Cerebrovasc Dis. 2022;51(5):647-654. doi:10.1159/000522058; Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol. 2021;31(5):3116-3126. doi:10.1007/s00330-020-07361-z; Xia H, Yuan L, Zhao W, Zhang C, Zhao L, Hou J, et al. Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics. Front Neurol. 2023;14:1105616. doi:10.3389/fneur.2023.1105616; Chen C, Tang W, Chen Y, Xu W, Yu N, Liu C, et al. Computed tomography angiography-based radiomics model to identify high-risk carotid plaques. Quant Imaging Med Surg. 2023;13(9):6089-6104. doi:10.21037/qims-23-158; Nie JY, Chen WX, Zhu Z, Zhang MY, Zheng YJ, Wu QD. Initial experience with radiomics of carotid perivascular adipose tissue in identifying symptomatic plaque. Front Neurol. 2024;15:1340202. doi:10.3389/fneur.2024.1340202; Shan D, Wang S, Wang J, Lu J, Ren J, Chen J, et al. Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability. Front Neurol. 2023;14:1151326. doi:10.3389/fneur.2023.1151326; Kafouris PP, Koutagiar IP, Georgakopoulos AT, Spyrou GM, Visvikis D, Anagnostopoulos CD. Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol. 2021;28(5):1861-1871. doi:10.1007/s12350-019-01943-1; Cilla S, Macchia G, Lenkowicz J, Tran EH, Pierro A, Petrella L, et al. CT angiography-based radiomics as a tool for carotid plaque characterization: A pilot study. Radiol Med. 2022;127(7):743-753. doi:10.1007/s11547-022-01505-5; Van der Geest KSM, Gheysens O, Gormsen LC, Glaudemans AWJM, Tsoumpas C, Brouwer E, et al. Advances in PET imaging of large vessel vasculitis: An update and future trends. Semin Nucl Med. 2024;54(5):753-760. doi:10.1053/j.semnuclmed.2024.03.001; Gu J, Jiang T. Ultrasound radiomics in personalized breast management: Current status and future prospects. Front Oncol. 2022;12:963612. doi:10.3389/fonc.2022.963612; Shi S, An X, Li Y. Ultrasound radiomics-based logistic regression model to differentiate between benign and malignant breast nodules. J Ultrasound Med. 2023;42(4):869-879. doi:10.1002/jum.16078; Wu L, Zhao Y, Lin P, Qin H, Liu Y, Wan D, et al. Preoperative ultrasound radiomics analysis for expression of multiple molecular biomarkers in mass type of breast ductal carcinoma in situ. BMC Med Imaging. 2021;21(1):84. doi:10.1186/s12880-021-00610-7; Cai L, Sidey-Gibbons C, Nees J, Riedel F, Schaefgen B, Togawa R, et al. Ultrasound radiomics features to identify patients with triple-negative breast cancer: A retrospective, single-center study. J Ultrasound Med. 2024;43(3):467-478. doi:10.1002/jum.16377; Lu G, Tian R, Yang W, Liu R, Liu D, Xiang Z, et al. Deep learning radiomics based on multimodal imaging for distinguishing benign and malignant breast tumours. Front Med (Lausanne). 2024;11:1402967. doi:10.3389/fmed.2024.1402967; Liebowitz JE. The metaverse: A new frontier for rheumatology. Rheumatology. 2024;63(2):267-268. doi:10.1093/rheumatology/kead534; Wang G, Badal A, Jia X, Maltz JS, Mueller K, Myers KJ, et al. Development of metaverse for intelligent healthcare. Nat Mach Intell. 2022;4(11):922-929. doi:10.1038/s42256-022-00549-6; Zanfardino M, Franzese M, Pane K, Cavaliere C, Monti S, Esposito G, et al. Bringing radiomics into a multi-omics frame-work for a comprehensive genotype-phenotype characterization of oncological diseases. J Transl Med. 2019;17(1):337. doi:10.1186/s12967-019-2073-2
-
2Academic Journal
Authors: O. B. Ovsyannikova, O. A. Koneva, L. A. Garzanova, L. P. Ananyeva, О. Б. Овсянникова, О. А. Конева, Л. А. Гарзанова, Л. П. Ананьева
Contributors: Статья подготовлена в рамках научной темы (регистрационный номер ИКБРС 0397-2020-0006).
Source: Rheumatology Science and Practice; Vol 62, No 5 (2024); 484-493 ; Научно-практическая ревматология; Vol 62, No 5 (2024); 484-493 ; 1995-4492 ; 1995-4484
Subject Terms: интерстициальное заболевание легких, rheumatic disease, interstitial lung disease, иммуновоспалительные ревматические заболевания
File Description: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3634/2402; Насонов ЕЛ (ред.). Ревматология. Российские клинические рекомендации. М.:ГЭОТАР-Медиа;2020.; Hofmann-Vold AM, Molberg Ø. Detection, screening, and classification of interstitial lung disease in patients with systemic sclerosis. Curr Opin Rheumatol. 2020;32:497-504. doi:10.1097/BOR.0000000000000741; Castillo S, Forbes B, Chen J, Hamblin MJ. Assessment of optimal screening tests for the detection of an inflammatory myositis-associated interstitial lung disease. Cureus. 2020;12:7875. doi:10.7759/cureus.7875; Barskova T, Gargani L, Guiducci S, Randone SB, Bruni C, Carnesecchi G, et al. Lung ultrasound for the screening of interstitial lung disease in very early systemic sclerosis. Ann Rheum Dis. 2013;72(3):390-395. doi:10.1136/annrheumdis-2011-201072; Gutierrez M, Soto-Fajardo C, Pineda C, Alfaro-Rodriguez A, Terslev L, Bruyn GA, et al. Ultrasound in the assessment of interstitial lung disease in systemic sclerosis: A systematic literature review by the OMERACT Ultrasound Group. J Rheumatol. 2020;47(7):991-1000. doi:10.3899/jrheum.180940; Овсянникова ОБ, Ананьева ЛП, Корсакова ЮО, Конева ОА, Волков АВ, Глухова СИ. Оценка ультразвукового сканирования легких у больных системной склеродермией и интерстициальным поражением легких. Научно-практическая ревматология. 2013;51(3):279-284.; Овсянникова ОБ, Ананьева ЛП, Конева ОА, Десинова ОВ, Старовойтова МН. Ультразвуковое сканирование: возможности и перспективы для оценки поражения легких при системной склеродермии. Научно-практическая ревматология. 2012;50(6): 80-87.; Moazedi-Fuerst FC, Kielhauser SM, Scheidl S, Tripolt NJ, Lutfi A, Yazdani-Biuki B, et al. Ultrasound screening for interstitial lung disease in rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(2):199-203.; Cogliati C, Antivalle M, Torzillo D, Birocchi S, Norsa A, Bianco R, et al. Standard and pocket-size lung ultrasound devices can detect interstitial lung disease in rheumatoid arthritis patients. Rheumatology (Oxford). 2014;53(8):1497-1503. doi:10.1093/rheumatology/keu033; Fotoh DS, Helal A, Rizk MS, Esaily HA. Serum Krebs von den Lungen-6 and lung ultrasound B lines as potential diagnostic and prognostic factors for rheumatoid arthritis-associated interstitial lung disease. Clin Rheumatol. 2021;40(7):2689-2697. doi:10.1007/s10067-021-05585-y; Doğan C, Kıral N, Parmaksız ET, Çağlayan B, Sağmen SB, Salepçi B, et al. Ultrasonographic evaluation of lung parenchyma involvement in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2019;36(2):130-140. doi:10.36141/svdld.v36i2.7312; Moazedi-Fuerst FC, Zechner PM, Tripolt NJ, Kielhauser SM, Brickmann K, Scheidl S, et al. Pulmonary echography in systemic sclerosis. Clin Rheumatol. 2012;31(11):1621-1625. doi:10.1007/s10067-012-2055-8; Mohammadi A, Oshnoei S, Ghasemi-rad M. Comparison of a new, modified lung ultrasonography technique with high resolution CT in the diagnosis of the alveolo-interstitial syndrome of systemic scleroderma. Med Ultrason. 2014;16:27-31. doi:10.11152/mu.2014.2066.161.am1so2; Ахунова РР, Ахунова ГР. Ультразвуковое исследование легких: возможности диагностики интерстициального заболевания легких, ассоциированного с ревматоидным артритом. Научно-практическая ревматология. 2023;61(1):129-137.; Gargani L, Volpicelli G. How do it: Lung ultrasound. Cardiovasc Ultrasound. 2014;12:25. doi:10.1186/1476-7120-12-25; Reyes-Long S, Gutierrez M, Clavijo-Cornejo D, Alfaro-Rodríguez A, González-Sámano K, Cortes-Altamirano JL, et al. Subclinical interstitial lung disease in patients with systemic sclerosis. A pilot study on the role of ultrasound. Reumatol Clin (Engl Ed). 