Showing 1 - 20 results of 112 for search '"демиелинизация"', query time: 0.85s Refine Results
  1. 1
    Academic Journal

    Contributors: The authors declare no funding for this study, Авторы заявляют об отсутствии финансирования при проведении исследования

    Source: The Russian Archives of Internal Medicine; Том 15, № 4 (2025); 310-320 ; Архивъ внутренней медицины; Том 15, № 4 (2025); 310-320 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/2049/1434; https://www.medarhive.ru/jour/article/view/2049/1442; Sejvar J.J., Baughman A.L., Wise M., et al. Population incidence of Guillain-Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology. 2011; 36(2): 123-33. doi:10.1159/000324710. Epub 2011 Mar 21. PMID: 21422765; PMCID: PMC5703046.; Leonhard S.E., Mandarakas M.R., Gondim F.A.A., et al. Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat Rev Neurol. 2019 Nov; 15(11): 671-683. doi:10.1038/s41582-019-0250-9. Epub 2019 Sep 20. PMID: 31541214; PMCID: PMC6821638.; Hadden R.D., Cornblath D.R., Hughes R.A., et al. Electrophysiological classification of Guillain-Barré syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin GuillainBarré Syndrome Trial Group. Ann Neurol. 1998 Nov; 44(5): 780-8. doi:10.1002/ana.410440512. PMID: 9818934.; Shahrizaila N., Lehmann H.C., Kuwabara S. Guillain-Barré syndrome. Lancet. 2021 Mar 27; 397(10280): 1214-1228. doi:10.1016/S0140-6736(21)00517-1. Epub 2021 Feb 26. PMID: 33647239.; Van den Berg B., Walgaard C., Drenthen J., et al. Guillain-Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014 Aug; 10(8): 469-82. doi:10.1038/nrneurol.2014.121. Epub 2014 Jul 15. PMID: 25023340.; Ситкали И.В., Колоколов О.В. Синдром Гийена-Барре как междисциплинарная проблема. Лечащий врач. 2019; 11: 48–55. DOI:10.26295/OS.2019.59.53.012; Ruts L., Drenthen J., Jongen J.L., et al. Pain in Guillain-Barre syndrome: a long-term follow-up study. Neurology. 2010 Oct 19; 75(16): 1439-47. doi:10.1212/WNL.0b013e3181f88345. Epub 2010 Sep 22. PMID: 20861454.; Hiew F.L., Rajabally Y.A. Malignancy in Guillain-Barré syndrome: A twelve-year single-center study. J Neurol Sci. 2017 Apr 15; 375: 275- 278. doi:10.1016/j.jns.2017.02.024. Epub 2017 Feb 9. PMID: 28320147.; Mason J.W., O’Connell J.B., Herskowitz A., et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med. 1995 Aug 3; 333(5): 269-75. doi:10.1056/NEJM199508033330501. PMID: 7596370.; Dourado M.E., Félix R.H., da Silva W.K., et al. Clinical characteristics of Guillain-Barré syndrome in a tropical country: a Brazilian experience. Acta Neurol Scand. 2012 Jan; 125(1): 47-53. doi:10.1111/j.1600-0404.2011.01503.x. Epub 2011 Mar 24. PMID: 21428966.; Fokke C., van den Berg B., Drenthen J., et al. Diagnosis of Guillain-Barré syndrome and validation of Brighton criteria. Brain. 2014 Jan; 137(Pt 1): 33-43. doi:10.1093/brain/awt285. Epub 2013 Oct 26. PMID: 24163275.; Пирадов М.А. Супонева Н.А. Шнайдер Н.А. и др. Синдром Гийена-Барре. Клинические рекомендации. 2016. [Электронный ресурс]. https://medi.ru/klinicheskie-rekomendatsii/sindrom-gijenabarre-u-vzroslykh_14274/ (дата обращения: 12.03.2025); Кутепов Д.Е., Литвинов Н.И. Синдром Гийена-Барре. Казанский медицинский журнал. 2015; 96(6): 1027-1034. DOI:10.17750/KMJ2015-1027; Van den Bergh P.Y.K., Piéret F., Woodard J.L., et al. Guillain-BarrÉ syndrome subtype diagnosis: A prospective multicentric European study. Muscle Nerve. 2018; 58(1): 23-28. DOI:10.1002/mus.26056.; Hopkins S.E., Elrick M.J., Messacar K. Acute Flaccid Myelitis-Keys to Diagnosis, Questions About Treatment, and Future Directions. JAMA Pediatr. 2019 Feb 1; 173(2): 117-118. doi:10.1001/jamapediatrics.2018.4896. PMID: 30500054.; Nerabani Y., Atli A.A., Hamdan O., et al. Guillain-Barré syndrome following varicella-zoster virus infection: a case report and systematic review. Ann Med Surg (Lond). 2023 Oct 4; 85(11): 5621-5628. doi:10.1097/MS9.0000000000001370. PMID: 37915710; PMCID: PMC10617928.; Bhatt M., Gupta N., Soneja M., et al. Infective Endocarditis Following Chicken Pox: A Rare Association. Kurume Med J. 2021 Jul 21; 66(2): 127-133. doi:10.2739/kurumemedj.MS662004. Epub 2021 Jun 18. PMID: 34135199.; Celik T., Iyisoy A., Celik M., et al. A case of Guillain-Barré syndrome following prosthetic valve endocarditis. Int J Cardiol. 2009 Mar 20; 133(1): 102-4; author reply 104-5. doi:10.1016/j.ijcard.2007.07.065. Epub 2007 Oct 17. PMID: 17942174.; https://www.medarhive.ru/jour/article/view/2049

  2. 2
    Academic Journal

    Contributors: This research was performed under the state assignment of Moscow State University, project number АААА-А19-119031390114-5.

