Showing 1 - 20 results of 257 for search '"дифференциальная сканирующая калориметрия"', query time: 0.74s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: The study was funded by the Russian Science Foundation grant No. 22-13-20062, https://rscf.ru/ project/22-13-20062/, and the Volgograd Oblast Administration grant under Agreement No. 2 dated May 31, 2024 using the park of analytical instruments of the Center for Collective Use “Physicochemical Research Methods” of the Volgograd State Technical University., Исследование выполнено за счет гранта Российского научного фонда № 22-13-20062, https://rscf.ru/ project/22-13-20062/ и гранта Администрации Волгоградской области по соглашению № 2 от 31.05.2024 г. с использованием парка аналитических приборов Центра коллективного пользования «Физико-химические методы исследования» Волгоградского государственного технического университета.

    Source: Fine Chemical Technologies; Vol 20, No 2 (2025); 137-145 ; Тонкие химические технологии; Vol 20, No 2 (2025); 137-145 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2236/2112; https://www.finechem-mirea.ru/jour/article/view/2236/2113; Al Rashid A., Ahmed W., Khalid M.Y., Koç M. Vat photopolymerization of polymers and polymer composites: Processes and applications. Addit. Manuf. 2021;47:102279. https://doi.org/10.1016/j.addma.2021.102279; Lalatovic A., Vaniev M.A., Sidorenko N.V., Gres I.M., Dyachenko D.Y., Makedonova Y.A. A review on Vat Photopolymerization 3D-printing processes for dental application. Dent. Mater. 2022;38(11):e284–e296. https://doi.org/10.1016/j.dental.2022.09.005; Caussin E., Moussally C., Le Goff S., Fasham T., Troizier-Cheyne M., Tapie L., François P. Vat photopolymerization 3D printing in dentistry: A comprehensive review of actual popular technologies. Materials. 2024.;17(4):950. https://doi.org/10.3390/ma17040950; Dileep C., Jacob L., Umer R., Butt H. Review of Vat photopolymerization 3D Printing of Photonic Devices. Addit. Manuf. 2024. P. 104189. https://doi.org/10.1016/j.addma.2024.104189; Seo J.W., Kim G.M., Choi Y., Cha J.M., Bae H. Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. Int. J. Mol. Sci. 2022;23(10):5428. https://doi.org/10.3390/ijms23105428; Gastaldi M., Cardano F., Zanetti M., Viscardi G., Barolo C., Bordiga S., Magdassi S., Fin A., Roppolo I. Functional dyes in polymeric 3D printing: applications and perspectives. ACS Mater. Lett. 2021;3(1):1–17. https://doi.org/10.1021/acsmaterialslett.0c00455; Kowsari K., Zhang B., Panjwani S., Chen Z., Hingorani H., Akbari S., Fang N.X., Ge Q. Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Addit. Manuf. 2018;24:627–638. https://doi.org/10.1016/j.addma.2018.10.037; Gong H., Bickham B.P., Woolley A.T., Nordin G.P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip. 2017;17(17):2899–2909. https://doi.org/10.1039/c7lc00644f; Endo A., Yamasaki S., Uno S. Lithographic Printing Plate Precursor and Method of Producing Printing Plate: USA Pat. US 7939240. Publ. 10.05.2011.; Kunita K., Yamasaki S. Planographic Printing Plate Precursor Using a Polymerizable Composition: Pat. EP 3182204. Publ. 21.06.2017.; Bail R., Hong J.Y., Chin B.D. Effect of a red-shifted benzotriazole UV absorber on curing depth and kinetics in visible light initiated photopolymer resins for 3D printing. J.Ind. Eng. Chem. 2016;38:141–145. https://doi.org/10.1016/j.jiec.2016.04.017; Kolb C., Lindemann N., Wolter H., Sextl G. 3D‐printing of highly translucent ORMOCER®‐based resin using light absorber for high dimensional accuracy. J. Appl. Polym. Sci. 2021;138(3):49691. https://doi.org/10.1002/app.49691; Новаков И.