2021;17(3):144-149. doi:10.1016/j.reuma.2019.05.004; Reissig A, Kroegel C. Transthoracic sonography of diffuse parenchymal lung disease: The role of comet tail artifacts. J Ultrasond Med. 2003;22:173-180.; Vizioli L, Ciccarese F, Forti P, Chiesa AM, Giovagnoli M, Mughetti M, et al. Integrated use of lung ultrasound and chest X-ray in the detection of interstitial lung disease. Respiration. 2017;93(1):15-22. doi:10.1159/000452225; Кармазановский ГГ, Нуднов НВ, Юдин АЛ, Петриков СС. COVID-19: лучевая диагностика и мониторинг лечения. М.: Крафт+; 2020.; Петров АА, Сафарова АФ, Рачина СА, Кабалова ЖБ, Сафарова НБ, Тесаков ИП, и др. Ультразвуковое исследование легких: методика выполнения и перспективы в диагностике нозокомиальной пневмонии. Практическая пульмонология. 2018;3:38-45.; Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: A clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356-363. doi:10.1016/j.echo.2005.05.019; Doveri M, Frassi F, Consensi A, Vesprini E, Gargani L, Tafuri M, et al. Le comete ultrasoniche polmonari (ULC): Un nuovo segno ecografico di fibrosi polmonare nella sclerodermia [Ultrasound lung comets: New echographic sign of lung interstitial fibrosis in systemic sclerosis. Reumatismo. 2008;60(3):180-184 (In Italian). doi:10.4081/reumatismo.2008.180; Gargani L, Doveri M, D’Errico L, Frassi F, Bazzichi ML, Delle Sedie A, et al. Ultrasound lung comets in systemic sclerosis: A chest sonography hallmark of pulmonary interstitial fibrosis. Rheumatology (Oxford). 2009;48(11):1382-1387. doi:10.1093/rheumatology/kep263; Gigante A, Rossi Fanelli F, Lucci S, Barilaro G, Quarta S, Barbano B, et al. Lung ultrasound in systemic sclerosis: Correlation with high-resolution computed tomography, pulmonary function tests and clinical variables of disease. Intern Emerg Med. 2016;11(2):213-217. doi:10.1007/s11739-015-1329-y; Çakir Edis E, Hatipoğlu ON, Pamuk ÖN, Mutlucan Eraslan R, Aktöz M, Tuncel SA. Effectiveness of thoracic ultrasonography in the evaluation of the severity of pulmonary involvement in patients with systemic sclerosis. Arch Rheumatol. 2016;31(4):364-370. doi:10.5606/ArchRheumatol.2016.5849; Tardella M, Di Carlo M, Carotti M, Filippucci E, Grassi W, Salaffi F. Ultrasound B-lines in the evaluation of interstitial lung disease in patients with systemic sclerosis: Cut-off point definition for the presence of significant pulmonary fibrosis. Medicine (Baltimore). 2018;97(18):e0566. doi:10.1097/MD.0000000000010566; Gutierrez M, Salaffi F, Carotti M, Tardella M, Pineda C, Bertolazzi C, et al. Utility of a simplified ultrasound assessment to assess interstitial pulmonary fibrosis in connective tissue disorders – Preliminary results. Arthritis Res Ther. 2011;13(4):R134. doi:10.1186/ar3446; Hassan RI, Lubertino LI, Barth MA, Quaglia MF, Montoya SF, Kerzberg E, et al. Lung Ultrasound as a screening method for interstitial lung disease in patients with systemic sclerosis. J Clin Rheumatol. 2019;25(7):304-307. doi:10.1097/RHU.0000000000000860; Fairchild R, Chung M, Yang D, Sharpless L, Li S, Chung L. Development and assessment of novel lung ultrasound interpretation criteria for the detection of interstitial lung disease in systemic sclerosis. Arthritis Care Res (Hoboken). 2021;73(9):1338-1342. doi:10.1002/acr.24338; Delle Sedie A, Doveri M, Frassi F, Gargani L, D’Errico G, Pepe P, et al. Ultrasound lung comets in systemic sclerosis: A useful tool to detect lung interstitial fibrosis. Clin Exp Rheumatol. 2010;28(5 Suppl 62):S54.; Gargani L, Bruni C, Romei C, Frumento P, Moreo A, Agoston G, et al. Prognostic value of lung ultrasound B-lines in systemic sclerosis. Chest. 2020;158(4):1515-1525. doi:10.1016/j.chest.2020.03.075; Vasco PG, de Luna Cardenal G, Garrido IM, Pinilla JM, Rodríguez GF, Mateo JJ, et al. Assessment of interstitial lung disease in Sjögren’s syndrome by lung ultrasound: A pilot study of correlation with high-resolution chest tomography. Intern Emerg Med. 2017;12(3):327-331. doi:10.1007/s11739-016-1582-8; Gasperini ML, Gigante A, Iacolare A, Pellicano C, Lucci S, Rosato E. The predictive role of lung ultrasound in progression of scleroderma interstitial lung disease. Clin Rheumatol. 2020;39(1):119-123. doi:10.1007/s10067-019-04686-z; Pinal-Fernández I, Pallisa Núñez E, Selva-O’Callaghan A, Castella-Fierro E, Martínez-Gómez X, Vilardell-Tarrés M. Correlation of ultrasound B-lines with high-resolution computed tomography in antisynthetase syndrome. Clin Exp Rheumatol. 2014;32(3):404-407.; Pinal-Fernandez I, Pallisa-Nuñez E, Selva-O’Callaghan A, Castella-Fierro E, Simeon-Aznar CP, Fonollosa-Pla V, et al. Pleural irregularity, a new ultrasound sign for the study of interstitial lung disease in systemic sclerosis and antisynthetase syndrome. Clin Exp Rheumatol. 2015;33(4 Suppl 91):S136-S141.; Wang Y, Chen S, Lin J, Xie X, Hu S, Lin Q, et al. Lung ultrasound B-lines and serum KL-6 correlate with the severity of idiopathic inflammatory myositis-associated interstitial lung disease. Rheumatology (Oxford). 2020;59(8):2024-2029. doi:10.1093/rheumatology/kez571; Buda N, Masiak A, Zdrojewski Z. Utility of lung ultrasound in ANCA-associated vasculitis with lung involvement. PLoS One. 2019;14(9):e0222189. doi:10.1371/journal.pone.0222189; Aghdashi M, Broofeh B, Mohammadi A. Diagnostic performances of high resolution trans-thoracic lung ultrasonography in pulmonary alveoli-interstitial involvement of rheumatoid lung disease. Int J Clin Exp Med. 2013;6:562-566.; Tardella M, Gutierrez M, Salaffi F, Carotti M, Ariani A, Bertolazzi C, et al. Ultrasound in the assessment of pulmonary fibrosis in connective tissue disorders: Correlation with high-resolution computed tomography. J Rheumatol. 2012;39(8):1641-1647. doi:10.3899/jrheum.120104; Moazedi-Fuerst FC, Kielhauser S, Brickmann K, Tripolt N, Meilinger M, Lufti A, et al. Sonographic assessment of interstitial lung disease in patients with rheumatoid arthritis, systemic sclerosis and systemic lupus erythematosus. Clin Exp Rheumatol. 2015;33(4 Suppl 91):S87-S91.; Buda N, Piskunowicz M, Porzezińska M, Kosiak W, Zdrojewski Z. Lung ultrasonography in the evaluation of interstitial lung disease in systemic connective tissue diseases: Criteria and severity of pulmonary fibrosis – Analysis of 52 patients. Ultraschall Med. 2016;37:379-385. doi:10.1055/s-0041-110590; Fehr A, Baghdady S, Ghaleb R, Maklad S. Transthoracic ultrasound in the detection of interstitial pulmonary fibrosis in patients with rheumatic connective tissue diseases. Bull Hosp Jt Dis. 2018;76:156-160.; Vicente-Rabaneda EF, Acebes C, Castañeda S. Usefulness of extra-articular ultrasound applied to systemic inflammatory diseases in clinical practice. Reumatol Clin. 2021;17(4):229-236. doi:10.1016/j.reuma.2020.04.005; Cappelli S, Bellando Randone S, Camiciottoli G, De Paulis A, Guiducci S, Matucci-Cerinic M. Interstitial lung disease in systemic sclerosis: Where do we stand? Eur Respir Rev. 2015;24(137):411-419. doi:10.1183/16000617.00002915
-
3Academic Journal
Authors: A. V. Gordeev, E. A. Galushko, E. V. Matyanova, E. V. Pozhidaev, E. G. Zotkin, A. M. Lila, А. В. Гордеев, Е. А. Галушко, Е. В. Матьянова, Е. В. Пожидаев, Е. Г. Зоткин, А. М. Лила
Contributors: The work was carried out within the framework of the government task on scientific topic №1021051503137-7., Работа выполнена в рамках государственного задания по теме №1021051503137-7.