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 2 (2024); 87-101 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 2 (2024); 87-101 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1367/668; Walton C., King R., Rechtman L., Kaye W., Leray E., Marrie R. A., Robertson N, La Rocca N., Uitdehaag B., van der Mei I., Wallin M., Helme A., Angood Napier C., Rijke N., Baneke P. Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS. Mult. Scler. J. 2020;26(14):1816–1821.; Dobson R., Giovannoni G. Multiple sclerosis – a review. Eur. J. Neurol. 2019;26(1):27–40.; Axthelm M.K., Bourdette D.N., Marracci G.H., Su W., Mullaney E.T., Manoharan M., Kohama S.G., Pollaro J., Witkowski E., Wang P., Rooney W.D., Sherman L.S., Wong S.W. Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate. Ann. Neurol. 2011;70(3):362–373.; Hedström A.K., Hössjer O., Katsoulis M., Kockum I., Olsson T., Alfredsson L. Organic solvents and MS susceptibility. Interaction with MS risk HLA genes. Neurology. 2018;91(5):e455–e462.; Баринский И.Ф., Гребенникова Т.В., Альховский С.В., Кочергин-Никитский К.С., Сергеев О.В., Грибенча С.В., Раев С.А. Молекулярно-генетическая характеристика вируса, выделенного от больных острым энцефаломиелитом человека и множественным склерозом. Вопросы вирусологии. 2015;60(4):14–18.; Buljevac D., Flach H.Z., Hop W.C., Hijdra D., Laman J.D., Savelkoul H.F., van Der Meche F.G., van Doorn P.A., Hintzen R.Q. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain. 2002;125(Pt. 5):952–960.; Kriesel J.D., White A., Hayden F.G., Spruance S.L., Petajan J. Multiple sclerosis attacks are associated with picornavirus infections. Mult. Scler. 2004;10(2):145–148.; Cossu D., Yokoyama K., Hattori N. Bacteria-host interactions in multiple sclerosis. Front. Microbiol. 2018;9:2966.; Bjornevik K., Cortese M., Healy, B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.; Handel A.E., Handunnetthi L., Ebers G.C. Ramagopalan S.V. Type 1 diabetes mellitus and multiple sclerosis: common etiological features. Nat. Rev. Endocrinol. 2009;5(12):655–664.; Nielsen N.M., Westergaard T., Frisch M., Rostgaard K., Wohlfahrt J., Koch-Henriksen N., Melbye M., Hjalgrim H. Type 1 diabetes and multiple sclerosis: A Danish population-based cohort study. Arch. Neurol. 2006;63(7):1001–1004.; Bechtold S., Blaschek A., Raile K., Dost A., Freiberg C., Askenas M., Fröhlich-Reiterer E., Molz E., Holl R.W. Higher relative risk for multiple sclerosis in a pediatric and adolescent diabetic population: analysis from DPV database. Diabetes Care. 2014;37(1):96–101.; Magyari M., Sorensen P.S. Comorbidity in multiple sclerosis. Front. Neurol. 2020;11:851.; Лапштаева А.В., Абросимова Ю.Г., Еремкина Т.Я., Костина Ю.A. Микробные агенты как триггеры развития рассеянного склероза. Инфекция и иммунитет. 2021;11(6):1050–1056.; Conway S.E., Healy B.C., Zurawski J., Severson C., Kaplan T., Stazzone L., Galetta K., Chitnis T., Houtchens M.K. COVID-19 severity is associated with worsened neurological outcomes in multiple sclerosis and related disorders. Mult. Scler. Relat. Dis. 2022;63:103946.; Najjar S., Najjar A., Chong D.J., Pramanik B.K., Kirsch C., Kuzniecky R.I., Pacia S.V., Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J. Neuroinflamm. 2020;17(1):231.; Sormani M.P., Schiavetti I., Carmisciano L. et al. COVID-19 severity in multiple sclerosis: putting data into context. Neurol. Neuroimmunol. Neuroinflamm. 2021;9(1):e1105.; Michelena G., Casas M., Eizaguirre M.B., Pita M.C., Cohen L., Alonso R., Garcea O., Silva B.A. ¿ Can COVID-19 exacerbate multiple sclerosis symptoms? A case series analysis. Mult. Scler. Relat. Dis. 2022;57:103368.; Lima M., Aloizou A.M., Siokas V., Bakirtzis C., Liampas I., Tsouris Z., Bogdanos D.P., Baloyannis S.J. Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev. Neurosci. 2022;33(7):703–720.; Ximeno-Rodríguez I., Blanco-delRío I., Astigarraga E., Barreda-Gómez G. Acquired immune deficiency syndrome correlation with SARS-CoV-2 N genotypes. Biomed. J. 2023;100650. https://doi.org/10.1016/j.bj.2023.100650.; Bauer L., Laksono B.M., de Vrij F.M.S., Kushner S.A., Harschnitz O., van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45(5):358–368.; Stoiloudis P., Kesidou E., Bakirtzis C., Sintila S-A., Konstantinidou N., Boziki M., Grigoriadis N. The role of diet and interventions on multiple sclerosis: a review. Nutrients. 2022; 14(6):1150.; Tarlinton R.E., Khaibullin T., Granatov E., Martynova E., Rizvanov A., Khaiboullina S. The interaction between viral and environmental risk factors in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci. 2019;20(2):303.; Fazia T., Baldrighi G.N., Nova A., Bernardinelli L. A systematic review of Mendelian randomization studies on multiple sclerosis. Eur. J. Neurosci., 2023;58(4):3172–3194.; Dhaiban S., Al-Ani M., Elemam N.M., AlAawad M.H., Al-Rawi Z., Maghazachi A.A. Role of peripheral immune cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Science. 