А., Брунилин Р.В., Вернигора А.А., Давиденко А.В., Дешевов П.П., Навроцкий М.Б. Способ получения анилов D-камфоры: пат. 2750161 РФ. Заявка № 2020140906; заявл. 11.12.2020; опубл. 22.06.2021.; Chesnokov S.A., Zakharina M.Y., Shaplov A., Lozinskaya E.I., Malyshkina I.A., Abakumov G.A., Vidal F., Vygodskii Y.S. Photopolymerization of Poly (ethylene glycol) dimethacrylates: The influence of ionic liquids on the formulation and the properties of the resultant polymer materials. J.Polym. Sci. Part A: Polym. Chem. 2010;48(11):2388–2409. https://doi.org/10.1002/pola.24008; Буравов Б.А., Аль-Хамзави А., Бочкарев Е.С., Гричишкина Н.Х., Борисов С.В., Сидоренко Н.В., Тужиков О.И., Тужиков О.О. Синтез новых фотоотверждаемых фосфорсодержащих олигоэфирметакрилатов со спейсером в структуре. Тонкие химические технологии. 2022;17(5): 410–426. https://doi.org/10.32362/2410-6593-2022-17-5-410-426; Сидоренко Н.В., Мкртчян Ю.М., Ваниев М.А., Попов Н.И., Вернигора А.А., Давиденко А.В., Салыкин Н.А., Новаков И.А. Использование анилов D-камфоры в качестве УФ-абсорберов фотополимеризующихся композиций для 3D-печати: пат. 2794337 РФ. Заявка № 2022132607A; заявл. 13.12.2022; Опубл. 17.04.2023.; Сивергин Ю.М., Перникис Р.Я., Киреева С.М. Поликарбонат(мет)акрилаты. Рига: Зинатне; 1988. 213 c. ISBN 5-7966-0036-2; Matveeva I.A., Shashkova V.T., Lyubimov A.V., Lyubimova G.V., Koltsova L.S., Shienok A.I., Zaichenko N.L., Levin P.P. Luminescent Properties of Polycarbonate Methacrylates Containing Organic Fluorescent Dyad. Coatings. 2023;13(6):1071. https://doi.org/10.3390/coatings13061071.

  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 9 (2024); 54-62 ; Новые огнеупоры; № 9 (2024); 54-62 ; 1683-4518 ; 10.17073/1683-4518-2024-9

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2200/1790; Ma, Hongqiang. Mechanical and microstructural property evolutions of MgO‒slag cementitious materials under high temperatures / Hongqiang Ma, Xiaoyan Niu, Jingjing Feng // Journal of Building Engineering. ― 2022. ― № 56. ― Article 104756.; Santos Jr., Tiago. Mg(OH)2 nucleation and growth parameters applicable for the development of MgObased refractory castables / Tiago Santos Jr., Ana P. Luz, Carlos Pagliosa, Victor C. Pandolfelli // J. Am. Ceram. Soc. ― 2015. ― № 99. ― P. 461‒469.; Съёмщиков, Н. С. Разработка футеровки сталеразливочных ковшей (обзор опыта работы) / Н. С. Съёмщиков, А. А. Кондрукевич, К. Н. Бельмаз, Я. А. Минаев // Новые огнеупоры. ― 2013. ― № 7. ― С. 3‒8.; Heuer, Claudia. Effect of stabilizer and binder on the phase formation in zirconia castables for application in secondary steel industry / Claudia Heuer, Steffen Dudczig, Christos G. Aneziris [et al.] // Open Ceramics. ― 2023. ― № 16. ― Article 100455.; Бородай, Е. Т. Магнезиальные огнеупорные бетоны на основе щелочных вяжущих с повышенными термомеханическими свойствами / Е. Т. Бородай // Современное промышленное и гражданское строительство. ― 2018. ― Т. 14, № 4. ― С. 