Source: Modern Rheumatology Journal; Том 18, № 2 (2024); 51–55 ; Современная ревматология; Том 18, № 2 (2024); 51–55 ; 2310-158X ; 1996-7012
Subject Terms: почечно-легочный синдром, interstitial lung disease, chronic kidney disease, multimorbidity, renal-pulmonary syndrome, интерстициальное заболевание легких, хроническая болезнь почек, мультиморбидность
File Description: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1561/1457; Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016 Oct 22; 388(10055):2023-2038. doi:10.1016/S01406736(16)30173-8. Epub 2016 May 3.; Yunt ZX, Solomon JJ. Lung disease inrheumatoid arthritis. Rheum Dis Clin North Am. 2015 May;41(2):225-36. doi:10.1016/j.rdc.2014.12.004. Epub 2015 Feb 3.; Esposito AJ, Chu SG, Madan R, et al.Thoracic manifestations of rheumatoid arthritis. Clin Chest Med. 2019 Sep;40(3):545-560. doi:10.1016/j.ccm.2019.05.003. Epub 2019 Jul 6.; Насонов ЕЛ, Ананьева ЛП, Авдеев СН.Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517-534.; Kelly C, Emery P, Dieude P. Current issuesin rheumatoid arthritis related interstitial lung disease (RA-ILD). Lancet Rheumatol. 2021 Nov;3(11):e798-e807. doi:10.1016/S2665-9913(21)00250-2; Kadura S, Raghu G. Rheumatoid arthritisinterstitial lung disease: Manifestations and current concepts in pathogenesis and management. Eur Respir Rev. 2021 Jun 23;30(160): 210011. doi:10.1183/16000617.0011-2021. Print 2021 Jun 30.; Wang D, Zhang J, Lau J, et al. Mechanismsof lung disease Development in rheumatoid arthritis. Nat Rev Rheumatol. 2019 Oct;15(10): 581-596. doi:10.1038/s41584-019-0275-x. Epub 2019 Aug 27; Гордеев АВ, Галушко ЕА, Матьянова ЕВи др. Особенности фармакотерапии больных ревматоидным артритом, ассоциированным с интерстициальным заболеванием легких. Современная ревматология. 2024;18(1): 54-61. doi:10.14412/1996-7012-2024-1-54-61.; Said A, Desai C, Lerma EV. Chronic kidney disease. Dis Mon. 2015 Sep;61(9):374-7. doi:10.1016/j.disamonth.2015.08.001. Epub 2015 Sep 2.; Bongartz T, Nannini C, Medina-Velasquez YF, et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: A population-based study. Arthritis Rheum. 2010 Jun;62(6):1583-91. doi:10.1002/art.27405.; Juge PA, Granger B, Debray MP, et al. A risk score to detect subclinical rheumatoid arthritis-associated interstitial lung disease. Ann Rheum Dis. 2022 Nov;74(11):1755-1765.; Sparks JA, He X, Huang J, et al. Rheumatoid arthritis disease activity predicting inciСовременная ревматология. 2024;18(2):51–55 dent clinically apparent rheumatoid arthritisassociated interstitial lung disease: A prospective cohort study. Arthritis Rheumatol. 2019 Sep;71(9):1472-1482. doi:10.1002/art.40904. Epub 2019 Aug 4.; Cavagna L. The multifaceted aspects ofinterstitial lung disease in rheumatoid arthritis. Biomed Res Int. 2013:2013:759760. doi:10.1155/2013/759760. Epub 2013 Sep 25.; Doyle TJ, Lee JS, Dellaripa PF, et al. A roadmap to promote clinical and translational research in rheumatoid arthritis associated interstitial lung disease. Chest. 2014 Mar 1; 145(3):454-463. doi:10.1378/chest.13-2408.; Гордеев АВ, Галушко ЕА, Савушкина НМи др. Оценка мультиморбидного профиля (CIRS) при ревматоидном артрите. Первые результаты. Современная ревматология. 2019;13(3):10-16. doi: 10/14412/1996-7012-2019-3-10-16; Hall JE, do Carmo JM, da Silva AA, et al. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019 Jun; 15(6):367-385. doi:10.1038/s41581-0190145-4.; Zoccali C, Vanholder R, Ziad A, et al. The systemic nature of CKD. Nat Rev Nephrol. 2017 Jun;13(6):344-358. doi:10.1038/nrneph.2017.52. Epub 2017 Apr 24.; Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol. 2021 Jan;22(1):10-18. doi:10.1038/s41590-02000816-x. Epub 2020 Nov 30.; Zhang C, Merana GR, Harris-Tryon T,Scharschmidt T. Skin immunity: dissecting the complex biology of our body’s outer barrier. Mucosal Immunol. 2022 Apr;15(4): 551-561. doi:10.1038/s41385-022-00505-y. Epub 2022 Mar 31.; Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol. 2019 Aug;19(8): 517-532. doi:10.1038/s41577-019-0160-5.; Wijsenbeek M, Cottin V. Spectrum of Fibrotic Lung Diseases. N Engl J Med. 2020 Sep 3;383(10):958-968. doi:10.1056/NEJMra2005230.; Li L, Haiyan F, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol. 2022 Sep;18(9): 545-557. doi:10.1038/s41581-022-00590-z. Epub 2022 Jul 4.; Speer T, Dimmeler S, Schunk SJ, et al.Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol. 2022 Dec;18(12):762-778. doi:10.1038/s41581-022-00621-9. Epub 2022 Sep 5.; Гордеев АВ, Галушко ЕА, Савушкина НМ. Роль ангиотензинов в патогенезе воспалительных заболеваний суставов. Терапевтический архив. 2021;93(5):635-639.; Navaneethan SD, Mandayam S, Arrigain S, et al. Obstructive and restrictive lung function measures and CKD: National Health and Nutrition Examination Survey (NHANES) 2007–2012. Am J Kidney Dis. 2016 Sep;68(3): 414-21. doi:10.1053/j.ajkd.2016.03.415. Epub 2016 Apr 27.
-
4Academic Journal
Authors: Gonchar, M.O., Logvinova, O.L.