2021;3(1):12.; Theodosis-Nobelos P., Rekka E.A. Efforts towards repurposing of antioxidant drugs and active compounds for multiple sclerosis control. Neurochem. Res. 2023;48(3):725–744.; Nozari E., Ghavamzadeh S., Razazian N. The effect of vitamin B12 and folic acid supplementation on serum homocysteine, anemia status and quality of life of patients with multiple sclerosis. Clin. Nutr. Res. 2019;8(1):36–45.; Magyari M., Koch-Henriksen N. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2022;93(7):716–722.; Salpietro V., Polizzi A., Recca G., Ruggieri M. The role of puberty and adolescence in the pathobiology of pediatric multiple sclerosis. Mult. Scler. Demyelinating Disord. 2018;3:2.; Ostolaza A., Corroza J., Ayuso T. Multiple sclerosis and aging): comorbidity and treatment challenges. Mult. Scler. Relat. Disord. 2021;50:102815.; Zhang Y., Atkinson J., Burd C.E., Graves J., Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023;29(14):1701–1708.; Lotti C.B.D.C., Oliveira A.S.B., Bichuetti D.B., Castro I.D., Oliveira E.M.L. Late onset multiple sclerosis: concerns in aging patients. Arq. Neuropsiquiatr. 2017;75(7):451–456.; Noseworthy J., Paty D., Wonnacott T., Feasby T., Ebers G. Multiple sclerosis after age 50. Neurology. 1983;33(12):1537–1537.; Zeydan B., Kantarci O.H. Impact of age on multiple sclerosis disease activity and progression. Curr. Neurol. Neurosci. Rep. 2020;20(7):24.; Marrie R.A., Cohen J., Stuve O., Trojano M., Sørensen P.S., Reingold S., Cutter G., Reider N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 2015;21(3):263–281.; Branco M., Ruano L., Portaccio E., Goretti B., Niccolai C., Patti F., Chisari C., Gallo P., Grossi P., Ghezzi A., Roscio M., Mattioli F., Bellomi F., Simone M., Gemma R., Amato M.P. Aging with multiple sclerosis: prevalence and profile of cognitive impairment. Neurol. Sci. 2019;40(8):1651–1657.; Jakimovski D., Weinstock-Guttman B., Roy S., Jaworski III M., Hancock L., Nizinski A., Srinivasan P., Fuchs T.A., Szigeti K., Zivadinov R., Benedict R.H. Cognitive profiles of aging in multiple sclerosis. Front. Aging Neurosci. 2019;11:105.; Boyko A., Melnikov M. Prevalence and incidence of multiple sclerosis in Russian Federation: 30 years of studies. Brain Sci. 2020;10(5):305.; Fetisova E., Chernyak B., Korshunova G., Muntyan M., Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017;24(19):2086–2114.; Морозов С.П., Владзимирский А.В., Черняева Г.Н., Бажин А.В., Пимкин А.А., Беляев М.Г., Кляшторный В.Г., Горшкова Т.Н., Курочкина Н.С., Якушева С.Ф. Валидация диагностической точности алгоритма «искусственного интеллекта» для выявления рассеянного склероза в условиях городской поликлиники. Лучевая диагностика и терапия. 2020;11(2):58–65.; Kiselev I., Bashinskaya V., Baulina N., Kozin M., Popova E., Boyko A., Favorova O., Kulakova O. Genetic differences between primary progressive and relapsingremitting multiple sclerosis: the impact of immune-related genes variability. Mult. Scler. Relat. Dis. 2019;29:130–136.; Kiselev I.S., Kulakova O.G., Baulina N.M., Bashinskaya V.V., Popova E.V., Boyko A.N., Favorova O.O. Variability of the MIR196A2 gene as a risk factor in primary-progressive multiple sclerosis development. Mol. Biol. 2019;53(2):249–255.; International Multiple Sclerosis Genetics Consortium. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat. Commun. 2019;10:2236.; Patsopoulos N.A. Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harb. Perspect. Med. 2018;8(7):a028951.; Ransohoff R.M., Hafler D.A., Lucchinetti C.F. Multiple sclerosis – a quiet revolution. Nat. Rev. Neurol. 2015;11(3):134–142.; Pytel V., Matías-Guiu J.A., Torre-Fuentes L., Montero P., Gómez-Graña Á., García-Ramos R., Moreno-Ramos T., Oreja-Guevara C., Fernández-Arquero M., Gómez-Pinedo U., Matías-Guiu J. Familial multiple sclerosis and association with other autoimmune diseases. Brain Behav. 2017;8(1):e00899.; Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Wolinsky J.S., Balcer L.J., Banwell B., Barkhof F., Bebo B. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286.; Govindhan E., Pavithra J., Yuvaraj K., Muralidharan P. A comprehensive review on multiple sclerosis: it’s etiology, symptoms, epidemiology and current therapeutic approaches. Int. J. Sci. Res. Arch. 2023;8(2):462–474.; Hendriks J.J., Teunissen C.E., de Vries H.E., Dijkstra C.D. Macrophages and neurodegeneration. Brain Res. Rev. 2005;48(2):185–195.; Zheng C., Chen J., Chu F., Zhu J., Jin T. Inflammatory role of TLR-MyD88 signaling in multiple sclerosis. Front. Mol. Neurosci. 2020;12:314.; Van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. BBA-Mol. Basis Dis. 2011;1812(2):141–150.; Friese M.A., Schattling B., Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014;10(4):225–238.; Scalfari A., Neuhaus A., Daumer M., Muraro P.A., Ebers G.C. Onset of secondary progressive phase and longterm evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2014;85(1):67–75.; Goodin D.S. The epidemiology of multiple sclerosis: insights to a causal cascade. Handbook of clinical neurology. Eds. M.J. Aminoff, F. Boller, and D.F. Swaab. Elsevier; 2016;138:173–206.; Dong Y., Yong V.W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 2019;15(12):704–717.; Guerrero B.L., Sicotte N.L. Microglia in multiple sclerosis: friend or foe? Front. Immunol. 