201‒207.; Пат. КНР CN111285667. In-situ carbon-containing refractory castable and preparation method thereof; выдан 16.06.2020 г.; Пат. КНР CN113087537. Steel ladle permanent layer castable containing porous balls; выдан 09.07.2021 г.; Пат. Японии JPH0977567. Castable refractory material for molten iron and molten steel vessel; выдан 25.03.1997 г.; Пат. Японии JPH05270929. Углеродсодержащие огнеупоры для заливки; выдан 19.10.1993 г.; Пат. Японии JPH08259340. Magnesia-carbonbased castable refractory; выдан 08.10.1996 г.; Пат. Японии JPH10158072. Magnesia-carbon castable refractory and applied body; выдан 16.06.1998 г.; Кащеев, И. Д. Исследование углеродсодержащих огнеупоров для агрегатов сталеплавильного производства / И. Д. Кащеев, К. Г. Земляной, Э. А. Вислогузова, Л. В. Серова // Новые огнеупоры. ― 2007. ― № 10. ― С. 22‒26. https://doi.org/10.1007/s11148-007-0085-6.; Кащеев, И. Д. Химическая технология огнеупоров : уч. пособие / И. Д. Кащеев, К. К. Стрелов, П. С. Мамыкин. ― М. : Интермет Инжиниринг, 2007. ― 752 с.; Сиваш, В. Г. Плавленый периклаз : уч. пособие / В. Г. Сиваш, В. А. Перепелицын, Н. А. Митюшов. ― М. : Уральский рабочий, 2001. ― 578 с.; Hubbard, C. R. The reference intensity ratio for computer simulated powder patterns / C. R. Hubbard, E. H. Evans, D. K. Smith // J. Appl. Cryst. ― 1976. ― Vol. 169, № 9. ― P. 169‒174.; Peng, Yiming, Investigation of the viscoelastic evolution of reactive magnesia cement pastes with accelerated hydration mechanisms / Yiming Peng, Cise Unluer // Cement and Concrete Composites. ― 2023. ― № 142. ― Article 105191.; Huang, Liming. Influence of calcination temperature on the structure and hydration of MgO / Liming Huang, Zhenghong Yang, Shunfeng Wang // Construction and Building Materials. ― 2020. ― № 262. ― Article 120776.; Sako, E. Y. The impact of pre-formed and in situ spinel formation on the physical properties of cementbonded high alumina refractory castables / E. Y. Sako, M. A. L. Braulio, P. O. Brant, V. C. Pandolfelli // Ceram. Int. ― 2010. ― № 36. ― P. 2079‒2085.; Li, Yawei. Investigation of pore structure and hightemperature fracture behavior of lamellar hydrates bonded alumina-spinel castables / Yawei Li, Wenjing Liu, Ning Liao, Mithun Nath, Shengnian Tie, Xin Liu // J. Eur. Ceram. Soc. ― 2024.; Zhang, Yu. Formation of magnesium silicate hydrate in the Mg(OH)2‒SiO2 suspensions and its influence on the properties of magnesia castables / Yu Zhang, Yawei Li, Yajie Dai // Ceram. Int. ― 2018. ― № 44. ―P. 13654‒21373.; Bernard, E. Formation of magnesium silicate hydrates (M‒S‒H) / E. Bernard, B. Lothenbach, D. Rentsch // Physics and Chemistry of the Earth. Parts A/B/C. ― 2017. ― № 99. ― P. 142‒157.; Li, Zhaoheng. The role of MgO in the thermal behavior of MgO-silica fume pastes / Zhaoheng Li, Qijun Yu, Xiaowen Chen [et. al] // Journal of Thermal Analysis and Calorimetry. ― 2017. ― № 127. ― P.1897‒1909.; Braulio, M. Refractory castable engineering / M. Braulio, V. Pandolfelli. ― Universidade Federal de São Carlos, Brazil, 2015. ― 630 c.; Peng, H. New Insight on developing MgO‒SiO2‒ H2O gel bonded MgO castables / H. Peng, B. Myhre // Refractories worldforum. ― 2014. ― № 6. ― P. 83‒88.; https://newogneup.elpub.ru/jour/article/view/2200

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20