Source: Zdorovʹe Rebenka, Vol 12, Iss 8, Pp 914-920 (2017)
CHILD`S HEALTH; Том 12, № 8 (2017); 914-920
Здоровье ребенка-Zdorovʹe rebenka; Том 12, № 8 (2017); 914-920
Здоров'я дитини-Zdorovʹe rebenka; Том 12, № 8 (2017); 914-920Subject Terms: interstitial lung disease, дети, интерстициальное заболевание легких, паренхиматозное заболевания легких, диагностика, лечение, children, treatment, diagnosis, діти, інтерстиціальне захворювання легень, паренхіматозне захворювання легень, діагностика, лікування, parenchymal lung disease, Pediatrics, RJ1-570, 3. Good health
File Description: application/pdf
-
5
-
6
-
7Academic Journal
Authors: R. R. Ahunova, G. R. Ahunova, Р. Р. Ахунова, Г. Р. Ахунова
Source: Rheumatology Science and Practice; Vol 61, No 1 (2023); 129-137 ; Научно-практическая ревматология; Vol 61, No 1 (2023); 129-137 ; 1995-4492 ; 1995-4484
Subject Terms: компьютерная томография высокого разрешения, rheumatoid arthritis, interstitial pulmonary injury, high resolution computed tomography, ревматоидный артрит, интерстициальное заболевание легких
File Description: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3290/2267; Насонов ЕЛ, Насонова ВА (ред.). Ревматология: Национальное руководство. М.:ГЭОТАР-Медиа;2008.; Насонов ЕЛ (ред.). Российские клинические рекомендации. Ревматология. М.:ГЭОТАР-Медиа;2020.; Балабанова РМ, Эрдес Ш. Распространенность ревматических заболеваний в России в 2012–2013 гг. Научно-практическая ревматология. 2015;53(2):120-124. doi:10.14412/1995-4484-2015-120-124; Чучалин АГ, Авдеев СН, Айсанов ЗР, Белевский АС, Демура СА, Илькович ММ, и др. Диагностика и лечение идиопатического легочного фиброза. Федеральные клинические рекомендации. Пульмонология. 2016;26(4):399-419. doi:10.18093/0869-0189-2016-26-4-399-419; Olson A, Hartmann N, Patnaik P, Wallace L, Schlenker-Herceg R, Nasser M, et al. Estimation of the prevalence of progressive fibrosing interstitial lung diseases: Systematic literature review and data from a physician survey. Adv Ther. 2021;38(2):854-867. doi:10.1007/s12325-020-01578-6; Koduri G, Norton S, Young S. ERAS (Early Rheumatoid Arthritis Study). Interstitial lung disease has a poor prognosis in rheumatoid arthritis: Results from an inception cohort. Rheumatology (Oxford). 2010;49(8):1483-1489. doi:10.1093/rheumatology/keq035.; Solomon JJ, Fisher A. Connective tissue disease-associated interstitial lung disease: A focused review. J Intensive Care Med. 2015;30(7):392-400. doi:10.1177/0885066613516579; Fotoh DS, Helal A, Rizk MS, Esaily HA. Serum Krebs von den Lungen-6 and lung ultrasound B lines as potential diagnostic and prognostic factors for rheumatoid arthritis associated intersti tial lung disease. Clin Rheumatol. 2021;40(7):2689-2697. doi:10.1007/s10067-021-05585-y; Zhuo J, Zhang Q, Knapp K. OP0035 Examination of interstitial lung disease in patients with rheumatoid arthritis – prevalence time to onset and clinical characteristics. Ann Rheum Dis: 2020 June 2. doi:10.1136/annrheumdis-2020-eular.1189; Wijsenbeek MS, Kreuter M, Fischer A, Mounir B, ZouadLejour L, Wells CD, et al. Non-IPF progressive fibrosing interstitial lung disease (PF-ILD): The patient journey. Am J Respir Crit Care Med. 2018;197:1678.; Demoruelle MK, Solomon JJ, Fischer A, Deane KD. The lung may play a role in the pathogenesis of rheumatoid arthritis. Int J Clin Rheumtol. 2014;9(3):295-309. doi:10.2217/ijr.14.23; Fong WWS, Yoong JKC. Interstitial lung disease and rheumatoid arthritis: A review. Proceedings of Singapore Healthcare. 2015;24(1):35-41. doi:10.1177/201010581502400106; Kim EJ, Collard HR, King TE Jr. Rheumatoid arthritis-associated interstitial lung disease: The relevance of histopathologic and radiographic pattern. Chest. 2009;136(5):1397-1405. doi:10.1378/chest.09-0444; Lee HK, Kim DS, Yoo B, Seo JB, Rho JY, Colby TV, et al. Histopathologic pattern and clinical features of rheumatoid arthritisassociated interstitial lung disease. Chest. 2005;127(6):2019-2027. doi:10.1378/chest.127.6.2019; Solomon JJ, Chung JH, Cosgrove GP, Demoruelle MK, Fernandez-Perez ER, Fischer A, et al. Predictors of mortality in rheumatoid arthritis-associated interstitial lung disease. Eur Respir J. 2016;47(2):588-596. doi:10.1183/13993003.00357-2015; Rohatgi PK. Radiological evaluation of interstitial lung disease. Curr Opin Pulm Med. 2011;17:337-345. doi:10.1097/MCP.0b013e328347c16a; Elicker BM, Kallianos KG, Henry TS. The role of high-resolution computed tomography in the follow-up of diffuse lung disease. Eur Resp Rev. 2017;26(144):170008. doi:10.1183/16000617.0008-2017; Walsh SLF, Devaraj A, Enghelmayer JI, Kishi K, Silva RS, Patel N, et al. Role of imaging in progressive-fibrosing interstitial lung diseases. Eur Respir Rev. 2018;27(150):180073. doi:10.1183/16000617.0073-2018; Adegunsoye A, Oldham JM, Bellam SK, Montner S, Churpek MM, Noth I, et al. Computed tomography honeycombing identifies a progressive fibrotic phenotype with increased mortality across diverse interstitial lung diseases. Ann Am Thorac Soc. 2019;16(5):580-588. doi:10.1513/AnnalsATS.201807-443OC; Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, et al.; INBUILD Trial Investigators. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med. 2019;381(18):1718-1727. doi:10.1056/NEJMoa1908681; Jacob J, Hirani N, van Moorsel CHM, Rajagopalan S, Murchison JT, van Es HW, et al. Predicting outcomes in rheumatoid arthritis related interstitial lung disease. Eur Respir J. 2019;53(1):1800869. doi:10.1183/13993003.00869-2018; Yamakawa H, Sato S, Tsumiyama E, Nishizawa T, Kawabe R, Oba T, et al. Predictive factors of mortality in rheumatoid arthritisassociated interstitial lung disease analysed by modified HRCT classification of idiopathic pulmonary fibrosis according to the 2018 ATS/ERS/JRS/ALAT criteria. J Thorac Dis. 2019;11(12):5247-5257. doi:10.21037/jtd.2019.11.73; Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al.; American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44-e68. doi:10.1164/rccm.201807-1255ST; Assayag D, Elicker BM, Urbania TH, Colby TV, Kang BH, Ryu JH, et al. Rheumatoid arthritis-associated interstitial lung disease: Radiologic identification of usual interstitial pneumonia pattern. Radiology. 2014;270(2):583-588. doi:10.1148/radiol.13130187; Kim EA, Lee KS, Johkoh T, Kim TS, Suh GY, Kwon OJ, et al. Interstitial lung diseases associated with collagen vascular diseases: Radiologic and histopathologic findings. Radiographics. 2002;22 Spec No:S151-S165. doi:10.1148/radiographics.22.suppl_1.g02oc04s151; Laria A, Lurati A, Scarpellini M. Ultrasound in rheumatologic interstitial lung disease: A case report of nonspecific interstitial pneumonia in rheumatoid arthritis. Case Rep Rheumatol. 2015;2015:107275. doi:10.1155/2015/107275; Cogliati C, Antivalle M, Torzillo D, Birocchi S, Norsa A, Bianco R, et al. Standard and pocket-size lung ultrasound devices can detect interstitial lung disease in rheumatoid arthritis patients. Rheumatology (Oxford). 2014;53(8):1497-1503. doi:10.1093/rheumatology/keu033; Moazedi-Fuerst FC, Kielhauser SM, Scheidl S, Tripolt NJ, Lutfi A, Yazdani-Biuki B, et al. Ultrasound screening for interstitial lung disease in rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(2):199-203.; Moazedi-Fuerst FC, Kielhauser S, Brickmann K, Tripolt N, Meilinger M, Lufti A, et al. Sonographic assessment of interstitial lung disease in patients with rheumatoid arthritis, systemic sclerosis and systemic lupus erythematosus. Clin Exp Rheumatol. 