2020;11:374.; Inoue M., Shinohara M.L. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis. 2013;2013:859145.; Shao S., Chen C., Shi G., Zhou Y., Wei Y., Fan N., Yang Y., Wu L., Zhang T. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol. Therapeut. 2021;227:107880.; Bulua A.C., Simon A., Maddipati R., Pelletier M., Park H., Kim K.Y., Sack M.N., Kastner D.L., Siegel R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1- associated periodic syndrome (TRAPS). J. Exp. Med. 2011;208(3):519–533.; Gris D., Ye Z., Iocca H.A., Wen H., Craven R.R., Gris P., Huang M., Schneider M., Miller S.D., Ting J.P. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 2010;185(2):974–981.; Abais J.M., Xia M., Zhang Y., Boini K.M., Li P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Sign. 2015;22(13):1111–1129.; Chen Y., Ye X., Escames G., Lei W., Zhang X., Li M., Jing T., Yao Y., Qiu Z., Wang Z., Acuña-Castroviejo D., Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol. Biol. Lett. 2023;28(1):51.; Wolburg H., Neuhaus J., Kniesel U., Krauß B., Schmid E.M., Ocalan M., Farrell C., Risau W. Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 1994;107(5):1347–1357.; Owens T., Bechmann I., Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropath. Exp. Neur. 2008;67(12):1113–1121.; Ortiz G.G., Pacheco-Moisés F.P., Macías-Islas M.Á., Flores-Alvarado L.J., Mireles-Ramírez M.A., González-Renovato E.D., Hernández-Navarro V.E., Sánchez-López A.L., Alatorre-Jiménez M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 2014;45(8):687–697.; Zinovkin R.A., Romaschenko V.P., Galkin I.I., Zakharova V.V., Pletjushkina O.Y., Chernyak B.V., Popova E.N. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging (Albany N.Y.). 2014;6(8):661.; Zakharova V.V., Pletjushkina O.Y., Galkin I.I., Zinovkin R.A., Chernyak B.V., Krysko D.V., Skulachev V.P., Popova E.N. Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. BBA-Mol. Basis Dis. 2017;1863(4):968–977.; Sanabria-Castro A., Alape-Girón A., FloresDíaz M., Echeverri-McCandless A., Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev. Neurosci. 2024;35(3):355–371.; Calkins M.J., Johnson D.A., Townsend J.A., Vargas M.R., Dowell J.A., Williamson T.P., Kraft A.D., Lee J.M., Li J., Johnson J.A. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Sign. 2009;11(3):497–508.; Kharel P., McDonough J., Basu S. Evidence of extensive RNA oxidation in normal appearing cortex of multiple sclerosis brain. Neurochem. Int. 2016;92:43–48.; Tully M., Shi R. New insights in the pathogenesis of multiple sclerosis – role of acrolein in neuronal and myelin damage. Int. J. Mol. Sci. 2013;14(10):20037–20047.; Zhang J., Sturla S., Lacroix C., Schwab C. Gut microbial glycerol metabolism as an endogenous acrolein source. mBio. 2018;9(1):e01947-17.; Nonneman A., Robberecht W., Van Den Bosch L.V. The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegen. Dis. Manag. 2014;4(3):223–239.; van Horssen J., Schreibelt G., Drexhage J., Hazes T., Dijkstra C.D., van der Valk P., de Vries H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical. Biol. Med. 2008;45(12):1729–1737.; Spaas J., van Veggel L., Schepers M., Tiane A., van Horssen J., Wilson D.M. 3rd, Moya P.R., Piccart E., Hellings N., Eijnde B.O., Derave W., Schreiber R., Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol. Life Sci. 2021;78(10):4615–4637.; Witte M.E., Geurts J.J., de Vries H.E., van der Valk P., van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10(5):411–418.; Padureanu R., Albu C.V., Mititelu R.R., Bacanoiu M.V., Docea A.O., Calina D., Padureanu V., Olaru G., Sandu R.E., Malin R.D., Buga A.M. Oxidative stress and inflammation interdependence in multiple sclerosis. J. Clin. Med. 2019;8(11):1815.; Michaličková D., Šíma M., Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol. Res. 2020;69(1):1–19.; Ragupathy H., Vukku M., Barodia S.K. Cell-typespecific mitochondrial quality control in the brain: a plausible mechanism of neurodegeneration. Int. J. Mol. Sci. 2023;24(19):14421.; Petersen R.C., Thomas R.G., Grundman M., Bennett D., Doody R., Ferris S., Galasko D., Jin S., Kaye J., Levey A., Pfeiffer E., Sano M., van Dyck C.H., Thal L.J., Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 2005;352(23):2379–2388.; Kamat C.D., Gadal S., Mhatre M., Williamson K.S., Pye Q.N., Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J. Alzheimers Dis. 2008;15(3):473–493.; Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012;2012(3):CD007176.; Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008;73(12):1273–1287.; Fetisova E.K., Muntyan M.S., Lyamzaev K.G., Chernyak B.V. Therapeutic effect of the mitochondriatargeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell. Longev. 2019;2019:2082561.; Fock E.M., Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 2021;13(2):144.; Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.