2015;33(4 Suppl 91):S87-S91.; Овсянникова ОБ, Ананьева ЛП, Корсакова ЮО, Конева ОА, Волков АВ, Глухова СИ. Оценка ультразвукового сканирования легких у больных системной склеродермией и интерстициальным поражением легких. Научно-практическая ревматология. 2013;51(3):279-284. doi:10.14412/1995-4484-2013-1502; Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9-15. doi:10.1097/00000542-200401000-00006; Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: The BLUE protocol. Chest. 2008;134(1):117-125. doi:10.1378/ chest.07-2800; Lichtenstein DA. BLUE-protocol and FALLS-protocol: Two appli cations of lung ultrasound in the critically ill. Chest. 2015;147(6):1659-1670. doi:10.1378/chest.14-1313; Alerhand S, Graumann O, Nelson BP. Physics and basic principles. In: Laursen CB, Rahman NM, Volpicelli G (eds). Thoracic ultrasound. Sheffield:European Respiratory Society;2018:1-13. doi:10.1183/2312508X.10006017; Radzina M, Biederer J. Ultrasonography of the lung. RoFo. 2019;191(10):909-923. doi:10.1055/a-0881-3179; Lee FCY. Lung ultrasound-a primary survey of the acutely dyspneic patient. J Intensive Care. 2016;4(1):57. doi:10.1186/s40560-016-0180-1; Gargani L, Doveri M, D’Errico L. Ultrasound lung comets in systemic sclerosis: A chest sonography hallmark of pulmonary interstitial fibrosis. Rheumatology (Oxford). 2009;48(11):1382-1387. doi:10.1093/rheumatology/kep263; Gutierrez M, Salaffi F, Carotti M. Utility of a simplified ultrasound assessment to assess interstitial pulmonary fibrosis in connective tissue disorders – Preliminary results. Arthritis Res Ther. 2011;13(4):134. doi:10.1186/ar3446; Mohammadi A, Oshnoei S, Ghasemi-rad M. Comparison of a new, modified lung ultrasonography technique with highresolution CT in the diagnosis of the alveolo-interstitial syndrome of systemic scleroderma. Med Ultrason. 2014;16(1):27-31. doi:10.11152/mu.2014.2066.161.am1so2; Gargani L, Volpicelli G. How I do it: Lung ultrasound. Cardiovasc Ultrasound. 2014;12:25. doi:10.1186/1476-7120-12-25; Митьков ВВ (ред.). Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика; 2-е изд. М.:Видар-М;2011. [Mitkov VV (ed.). A practical guide to ultrasound diagnostics. General ultrasound diagnostics. Moscow:Vidar-M;2019 (In Russ.)].; Чуяшенко ЕВ, Завадовская ВД, Агеева ТС, Просекина НМ, Перова ТБ. Ультразвуковое исследование легких при пневмонии. Бюллетень сибирской медицины. 2017;16(2):47-59.; Сафонов ДВ, Шахов БЕ. Ультразвуковая диагностика воспалительных заболеваний легких. М.:Видар-М;2011.; Митьков ВВ, Сафонов ДВ, Митькова МД, Алехин МН, Катрич АН, Кабин ЮВ, и др. Консенсусное заявление РАСУДМ об ультразвуковом исследовании легких в условиях пандемии COVID-19 (версия 2). Ультразвуковая и функциональная диагностика. 2020;1:46-77.; Xie HQ, Zhang WW, Sun S. A simplified lung ultrasound for the diagnosis of interstitial lung disease in connective tissue disease: A meta-analysis. Arthritis Res Ther. 2019;21(1):93. doi:10.1186/s13075-019-1888-9; Sperandeo M, Varriale A, Sperandeo G, Filabozzi P, Piattelli ML, Carnevale V, et al. Transthoracic ultrasound in the evaluation of pulmonary fibrosis: Our experience. Ultrasound Med Biol. 2009;35(5):723-729. doi:10.1016/j.ultrasmedbio.2008.10.009; Mena-Vázquez N, Jimenez-Núñez FG, Godoy-Navarrete FJ, Manrique-Arija S, Aguilar-Hurtado MC, Romero-Barco CM, et al. Utility of pulmonary ultrasound to identify interstitial lung disease in patients with rheumatoid arthritis. Clin Rheumatol. 2021;40(6):2377-2385. doi:10.1007/s10067-021-05655-1
-
8Academic Journal
Authors: D. V. Khorolsky, A. A. Klimenko, E. S. Pershina, N. M. Babadeva, A. A. Kondrashov, N. A. Shostak, E. P. Mikheeva, E. V. Zhilyaev, Д. В. Хорольский, А. А. Клименко, Е. С. Першина, Н. М. Бабадаева, А. А. Кондрашов, Н. А. Шостак, Е. П. Михеева, Е. В. Жиляев
Source: Modern Rheumatology Journal; Том 17, № 4 (2023); 57-63 ; Современная ревматология; Том 17, № 4 (2023); 57-63 ; 2310-158X ; 1996-7012
Subject Terms: компьютерная томография легких высокого разрешения, interstitial lung disease, six-minute walk test, autoantibodies, cross-sectional observational study, high-resolution computed tomography of the lungs, интерстициальное заболевание легких, тест с 6-минутной ходьбой, аутоантитела, одномоментное наблюдательное исследование
File Description: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1460/1385; Goh NS, Desai SR, Veeraraghavan S, et al. Interstitial lung disease in systemic sclerosis: a simple staging system. Am J Respir Crit Care Med. 2008 Jun 1;177(11):1248-54. doi:10.1164/rccm.200706-877OC. Epub 2008 Mar 27.; Bergamasco A, Hartmann N, Wallace L, Verpillat P. Epidemiology of systemic sclerosis and systemic sclerosis-associated interstitial lung disease. Clin Epidemiol. 2019 Apr 18; 11:257-273. doi:10.2147/CLEP.S191418. eCollection 2019.; Steele R, Hudson M, Lo E, Baron M; Canadian Scleroderma Research Group. Clinical decision rule to predict the presence of interstitial lung disease in systemic sclerosis. Arthritis Care Res (Hoboken). 2012 Apr; 64(4):519-24. doi:10.1002/acr.21583.; Lumetti F, Barone L, Alfieri C, et al. Quality of life and functional disability in patients with interstitial lung disease related to Systemic Sclerosis. Acta Biomed. 2015 Sep 14; 86(2):142-8.; Zhou Z, Fan Y, Thomason D, et al. Eco-nomic Burden of Illness Among Commercially Insured Patients with Systemic Sclerosis with Interstitial Lung Disease in the USA: A Claims Data Analysis. Adv Ther. 2019 May; 36(5):1100-1113. doi:10.1007/s12325-019-00929-2. Epub 2019 Mar 30.; Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010 Oct;69(10):1809-15. doi:10.1136/ard.2009.114264. Epub 2010 Jun 15.; Aragona CO, Versace AG, Ioppolo C, et al. Emerging Evidence and Treatment Perspectives from Randomized Clinical Trials in Systemic Sclerosis: Focus on Interstitial Lung Disease. Biomedicines. 2022 Feb 21;10(2):504. doi:10.3390/biomedicines10020504.; Van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013 Nov;65(11):2737-47. doi:10.1002/art.38098. Epub 2013 Oct 3.; Wittram C, Mark EJ, McLoud TC. CT-histologic correlation of the ATS/ERS 2002 classification of idiopathic interstitial pneumonias. Radiographics. 2003 Sep-Oct;23(5): 1057-71. doi:10.1148/rg.235035702.; Suliman YA, Dobrota R, Huscher D, et al. Brief Report: Pulmonary Function Tests: High Rate of False-Negative Results in the Early Detection and Screening of Scleroderma-Related Interstitial Lung Disease. Arthritis Rheumatol. 2015 Dec;67(12):3256-61. doi:10.1002/art.39405.; Rutka K, Garkowski A, Karaszewska K, tebkowska U. Imaging in Diagnosis of Systemic Sclerosis. J Clin Med. 2021 Jan 12;10(2):248. doi:10.3390/jcm10020248.; Ананьева ЛП, Александрова ЕН. Аутоантитела при системной склеродермии: спектр, клинические ассоциации и прогностическое значение. Научно-практическая ревматология. 2016;54(1):86-99.; Yang C, Tang S, Zhu D, et al. Classical Disease-Specific Autoantibodies in Systemic Sclerosis: Clinical Features, Gene Susceptibility, and Disease Stratification. Front Med (Lausanne). 2020 Nov 19;7:587773. doi:10.3389/fmed.2020.587773. eCollection 2020.; Stochmal A, Czuwara J, Trojanowska M, Rudnicka L. Antinuclear Antibodies in Systemic Sclerosis: an Update. Clin Rev Allergy Immunol. 2020 Feb;58(1):40-51. doi:10.1007/s12016-018-8718-8.
-
9Academic Journal
Source: Сучасна педіатрія. Україна; № 5(125) (2022): Сучасна педіатрія. Україна; 103-107
Modern Pediatrics. Ukraine; No. 5(125) (2022): Modern pediatrics. Ukraine; 103-107
Modern Pediatrics. Ukraine; № 5(125) (2022): Modern pediatrics. Ukraine; 103-107Subject Terms: interstitial lung disease, нейродегенеративні розлади, нейродегенеративные расстройства, 3. Good health, гемолітична анемія, інтерстиціальне захворювання легень, neurodegenerative disorders, эпизодическая диарея, FINCA syndrome, episodic diarrhea, интерстициальное заболевание легких, гемолитическая анемия, hemolytic anemia, FINCA-синдром, епізодична діарея, FINCA синдром
File Description: application/pdf
Access URL: http://mpu.med-expert.com.ua/article/view/265972
-
10Academic Journal
Authors: A. S. Vinokurov, A. L. Yudin, А. С. Винокуров, А. Л. Юдин
Source: The Russian Archives of Internal Medicine; Том 12, № 5 (2022); 370-379 ; Архивъ внутренней медицины; Том 12, № 5 (2022); 370-379 ; 2411-6564 ; 2226-6704
Subject Terms: «матовое стекло», COVID-19, fibrosis, interstitial lung disease, CT scan, bronchiectasis, ground glass opacities, фиброз, интерстициальное заболевание легких, компьютерная томография, бронхоэктазы
File Description: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/1509/1158; https://www.medarhive.ru/jour/article/view/1509/1167; Самсонова М.В., Черняев А.Л., Омарова Ж.Р. и др. Особенности патологической анатомии легких при COVID-19. Пульмонология. 2020; 30(5): 519–532. DOI:10.18093/0869-0189-2020-30-5-519-532.; Thille A.W., Esteban A., Fernandez-Segoviano P. et al. Chronology histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir Med. 2013; 1: 395–401.; Vasarmidi E., Tsitoura E., Spandidos D.A. et al. Pulmonary fibrosis in the aftermath of the COVID-19 era (Review). Experimental and therapeutic medicine. 2020; 20: 2557–2560. DOI:10.3892/etm.2020.8980.; Carsana L., Sonzogni A., Nasr A. et al. Pulmonary post-morten findings in a series of COVID-19 cases from northern Italy: A two-center descriptive study. Lancet Infect Dis. 2020; 1473-3099(20): 30434–30435.; Mohamed Ali R.M., Ibrahim Ghonimy M.B. PostCOVID-19 pneumonia lung fibrosis: a worrisome sequela in surviving patients. Egyptian Journal of Radiology and Nuclear Medicine. 2021; 52: 101. DOI:10.1186/s43055-021-00484-3.; Udwadia Z.F., Koul P.A., Richeldi L. Post-COVID lung fibrosis: the tsunami that follow the earthquake. Lung India. 2021; 38: 41–47.; Bazdyrev E., Rusina P., Panova M. et al. Lung fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals. 2021; 14: 807. DOI:10.3390/ph14080807.; Aronson K.I., Podolanczuk A.J. Lung after COVID-19: Evolving knowledge of post-COVID-19 interstitial lung disease. Ann Am Thorac Soc. 2021; 18(5): 773–779. DOI:10.1513/AnnalsATS.202102-223ED.; Лещенко И.В., Глушкова Т.В. О функциональных нарушениях и развитии фиброза легких у пациентов, перенесших новую коронавирусную инфекцию. Пульмонология. 2021; 31(5): 653–662. DOI:10.180093/0869-0189-2021-31-5-653-662.; Ademola S. Ojo, Simon A. Balogun, Oyeronke T. Williams et al. Pulmonary fibrosis in COVID-19 survivors: predictive factors and risk reduction strategies. Pulmonary medicine. 2020: 6175964. DOI:10.1155/2020/6195964.; Черняев А.Л. Ателектаз лёгких. В кн.: Клеточная биология легких в норме и при патологии, под ред. Ерохина В.В., Романовой Л.К. М, Медицина. 2000; 383–385.; Винокуров А.С., Зюзя Ю.Р., Юдин А.Л. Эволюция изменений в легких по данным КТ при динамическом наблюдении пациентов с COVID-19 в ранние сроки. Лучевая диагностика и терапия. 2020; 11(2): 76–88. DOI:10.22328/2079-5343-2020-11-2-76-88.; Wu X., Liu X., Zhou Y. et al. 3-month, 6-month, 9-month, and 12-month respitatory outcomes in patients following COVID-19-related hospitalization: A prospective study. Lancet Respir. Med. 2021; 9: 747–754.; Qin W., Chen S., Zhang Y et al. Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at 3-month follow-up. Eur. Respir.J. 2021; 58(1): 2003677. DOI:10.1183/13993003.01217-2020.; Зайцев А.А., Савушкина О.И., Черняк А.В. и др. Клинико-функциональная характеристика пациентов, перенесших новую коронавирусную инфекцию COVID-19. Практическая пульмонология. 2020; 1: 78–81.; Греков И.С, Грушина М.В. Фибропролиферативные изменения легких в постэпидемическом периоде COVID-19: что нас ждет в будущем? Вестник неотложной и восстановительной хирургии. 2021; 6(1): 47–55.; Alarcon-Rodrigues J., Fernandez-Velilla M., Urena-Vacas A. et al. Radiological management and follow-up of post-COVID-19 patients. Radiologia. 2021; 63: 258–269.; Karmakar S., Sharma P., Harishkumar A., Rai D.K. PostCOVID-19 pulmonary fibrosis: report of two cases. EMJ Respir. 2021. DOI:10.33590/emjrespir/20-00270.; Сперанская А.А., Новикова Л.Н., Баранова О.П. и др. Лучевая диагностика COVID-19 у пациентов с интерстициальными заболеваниями легких. Визуализация в медицине. 2021; 3(1): 3–9.; Струков А.И., Соловьева И.П. Морфология туберкулеза в современных условиях. 2-е изд. Москва, Медицина. 1986; 119.; Huang W., Wu Q., Chen Z. et al. The potential indicators for pulmonary fibrosis in survivors of severe COVID-19. J Infect. 2021; 82(2): e5-7. DOI:10.1016/j.jinf.2020.09.027.; Самсонова М.В., Конторщиков А.С., Черняев А.Л. и др. Патогистологические изменения в легких в отдаленные сроки после COVID-19. Пульмонология. 2021; 31(5): 571–579. DOI:10.18093/0869-0189-2021-31-5-571-579.; Zou J-N., Sun L., Wang B-R. et al. The characteristics and evolution of pulmonary fibrosis in COVID-19 patients as assessed by AI-assisted chest HRCT. PLoS ONE. 2021; 16(3): e0248957. DOI:10.1371/journal.pone.0248957.; Franco-Palacios D.J., Allenspach L., Stagner L. et al. A center experience with lung transplantation for COVID-19 ARDS. Respiratory Medicine Case Reports. 2022; 36: 101597. DOI:10.1016/j.rmcr.2022.101597; Лесняк В.Н., Ананьева Л.П., Конева О.А. и др. Полуколичественные визуальные методы оценки выраженности интерстициальных поражений легких по данным компьютерной томографии при системной склеродермии. Пульмонология. 2017; 27(1): 41–50. DOI:10.18093/0869-0189-2017-27-1-41-50; Золотницкая В.П., Титова О.Н., Кузубова Н.А. и др. Изменения микроциркуляции в легких у пациентов, перенесших COVID-19. Пульмонология. 2021; 31(5): 588–597. DOI:10.18093/0869-0189-2021-31-5-588-597.; https://www.medarhive.ru/jour/article/view/1509
-
11Academic Journal
Authors: Maria I. Kaleda, Irina P. Nikishina, Svetlana R. Rodionovskaya, Ekaterina V. Nikolaeva, М. И. Каледа, И. П. Никишина, С. Р. Родионовская, Е. В. Николаева
Contributors: Not specified., Не указан.