  3. 3
    Academic Journal

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 15 (2023): (Suppl. 1); 35-42 ; Неврология, нейропсихиатрия, психосоматика; Vol 15 (2023): (Suppl. 1); 35-42 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-0

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2077/1573; Bennett J, Costello F, Chen J, et al. Optic neuritis and autoimmune optic neuropathies: advances in diagnosis and treatment. Lancet Neurol. 2023 Jan;22(1):89-100. doi:10.1016/S1474-4422(22)00187-9; Jenkins TM, Toosy AT. Optic neuritis: the eye as a window to the brain. Curr Opin Neurol. 2017 Feb;30(1):61-6. doi:10.1097/WCO.0000000000000414; Gaier ED, Boudreault K, Rizzo JF 3rd, et al. Atypical Optic Neuritis. Curr Neurol Neurosci Rep. 2015 Dec;15(12):76. doi:10.1007/s11910-015-0598-1; McGinley P, Goldschmidt, C, Rae-Grant A. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA. 2021 Feb 23;325(8):765-79. doi:10.1001/jama.2020.26858; Zhang Y, Qiu W, Guan H, et al. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front Neurol. 2022 Mar 2;13:844155. doi:10.3389/fneur.2022.844155; Foo R, Yau C, Singhal S, et al. Optic Neuritis in the Era of NMOSD and MOGAD: A Survey of Practice Patterns in Singapore. Asia Pac J Ophthalmol (Phila). 2022 Mar-Apr 01;11(2):184-95. doi:10.1097/APO.0000000000000513; Lennon V, Wingerchuk D, Kryzer T, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004 Dec 11-17;364(9451):2106-12. doi:10.1016/S0140-6736(04)17551-X; Lennon V, Kryzer T, Pittock S, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202:473-7. doi:10.1084/jem.20050304; Häusser-Kinzel S, Weber M. The Role of B Cells and Antibodies in Multiple Sclerosis, Neuromyelitis Optica, and Related Disorders. Front Immunol. 2019 Feb 8;10:201. doi:10.3389/fimmu.2019.00201; Jacob A, McKeon I, Nakashima, D, et al. Current concept of neuromyelitis optica (NMO) and NMO spectrum disorders. J Neurol Neurosurg Psychiatry. 2013 Aug;84(8):922-30. doi:10.1136/jnnp-2012-302310; Wingerchuk D, Banwell B, Bennett J, et al. International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015 Jul 14;85(2):177-89. doi:10.1212/WNL.0000000000001729; Hamid S, Whittam D, Mutch K, et al. What proportion of AQP4-IgG-negative NMO spectrum disorder patients are MOG-IgG positive? A cross sectional study of 132 patients. J Neurol. 2017 Oct;264(10):2088-94. doi:10.1007/s00415-017-8596-7; Flanagan B. Neuromyelitis optica spectrum disorder and other non-multiple sclerosis central nervous system inflammatory diseases. Contin Lifelong Learn Neurol. 2019;25:815-44. doi:10.1212/CON.0000000000000742; Pröbstel A, Rudolf G, Dornmair K, et al. Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype. J Neuroinflammation. 2015;12:46. doi:10.1186/s12974-015-0256-1; Sato DK, Callegaro D, Lana-Peixoto MA, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014 Feb 11;82(6):474-81. doi:10.1212/WNL.0000000000000101. Epub 2014 Jan 10.; Peschl P, Schanda K, Zeka B, et al. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. J Neuroinflammation. 2017 Oct 25;14(1):208. doi:10.1186/s12974-017-0984-5; Waters P, Fadda G, Woodhall M, et al. Canadian Pediatric Demyelinating Disease Network. Serial Anti-Myelin Oligodendrocyte Glycoprotein Antibody Analyses and Outcomes in Children With Demyelinating Syndromes. JAMA Neurol. 2020 Jan 1;77(1):82-93. doi:10.1001/jamaneurol.2019.2940; Jarius S, Metz I, Konig F, et al. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in 'pattern II multiple sclerosis' and brain biopsy findings in a MOG-IgG-positive case. Mult Scler. 2016 Oct;22(12):1541-9. doi:10.1177/1352458515622986; Sechi E, Cacciaguerra L, Chen J, et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front Neurol. 2022 Jun 17;13:885218. doi:10.3389/fneur.2022.885218; Wildemann B, Horstmann S, Korporal-Kuhnke M, et al. Aquaporin-4-und Myelin-Oligodendrozyten-Glykoprotein-Antikörper-assoziierte Optikusneuritis: Diagnose und Therapie [Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis: Diagnosis and Treatment]. Klin Monbl Augenheilkd. 2020 Nov;237(11):1290-305. doi:10.1055/a-1219-7907 (In Germ.)].; Tanaka S, Hashimoto B, Izaki S, et al. Clinical and immunological differences between MOG associated disease and anti AQP4 antibody- positive neuromyelitis optica spectrum disorders: Blood-brain barrier breakdown and peripheral plasmablasts. Mult Scler Relat Disord. 2020 Jun;41:102005. doi:10.1016/j.msard.2020.102005; Akaishi T, Takahashi T, Misu T, et al. Difference in the Source of Anti-AQP4-IgG and Anti-MOG-IgG Antibodies in CSF in Patients With Neuromyelitis Optica Spectrum Disorder. Neurology. 2021 Jul 6;97(1):e1-e12. doi:10.1212/WNL.0000000000012175; Beck R, Cleary P, Backlund J, et al. The course of visual recovery after optic neuritis. Experience of the Optic Neuritis Treatment Trial. Ophthalmology. 1994 Nov;101(11):1771-8. doi:10.1016/s0161-6420(94)31103-1; Llufriu S, Castillo J, Blanco Y, et al. Plasma exchange for acute attacks of CNS demyelination: Predictors of improvement at 6 months. Neurology. 2009 Sep 22;73(12):949-53. doi:10.1212/WNL.0b013e3181b879be; Roesner S, Appel R, Gbadamosi J, et al. Treatment of steroid-unresponsive optic neuritis with plasma exchange. Acta Neurol Scand. 2012 Aug;126(2):103-8. doi:10.1111/j.1600-0404.2011.01612.x. Epub 2011 Nov 2.; Banwell B, Bennett J, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol. 2023 Mar;22(3):268-82. doi:10.1016/S1474-4422(22)00431-8; Jurynczyk M, Messina S, Woodhall R, et al. Clinical presentation and prognosis in MOGantibody disease: a UK study. Brain. 2017 Dec 1;140(12):3128-38. doi:10.1093/brain/awx276. Erratum in: Brain. 2018 Apr 1;141(4):e31.; Kurane K, Monden Y, Tanaka D, et al. MOG-Ab titer-guided approach for steroid tapering to prevent relapse in children with mog antibody-associated adem diseases: A case report. Mult Scler Relat Disord. 2020 Oct;45:102320. doi:10.1016/j.msard.2020.102320; Deneve M, Biotti D, Patsoura S, et al. MRI features of demyelinating disease associated with anti-MOG antibodies in adults. J Neuroradiol. 2019 Sep;46(5):312-8. doi:10.1016/j.neurad.2019.06.001. Epub 2019 Jun 20.; Salama S, Khan M, Shanechi A, et al. MRI differences between MOG antibody disease and AQP4 NMOSD. Mult Scler. 2020 Dec;26(14):1854-65. doi:10.1177/1352458519893093. Epub 2020 Jan 15.; Havla J, Pakeerathan T, Schwake C, et al. Age-dependent favorable visual recovery despite significant retinal atrophy in pediatric MOGAD: how much retina do you really need to see well? J Neuroinflammation. 2021 May 29;18(1):121. doi:10.1186/s12974-021-02160-9; Dutra B, da Rocha A, Nunes R, et al. Neuromyelitis Optica Spectrum Disorders: Spectrum of MR Imaging Findings and Their Differential Diagnosis. Radiographics. 2018 Jan-Feb;38(1):169-93. doi:10.1148/rg.2018170141; Carandini T, Sacchi L, Bovis F, et al. Distinct patterns of MRI lesions in MOG antibody disease and AQP4 NMOSD: a systematic review and meta-analysis. Mult Scler Relat Disord. 2021 Sep;54:103118. doi:10.1016/j.msard.2021.103118; Filippatou A, Mukharesh L, Saidha S, et al. AQP4-IgG and MOG-IgG Related Optic Neuritis-Prevalence, Optical Coherence Tomography Findings, and Visual Outcomes: A Systematic Review and Meta-Analysis. Front Neurol. 2020 Oct 8;11:540156. doi:10.3389/fneur.2020.540156; Sotirchos E, Filippatou A, Fitzgerald K, et al. Aquaporin-4 IgG seropositivity is associated with worse visual outcomes after optic neuritis than MOG-IgG seropositivity and multiple sclerosis, independent of macular ganglion cell layer thinning. Mult Scler. 2020 Oct;26(11):1360-71. doi:10.1177/1352458519864928; Akaishi T, Takahashi T, Fujihara K, et al. Impact of comorbid Sjögren syndrome in anti-aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. J Neurol. 2021 May;268(5):1938-44. doi:10.1007/s00415-020-10377-6; Wang X, Shi Z, Zhao Z, et al. The causal relationship between neuromyelitis optica spectrum disorder and other autoimmune diseases. Front Immunol. 2022 Sep29;13:959469. doi:10.3389/fimmu.2022.959469

  4. 4
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 21 (2023); 122-127 ; Медицинский Совет; № 21 (2023); 122-127 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7938/7050; Исламов РР, Ризванов АА, Гусева ДС, Киясов АП. Генная и клеточная терапия нейродегенеративных заболеваний. Гены и клетки. 2007;2(3):29–37. Режим доступа: https://genescells.ru/2313-1829/article/view/122372.; Ткачук ЕА, Семинский ИЖ. Роль генетики в современной медицине. Байкальский медицинский журнал. 2022;1(1):81–88. https://doi.org/10.57256/2949-0715-2022-1-81-88.; Федосеева ИФ, Попонникова ТВ, Галиева ГЮ, Мошнегуц СВ. Клинический случай редкого нейродегенеративного заболевания с накоплением железа в мозге, тип 4, у ребенка 15 лет. Российский вестник перинатологии и педиатрии. 2019;64(5):109–113. https://doi.org/10.21508/1027-4065-2019-64-5-109-113.; Осадчая ИВ, Дежкина СА. Нарушение интеллектуального развития у детей дошкольного и младшего школьного возраста. Проблемы современного педагогического образования. 2020;67(2):121–125. Режим доступа: https://gpa.cfuv.ru/attachments/article/4601/Выпуск%2067%20часть%202,%202020%20год.pdf.; Levi S, Tiranti V. Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel). 2019;12(1):27. https://doi.org/10.3390/ph12010027.; Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017;136(11-12):1419–1429. https://doi.org/10.1007/s00439-017-1843-2.; Kita K, Oya H, Gennis RB, Ackrell BA, Kasahara M. Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of iron sulfur (Ip) subunit of liver mitochondria. Biochem Biophys Res Commun. 1990;166(1):101–108. https://doi.org/10.1016/0006-291x(90)91916-g.; Leckschat S, Ream-Robinson D, Scheffler IE. The gene for the iron sulfur protein of succinate dehydrogenase (SDH-IP) maps to human chromosome 1p35-36.1. Somat Cell Mol Genet. 1993;19(5):505–511. https://doi.org/10.1007/BF01233256.; Mascarello JT, Soderberg K, Scheffler IE. Assignment of a gene for succinate dehydrogenase to human chromosome 1 by somatic cell hybridization. Cytogenet Cell Genet. 1980;28(1-2):121–135. https://doi.org/10.1159/000131520.; Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14(15):2231–2239. https://doi.org/10.1093/hmg/ddi227.; Oostveen FG, Au HC, Meijer PJ, Scheffler IE. A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J Biol Chem. 1995;270(44):26104–26108. https://doi.org/10.1074/jbc.270.44.26104.; Голубев РВ, Смирнов АВ. Расширение представлений о механизмах действия сукцинатсодержащих диализирующих растворов. Нефрология. 2017;21(1):19–24. https://doi.org/10.24884/1561-6274-2017-21-1-19-24.; Young AL, Baysal BE, Deb A, Young WF Jr. Familial malignant catecholamine-secreting paraganglioma with prolonged survival associated with mutation in the succinate dehydrogenase B gene. J Clin Endocrinol Metab. 2002;87(9):4101–4105. https://doi.org/10.1210/jc.2002-020312.; Бельских ЭС, Урясьев ОМ, Звягина ВИ, Фалетрова СВ. Сукцинат и сукцинатдегидрогеназа моно-ядерных лейкоцитов крови как маркеры адаптации митохондрий к гипоксии у больных при обострении хронической обструктивной болезни легких. Российский медико-биологический вестник им. академика И.П. Павлова. 2020;28(1):13–20. https://doi.org/10.23888/PAVLOVJ202028113-20.; Валеев ВВ, Коваленко АЛ, Таликова ЕВ, Заплутанов ВА, Дельвиг-Каменская ТЮ. Биологические функции сукцината (обзор зарубежных экспериментальных исследований). Антибиотики и химиотерапия. 2015;60(9-10):33–37. Режим доступа: https://www.antibiotics-chemotherapy.ru/jour/article/view/620.; Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell. 2004;119(2):257–272. https://doi.org/10.1016/j.cell.2004.10.004.; Smigiel R, Sherman DL, Rydzanicz M, Walczak A, Mikolajkow D, Krolak-Olejnik B et al. Homozygous mutation in the Neurofascin gene affecting the glial isoform of Neurofascin causes severe neurodevelopment disorder with hypotonia, amimia and areflexia. Hum Mol Genet. 2018;27(21):3669–3674. https://doi.org/10.1093/hmg/ddy277.; Monfrini E, Straniero L, Bonato S, Monzio Compagnoni G, Bordoni A, Dilena R et al. Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy. Parkinsonism Relat Disord. 2019;63:66–72. https://doi.org/10.1016/j.parkreldis.2019.02.045.; Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 2002;34(4):521–533. https://doi.org/10.1016/s0896-6273(02)00682-7.; Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006;116(8):2290–2296. https://doi.org/10.1172/JCI25424.; Brun AC, Fan X, Björnsson JM, Humphries RK, Karlsson S. Enforced adenoviral vector-mediated expression of HOXB4 in human umbilical cord blood CD34+ cells promotes myeloid differentiation but not proliferation. Mol Ther. 2003;8(4):618–628. https://doi.org/10.1016/s1525-0016(03)00237-5.; Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A et al. Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 1998;5(5):277–286. https://doi.org/10.1093/dnares/5.5.277.; Ткачук ЕА, Семинский ИЖ. Методы современной генетики. Байкальский медицинский журнал. 2023;2(1):60–71. https://doi.org/10.57256/2949-0715-2023-1-60-71.; Смирнихина СА, Лавров АВ. Генная терапия наследственных заболеваний с использованием технологии CRISPR/Cas9 in vivo. Медицинская генетика. 2016;15(9):3–11. Режим доступа: https://www.medgen-journal.ru/jour/article/view/167.; Айтбаев КА, Муркамилов ИТ, Муркамилова ЖА, Юсупов ФА. Генная терапия болезней человека: последние достижения и ближайшие перспективы развития. Архивъ внутренней медицины. 2022;12(5):363–369. https://doi.org/10.20514/2226-6704-2022-12-5-363-369.; Безбородова ОА, Немцова ЕР, Кармакова ТА, Венедиктова ЮБ, Панкратов АА, Алексеенко ИВ и др. Современные тенденции развития противоопухолевой генной и клеточной терапии. Research’n Practical Medicine Journal. 2019;6(S):65–66. Режим доступа: https://elibrary.ru/wvqjbo.; Schimke RN, Collins DL, Stolle CA. Paraganglioma, neuroblastoma, and a SDHB mutation: Resolution of a 30-year-old mystery. Am J Med Genet A. 2010;152A(6):1531–1535. https://doi.org/10.1002/ajmg.a.33384.; Саматошенков ИВ, Алексеева КВ, Журавлева МН. Сравнение эффективности стимулирования ангиогенеза в ишемизированных конечностях крыс при доставке комбинации генов VEGF и Ang прямым и клеточно-опосредованным способами. Креативная кардиология. 2019;13(3):250–262. https://doi.org/10.24022/1997-3187-2019-13-3-250-262.

  5. 5
    Academic Journal
  6. 6
  7. 7
  8. 8
    Academic Journal

    Source: Journal of cerebral blood flow and metabolism. 2018. Vol. 38, № 5. P. 919-931

  9. 9
  10. 10
    Academic Journal

    Source: Neuromuscular Diseases; Том 11, № 2 (2021); 56-60 ; Нервно-мышечные болезни; Том 11, № 2 (2021); 56-60 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2021-11-2

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/450/298; Abu-Rumeileh S., Abdelhak A., Foschi M. et al. Guillain–Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol 2020;25:1–38. PMID: 32840686. DOI:10.1007/s00415-020-10124-x.; Gomez A., Diaz A., Carrionn-Penagos J. et al. Clinical and electrophysiological characteristics of Guillain–Barré syndrome in Colombia. J Peripher Nerv Syst 2019;24(3):268–71. PMID: 31386254. DOI:10.1111/jns.12340.; Hsueh H., Chang K., Chao C. et al. A pilot study on serial nerve ultrasound in Miller Fisher syndrome. Front Neurol 2020;11:865. PMID: 32922359. DOI:10.3389/fneur.2020.00865.; Guarino M., Casmiro M., D’Alessandro R. Campylobacter jejuni infection and Guillain–Barré syndrome: a case-control study. Neuroepidemiology 1998;17(6):296–302. PMID: 9890808. DOI:10.1159/000026183.; Bukhari S., Taboada J. A case of Miller Fisher syndrome and literature review. Cureus 2017;9(2):1048. PMID: 28367386. DOI:10.7759/cureus.1048.; Lo Y.L. Clinical and immunological spectrum of the Miller Fisher syndrome. Muscle Nerve 2007;36(5):615–27. PMID: 17657801. DOI:10.1002/mus.20835.; Leung J., Sejvar J.J., Soares J. et al. Guillain–Barré syndrome and antecedent cytomegalovirus infection, USA 2009–2015. Neurol Sci 2020;41(4):885–91. PMID: 31828680. DOI:10.1007/s10072-019-04156-z.; Wijdicks E.F., Klein C.J. Guillain–Barré syndrome. Mayo Clin Proc 2017;92(3):467–79. PMID: 28259232. DOI:10.1016/j.mayocp.2016.12.002.; Gutiérrez-Ortiz C., Méndez-Guerrero A., Rodrigo-Rey S. et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020;95(5):601–5. PMID: 32303650. DOI:10.1212/WNL.0000000000009619.; Inoue A., Koh C., Iwahashi T. Detection of serum anticerebellar antibodies in patients with Miller Fisher syndrome. Eur Neurol 1999;42(4):230–4. PMID: 10567821. DOI:10.1159/000008113.; Chiba A., Kusunoki S., Shimizu T. et al. IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome. Ann Neurol 1992;31(6):677–9. PMID: 1514781. DOI:10.1002/ana.410310619.; Супонева Н.А. Клиническая и диагностическая роль аутоантител к ганглиозидам периферических нервов: обзор литературы и собственные данные. Нервно-мышечные болезни 2013;(1):26–34.; Koga M., Yuki N., Takahashi M. et al. Close association of IgA anti-ganglioside antibodies with antecedent Campylobacter jejuni infection in Guillain–Barré and Fisher’s syndromes. J Neuroimmunol 1998;81(1–2):138–43. PMID: 9521615. DOI:10.1016/s0165-5728(97)00168-9.; Nishimoto Y., Odaka M., Hirata K. et al. Usefulness of anti-GQ1b IgG antibody testing in Fisher syndrome compared with cerebrospinal fluid examination. J Neuroimmunol 2004;148(1–2):200–5. PMID: 14975602. DOI:10.1016/j.jneuroim.2003.11.017.; Lantos J.E., Strauss S.B., Lin E. COVID-19-associated Miller Fisher syndrome: MRI findings. AJNR Am J Neuroradiol 2020;41(7):1184–6. PMID: 32467190. DOI:10.3174/ajnr.A6609.; Kiphuth I.C., Saake M., Lunkenheimer J. et al. Bilateral enhancement of the cranial nerves III–XII in severe Miller Fisher syndrome. Eur Neurol 2009;62(4):252–3. PMID: 19672080. DOI:10.1159/000232929.; Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77(6):683–90. DOI:10.1001/jamaneurol.2020.1127.PMID: 32275288.; Acharya A., Kevadiya B.D., Gendelman H.E. et al. SARS-CoV-2 infection leads to neurological dysfunction. J Neuroimmune Pharmacol 2020;15(2):167–73. PMID: 32447746. DOI:10.1007/s11481-020-09924-9.; Lahiri D., Ardila A. COVID-19 pandemic: a neurological perspective. Cureus 2020;12(4):78–89. PMID: 32489743. DOI:10.7759/cureus.7889.; Desforges M., LeCoupanec A., Dubeau P. et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system. Viruses 2020:12–4. DOI:10.3390/v12010014; Bohmwald K., Galvez N., Ríos M. et al. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci 2018; 12:386. DOI:10.3389/fncel.2018.00386.; Reyes-Bueno J.A., García-Trujillo L., Urbaneja P. et al. Miller Fisher syndrome after SARS-CoV-2 infection. Eur J Neurol 2020;27(9):1759–61. PMID: 32503084. DOI:10.1111/ene.14383.; Senel M., Abu-Rumeileh S., Michel D. et al. Miller Fisher syndrome after COVID-19: neurochemical markers as an early sign of nervous system involvement. Eur J Neurol 2020;27(11):2378–80. PMID: 32781484. DOI:10.1111/ene.14473.; Ray A. Miller Fisher syndrome and COVID-19: is there a link? BMJ Case Rep. 2020 Aug 11;13(8):e236419. PMID: 32784241. DOI:10.1136/bcr-2020-236419.; Manganotti P, Pesavento V, Buoite Stella A, et al. Miller Fisher syndrome diagnosis and treatment in a patient with SARS-CoV-2. J Neurovirol 2020;26(4):605, 606. PMID: 32529516. DOI:10.1007/s13365-020-00858-9.; Fernández-Domínguez J., AmeijideSanluis E., García-Cabo C. et al. Miller Fisher-like syndrome related to SARSCoV-2 infection (COVID 19). J Neurol 2020;267(9):2495, 2496. PMID: 32458195. DOI:10.1007/s00415-020-09912-2.; Li Z., Li X., Shen J. et al. Miller Fisher syndrome associated with COVID-19: an up-to-date systematic review. Environ Sci Pollut Res Int 2021. PMID: 33677662. DOI:10.1007/s11356-021-13233-w.; Wakerley B.R., Uncini A., Yuki N., et al. Guillain–Barré and Miller Fisher syndromes-new diagnostic classification. Nat Rev Neurol 2014;10(9):537–44. PMID: 25072194. DOI:10.1038/nrneurol.2014.138.; Jung J.H., Oh E.H., Shin J.H. et al. Atypical clinical manifestations of Miller Fisher syndrome. Neurol Sci 2019;40(1):67–73. PMID: 30232672. DOI:10.1007/s10072-018-3580-2.; Friedman D.I., Potts E. Headache associated with miller fisher syndrome. Headache 2007;47(9):1347–8. PMID: 17927654. DOI:10.1111/j.1526-4610.2007.00935.x.; https://nmb.abvpress.ru/jour/article/view/450

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: The investigation has been conducted within the state assignment topic «Adaptive morphofunctional rearrangements of organs and systems during physical activity as a model of rehabilitation measures after total cerebral hypoxia in rats according to the higher nervous activity» (2018–2020), Part 2 «Applied Research». Unique registry entry No. 730000Ф.99.1.БВ10AA00006. The investigation in the part of mathematic treatment of obtained data has been conducted under Russian Foundation for Basic Research Grants No. 18-07-01022 and No. 18-07-00929. This work in the part of the analysis of data on demyelinisation was financially supported by the grant of the Russian Science Foundation (No. 20-12-00175)., Работа выполнена в рамках темы государственного задания «Адаптивные морфофункциональные перестройки органов и систем при физических нагрузках, как модели реабилитационных мероприятий, после формирования тотальной гипоксии головного мозга у крыс в зависимости от состояния высшей нервной деятельности» (2018–2020), часть 2 «Проведение прикладных научных исследований». Сведения о выполняемых работах: уникальный номер реестровой записи 730000Ф.99.1.БВ10АА00006. Исследование в части математической обработки полученных данных выполнено при поддержке грантов Российского фонда фундаментальных исследований № 18-07-01022 и № 18-07-00929. Исследование в части анализа данных по демиелинизации выполнено за счет гранта Российского научного фонда (проект № 20-12-00175).

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 12, No 4 (2020); 84-90 ; Неврология, нейропсихиатрия, психосоматика; Vol 12, No 4 (2020); 84-90 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2020-4

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1417/1100; Dydyk AM, Givler A. Central Pain Syndrome. 2020 Apr 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan. PMID: 31971703.; Vuilleumier PH, Schliessbach J, Curatolo M. Current evidence for central analgesic effects of NSAIDs: an overview of the literature. Minerva Anestesiol. 2018 Jul;84(7):865-70. doi:10.23736/S0375-9393.18.12607-1. Epub 2018 May 9.; Veltmeijer MTW, Veeneman D, Bongers CCCW, et al. The impact of central and peripheral cyclooxygenase enzyme inhibition on exercise-induced elevations in core body temperature. Int J Sports Physiol Perform. 2017 May;12(5):662-7. doi:10.1123/ijspp.20160382. Epub 2016 Sep 26.; Auriel E, Regev K, Korczyn AD. Nonsteroidal anti-inflammatory drugs exposure and the central nervous system. Handb Clin Neurol. 2014;119:577-84. doi:10.1016/B978-07020-4086-3.00038-2; Балашов AM, Шахбазян ИЕ. Центральные механизмы аналгетического действия нестероидных противовоспалительных препаратов. Научно-практическая ревматология. 2005;43(2):47-53.; Торшин ИЮ, Громова ОА, Стаховская ЛВ и др. Дифференциальный хемореактомный анализ синергидных комбинаций толперизона и нестероидных противовоспалительных средств. Неврология, нейропсихиатрия, психосоматика. 2019;11(2):78-85. doi:10.14412/2074-27112019-2-78-85; Torshin IYu. Optimal dictionaries output information based on the criterion of Solvability and their applications in Bioinformatics. Pattern Recognit Image Anal. 2013;23(2):319-27. doi:10.1134/S1054661813020156; Torshin IYu, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognit Image Anal. 2014;24(1):11-23. doi:10.1134/S1054661814010209; Torshin IYu, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 2: Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognit Image Anal. 2014;24(2):196-208. doi:10.1134/S1054661814020151; Громова ОА, Торшин ИЮ, Путилина МВ и др. Хемореактомный анализ центральных механизмов нестероидных противовоспалительных препаратов. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(1):70-7. doi:10.17116/jnevro202012001170; Торшин ИЮ, Громова ОА, Федотова ЛЭ, Громов АН. Сравнительный хемореактомный анализ декскетопрофена, кетопрофена и диклофенака. Неврология, нейропсихиатрия, психосоматика. 2018;10(1):47-54. doi:10.14412/2074-2711-2018-1-47-54; Громова ОА, Калачева АГ, Гришина ТР и др. Модуляция эффекта противосудорожных средств микронутриентами в эксперименте. РМЖ. 2016;24(13):874-8. [Gromova OA, Kalacheva AG, Grishina TR, et al. Modulating the effect of anticonvulsants with micronutrients in the experiment. RMJ. 2016;24(13):874-8 (In Russ.)].; Громова ОА, Калачева АГ, Гришина ТР и др. Нейротрофические пептиды церебролизина как основа противосудорожного потенциала препарата. Журнал неврологии и психиатрии им. C.C. Корсакова. 2016;116(3):55-62.; Калачева АГ, Богачева ТЕ, Громова ОА и др. Изучение эффектов магния оротата на модели первично-генерализованных судорог у крыс. Фармакокинетика и фармакодинамика. 2017;(4):7-11.; Калачева АГ, Громова ОА, Гришина ТР и др. Противосудорожные эффекты миоинозитола в сочетании с фолиевой кислотой в эксперименте. Журнал неврологии и психиатрии им. C.C. Корсакова. 2016;116(9):56-61. doi:10.17116/jnevro20161169156-61; Миронов АН, редактор. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Москва: Гриф и К; 2013. С. 235-50.

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20