Source: Current Pediatrics; Том 20, № 1 (2021); 31-37 ; Вопросы современной педиатрии; Том 20, № 1 (2021); 31-37 ; 1682-5535 ; 1682-5527
Subject Terms: легочная гипертензия, macrophage activation syndrome, pulmonary involvement in children, interstitial lung disease, pulmonary alveolar proteinosis, pulmonary hypertension, синдром активации макрофагов, поражение легких у детей, интерстициальное заболевание легких, легочный альвеолярный протеиноз
File Description: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/2544/1019; De Benedetti F, Schneider R. Systemic Juvenile Idiopathic Arthritis In: Textbook of pediatric rheumatology. Petty R, Lindsley C, Laxer R, et al., eds. 7th ed. Philadelphia, PA: Elsevier, 2016. pp. 206-216.; Bruck N, Schnabel A, Hedrich CM. Current understanding of the pathophysiology of systemic juvenile idiopathic arthritis (sJIA) and target-directed therapeutic approaches. Clin Immunol. 2015; 159(1):72-83. doi:10.1016/j.clim.2015.04.018; Martini A, Ravelli A, Avcin T, et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, Pediatric Rheumatology International Trials Organization International Consensus. J Rheumatol. 2019;46(2):190-197. doi:10.3899/jrheum.180168; Ravelli A, Grom AA, Behrens EM, Cron RQ. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immun. 2012;13(4):289-298. doi:10.1038/gene.2012.3; Hashkes PJ, Wright BM, Lauer MS, et al. Mortality outcomes in pediatric rheumatology in the US. Arthritis Rheum. 2010;62(2): 599-608. doi:10.1002/art.27218; Tarp S, Amarilyo G, Foeldvari I, et al. Efficacy and safety of biological agents for systemic juvenile idiopathic arthritis: a systematic review and meta-analysis of randomized trials. Rheumatology (Oxford). 2016;55(4):669-679. doi:10.1093/rheumatology/kev382; Никишина И.П., Каледа М.И. Современная фармакотерапия системного ювенильного артрита // Научно-практическая ревматология. — 2015. — Т. 53. — № 1. — С. 84-93. doi:10.14412/1995-4484-2015-84-93; Каледа М.И., Никишина И.П. Тоцилизумаб в лечении детей с системным вариантом ювенильного артрита: анализ факторов, влияющих на эффективность терапии в долгосрочном периоде // Вопросы современной педиатрии. — 2015. — Т. 14. — № 2. — С. 236-245. doi:10.15690/vsp.v14i2.1292; Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016; 12(5):259-268. doi:10.1038/nrrheum.2015.179; Padeh S, Laxer RM, Silver MM, Silverman ED. Primary pulmonary hypertension in a patient with systemic-onset juvenile arthritis. Arthritis Rheum. 1991;34(12):1575-1579. doi:10.1002/art.1780341216; Nolan PK, Daniels C, Long F, et al. Severe diffusion capacity reduction in a case of systemic onset juvenile rheumatoid arthritis with mild pulmonary hypertension [abstract]. Chest. 2005;128 (4 Suppl):435S. doi:10.1378/chest.128.4_MeetingAbstracts.435S-a; Sato K, Takahashi H, Amano H, et al. Diffuse progressive pulmonary interstitial and intra-alveolar cholesterol granulomas in childhood. Eur Respir J. 1996;9(11):2419-2422. doi:10.1183/09031936.96.09112419; Schultz R, Mattila J, Gappa M, Verronen P. Development of progressive pulmonary interstitial and intra-alveolar cholesterol granulomas (PICG) associated with therapy-resistant chronic systemic juvenile arthritis (CJA). Pediatr Pulmonol. 2001;32(5):397-402. doi:10.1002/ppul.1149; Бойцова Е.В., Овсянников Д.Ю., Беляшова М.А. Педиатрические интерстициальные заболевания легких: дети не маленькие взрослые // Педиатрия. Журнал им. Г.Н. Сперанского. — 2015. — Т. 94. — № 4. — С. 171-176.; Schulert GS, Yasin S, Carey B, et al. Systemic Juvenile Idiopathic Arthritis — Associated Lung Disease: Characterization and Risk Factors. Arthritis Rheumatol. 2019;71(11):1943-1954. doi:10.1002/art.41073; De Groot J, Vastert B, Giancane G, et al. Interstitial lung disease in systemic juvenile idiopathic arthritis patients in the Pharmachild registry. Pediatric Rheumatology. 2018;16(52):Abstract P004. doi:10.1186/s12969-018-0265-6; Kimura Y, Weiss JE, Haroldson KL, et al. Pulmonary hypertension and other potentially fatal pulmonary complications in systemic juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2013;65(5):745-752. doi:10.1002/acr.21889; Saper VE, Chen G, Deutsch GH, et al. Emergent high fatality lung disease in systemic juvenile arthritis. Ann Rheum Dis. 2019;78(12): 1722-1731. doi:10.1136/annrheumdis-2019-216040; Inaba H, Jenkins JJ, McCarville MB, et al. Pulmonary alveolar proteinosis in pediatric leukemia. Pediatr Blood Cancer. 2008; 51(1):66-70. doi:10.1002/pbc.21442; Sullivan KD, Evans D, Pandey A, et al. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci Rep. 2017;7(1):14818. doi:10.1038/s41598-017-13858-3; Костик М.М., Исупова Е.А., Румянцева М.В. и др. Интерстициальное поражение легких у пациентов с юношеским артритом с системным началом: описание серии клинических случаев и обзор литературных данных // Педиатрия им. Г.Н. Сперанского. — 2020. — Т. 99. — № 2. — С. 125-136. doi:10.24110/0031-403X-2020-99-2-125-136; Fischer A, Antoniou KM, Brown KK, et al. An official European Respiratory Society/American Thoracic Society research statement: interstitial pneumonia with autoimmune features. Eur Respir J. 2015; 46(4):976-987. doi:10.1183/13993003.00150-2015; Davies R, Southwood T, Kearsley-Fleet L, et al. Mortality rates are increased in patients with systemic juvenile idiopathic arthritis. Arch Dis Child. 2017;102(2):206-207. doi:10.1136/archdis-child-2016-311571; Shimizu M, Nakagishi Y, Yachie A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine. 2013;61(2):345-348. doi:10.1016/j.cyto.2012.11.025; Put K, Avau A, Brisse E, et al. Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-у. Rheumatology (Oxford). 2015;54(8):1507-1517. doi:10.1093/rheumatology/keu524; Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151(5):1628-1631. doi:10.1164/ajrccm.151.5.7735624; Weiss JE, Lee T, Rabinovich CE, et al. Life-threatening Pulmonary Hypertension (PH) and Alveolar Proteinosis (AP) in Systemic JIA (SJIA). Arthritis Rheum. 2008;58(9S):S257-S258.; Ong MS, Mullen MP, Austin ED, et al. Learning a Comorbidity-Driven Taxonomy of Pediatric Pulmonary Hypertension. Circ Res. 2017;121(4):341-353. doi:10.1161/CIRCRESAHA.117.310804; Kitamura N, Ohkouchi S, Tazawa R, et al. Incidence of autoimmune pulmonary alveolar proteinosis estimated using Poisson distribution. ERJ Open Res. 2019;5(1):00190-02018. doi:10.1183/23120541.00190-2018; Ishii H, Tazawa R, Kaneko C, et al. Clinical features of secondary pulmonary alveolar proteinosis: pre-mortem cases in Japan. Eur Respir J. 2011;37(2):465-468. doi:10.1183/09031936.00092910; Huaux F, De Gussem V, Lebrun A, et al. New interplay between interstitial and alveolar macrophages explains pulmonary alveolar proteinosis (PAP) induced by indium tin oxide particles. Arch Toxicol. 2018;92(4):1349-1361. doi:10.1007/s00204-018-2168-1; Dirksen U, Hattenhorst U, Schneider P, et al. Defective expression of granulocyte macrophage colony-stimulating factor/ interleukin-3/interleukin-5 receptor common beta chain in children with acute myeloid leukemia associated with respiratory failure. Blood. 1998;92(4):1097-1103.; De Benedetti F, Brunner HI, Ruperto N, et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis [published correction appears in N Engl J Med. 2015 Feb 26;372(9):887]. N Engl J Med. 2012;367(25):2385-2395. doi:10.1056/NEJMoa1112802; Yokota S, Itoh Y, Morio T, et al. Tocilizumab in systemic juvenile idiopathic arthritis in a real-world clinical setting: results from 1 year of postmarketing surveillance follow-up of 417 patients in Japan. Ann Rheum Dis. 2016;75(9):1654-1660. doi:10.1136/annrheumdis-2015-207818; Schulert GS, Minoia F, Bohnsack J, et al. Effect of Biologic Therapy on Clinical and Laboratory Features of Macrophage Activation Syndrome Associated With Systemic Juvenile Idiopathic Arthritis. Arthritis Care Res (Hoboken). 2018;70(3):409-419. doi:10.1002/acr.23277; Saper V, Mellins E, Kwong B. Drug reaction and high fatality lung disease in systemic onset juvenile idiopathic arthritis (sJIA). J Allergy Clin Immunol. 2020;145(Suppl 2):AB95. doi:10.1016/j.jaci.2019.12.598; Ter Haar NM, van Dijkhuizen EHP, Swart JF, et al. Treatment to Target Using Recombinant Interleukin-1 Receptor Antagonist as First-Line Monotherapy in New-Onset Systemic Juvenile Idiopathic Arthritis: Results From a Five-Year Follow-Up Study. Arthritis Rheumatol. 2019;71(7):1163-1173. doi:10.1002/art.40865
-
12Academic Journal
Authors: Gonchar', M.O., Logvinova, O.L., Muratov, G.R., Yablons'ka, N.M., Pomazunovs'ka, O.P., Tsura, O.M.
Source: Sovremennaya pediatriya; № 4(84) (2017): Sovremennaya pediatriya; 62-65
Современная педиатрия; № 4(84) (2017): Современная педиатрия; 62-65
Сучасна педіатрія; № 4(84) (2017): Сучасна педіатрія; 62-65Subject Terms: інтерстиційне захворювання легень, фактори ризику, діти, трисомія по 21 хромосомі, interstitial lung disease, risk factors, children, trisomy of 21 chromosomes, интерстициальное заболевание легких, факторы риска, дети, трисомия по 21 хромосоме, 3. Good health
File Description: application/pdf
-
13Academic Journal
Authors: N. S. LEV, S. E. DIAKOVA, M. V. KOSTYUCHENKO, Y. L. MIZERNITSKY, N. N. ROZINOVA, L. V. SOKOLOVA, Н. С. ЛЕВ, С. Э. ДЬЯКОВА, М. В. КОСТЮЧЕНКО, Ю. Л. МИЗЕРНИЦКИЙ, Н. Н. РОЗИНОВА, Л. В. СОКОЛОВА
Source: Meditsinskiy sovet = Medical Council; № 9 (2017); 131-135 ; Медицинский Совет; № 9 (2017); 131-135 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2017-9
Subject Terms: дети, interstitial lung disease, children, интерстициальное заболевание легких
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/1968/1951; Тернер-Уорвик М. Иммунология легких (пер. с англ.). М.: «Медицина», 1982, 336.; Авдеев С.Н., Авдеева О.Е., Чучалин А.Г. Экзогенный аллергический альвеолит. РМЖ, 2007, 6: 20-32.; Илькович М.М. Диссеминированные заболевания легких. ГЭОТАР-Медиа. 2011, 480 с.; Геппе Н.А., Розинова Н.Н., Волков И.К., Мизерницкий Ю.Л. Классификация клинических форм бронхолегочных заболеваний у детей. Российское респираторное общество. М., 2009. 18 с.; Нестеренко В.Н. Клинические варианты и критерии диагностики экзогенного аллергического альвеолита у детей. Автореф. дисс . Докт. мед. наук. М.: 1992, 33.; Лев Н.С., Шмелев Е.И. Гиперчувствительный пневмонит. В кн.: Хронические заболевания легких у детей (под ред. Н.Н. Розиновой, Ю.Л. Мизерницкого). М.: «Практика», 2011: 134-139.; Костюченко М.В., Мизерницкий Ю.Л. Атлас рентгенодиагностики. М.: «Медпрактика-М», 2014: 201-267.
-
14Academic Journal
Authors: САМСОНОВА МАРИЯ ВИКТОРОВНА, ЧЕРНЯЕВ АНДРЕЙ ЛЬВОВИЧ, МАЯНЦЕВА ЕЛЕНА ВАЛЕРЬЯНОВНА, ТАРАБРИН ЕВГЕНИЙ АЛЕКСАНДРОВИЧ, БУХТОЯРОВА НАТАЛИЯ АНАТОЛЬЕВНА
Subject Terms: ИНТЕРСТИЦИАЛЬНОЕ ЗАБОЛЕВАНИЕ ЛЕГКИХ,АСПИРАЦИОННАЯ ПНЕВМОНИЯ
File Description: text/html
-
15Academic Journal
Authors: ПЕТРОВ ДМИТРИЙ ВЛАДИМИРОВИЧ, ОВСЯННИКОВ НИКОЛАЙ ВИКТОРОВИЧ, КОНОНЕНКО АННА ЮРЬЕВНА, ПЬЯННИКОВА НАТАЛЬЯ ГЕОРГИЕВНА
Subject Terms: ИДИОПАТИЧЕСКИЙ ЛЕГОЧНЫЙ ФИБРОЗ, ИНТЕРСТИЦИАЛЬНОЕ ЗАБОЛЕВАНИЕ ЛЕГКИХ, ИНТЕРСТИЦИАЛЬНАЯ ПНЕВМОНИЯ, НИНТЕДАНИБ, ПИРФЕНИДОН
File Description: text/html
-
16
-
17Academic Journal
Source: Омский научный вестник.
Subject Terms: ИДИОПАТИЧЕСКИЙ ЛЕГОЧНЫЙ ФИБРОЗ, ИНТЕРСТИЦИАЛЬНОЕ ЗАБОЛЕВАНИЕ ЛЕГКИХ, ИНТЕРСТИЦИАЛЬНАЯ ПНЕВМОНИЯ, НИНТЕДАНИБ, ПИРФЕНИДОН, 05 social sciences, 3. Good health, 0506 political science
File Description: text/html
-
18Academic Journal
Source: Практическая пульмонология.
Subject Terms: ИНТЕРСТИЦИАЛЬНОЕ ЗАБОЛЕВАНИЕ ЛЕГКИХ,АСПИРАЦИОННАЯ ПНЕВМОНИЯ
File Description: text/html
-
19Dissertation/ Thesis
-
20Electronic Resource
Additional Titles: Мировой опыт в вопросах диагностики интерстициальних заболеваний легких у детей (up-date 2017)
World experience on the diagnosis of interstitial diseases of the lungs in children (up-date 2017)Authors: Gonchar, M.O.; Kharkiv National Medical University, Kharkiv, Ukraine, Logvinova, O.L.; Kharkiv Regional Children’s Clinical Hospital, Kharkiv, Ukraine / Kharkiv Regional Children’s Clinical Hospital, Kharkiv, Ukraine
Source: CHILD`S HEALTH; Том 12, № 8 (2017); 914-920; Здоровье ребенка - Zdorovʹe rebenka; Здоров'я дитини - Zdorovʹe rebenka; 2307-1168; 2224-0551
Index Terms: діти, інтерстиціальне захворювання легень, паренхіматозне захворювання легень, діагностика, лікування, дети, интерстициальное заболевание легких, паренхиматозное заболевания легких, диагностика, лечение, children, interstitial lung disease, parenchymal lung disease, diagnosis, treatment, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion