Showing 1 - 20 results of 63 for search '"ЭПИЛЕПТИЧЕСКАЯ ЭНЦЕФАЛОПАТИЯ"', query time: 0.73s Refine Results
  1. 1
    Academic Journal

    Source: Russian Journal of Child Neurology; Том 20, № 1 (2025); 32-38 ; Русский журнал детской неврологии; Том 20, № 1 (2025); 32-38 ; 2412-9178 ; 2073-8803

    File Description: application/pdf

    Relation: https://rjdn.abvpress.ru/jour/article/view/510/348; Демикова Н.С., Какаулина В.С., Печатникова Н.Л. и др. Синдром микроцефалии с капиллярными мальформациями. Педиатрия 2016;95(5);110–4.; Щугарева Л.М., Потешкина О.В., Шумеева А.Г., Галактионова С.М. Резистентная эпилепсия у ребенка с микроцефальнокапиллярным мальформационным синдромом. Журнал неврологии и психиатрии им. С.С. Корсакова 2020;120(8):110–6.; Carter M., Geraghty M., de la Cruz L. et al. A new syndrome with multiple capillary malformations, intractable seizures, and brain and limb anomalies. Am J Med Genet A 2011;155(2):301–6.; Carter M.T., Mirzaa G., McDonell L.M., Boycott K.M. Microcephaly-Capillary Malformation Syndrome. In: GeneReviews®. Seattle: University of Washington, 1993–2024.; Isidor B., Barbarot S., Bénéteau C. et al. Multiple capillary skin malformations, epilepsy, microcephaly, mental retardation, hypoplasia of the distal phalanges: Report of a new case and further delineation of a new syndrome. Am J Med Genet A 2011;155(6):1458–60.; McDonell L.M., Mirzaa G.M., Alcantara D. et al. Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet 2013;45(5):556–62. DOI:10.1038/ng.2602; Pavlović M., Neubauer D., Al Tawari A., Heberle L. The microcephaly-capillary malformation syndrome in two brothers with novel clinical features. Pediatr Neurol 2014;51(4):560–5.; Postma J.K., Zambonin J.L., Khouj E. et al. Further clinical delineation of microcephaly-capillary malformation syndrome. Am J Med Genet A 2022;188A:3350–7. DOI:10.1002/ajmg.a.62936; STAMPB Gene – STAM Building Protein. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Available at: hhtp://www.genecards.org/cgi-bin/carddisp.pl?gene=STAMPB.; Wang H., Wang Z., Ji T. et al. Novel STAMBP mutations in a Chinese girl with rare symptoms of microcephaly-capillary malformation syndrome and Mowat–Wilson syndrome. Heliyon 2023;9(12):e22989. DOI:10.1016/j.heliyon.2023.e22989; https://rjdn.abvpress.ru/jour/article/view/510

  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 5 (2024); 109-114 ; Российский вестник перинатологии и педиатрии; Том 69, № 5 (2024); 109-114 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2074/1540; Vlaskamp D.R.M., Shaw B.J., Burgess R., Mei D., Montomoli M., Xie H. et al. SYNGAP1 encephalopathy: A distinctive generalized developmental and epileptic encephalopathy [published correction appears in Neurology. 2019; 93(20): 908]. Neurology 2019; 92(2): 96–107. DOI:10.1212/WNL.0000000000006729; Nakajima R., Takao K., Hattori S., Shoji H., Komiyama N.H., Grant S.G.N. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep 2019; 39(3): 223–237. DOI:10.1002/npr2.12073; Gamache T.R., Araki Y., Huganir R.L. Twenty Years of Syn-GAP Research: From Synapses to Cognition. J Neurosci 2020; 40(8): 1596–1605. DOI:10.1523/JNEUROSCI.0420–19.2020; Llamosas N., Arora V., Vij R., Kilinc M., Bijoch L., Rojas C. et al. SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. J Neurosci 2020; 40(41): 7980–7994. DOI:10.1523/JNEUROSCI.1367–20.2020; Clement J.P., Aceti M., Creson T.K., Ozkan E.D., Shi Y., Reish N.J. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 2012; 151(4): 709–723. DOI:10.1016/j.cell.2012.08.045; Jimenez-Gomez A., Niu S., Andujar-Perez F., McQuade E.A., Balasa A., Huss D. et al. Phenotypic characterization of individuals with SYNGAP1 pathogenic variants reveals a potential correlation between posterior dominant rhythm and developmental progression. J Neurodev Disord 2019; 11(1): 18. DOI:10.1186/s11689–019–9276-y; Wright D., Kenny A., Eley S., McKechanie A.G., Stanfield A.C. Clinical and behavioural features of SYNGAP1-related intellectual disability: a parent and caregiver description. J Neurodev Disord 2022; 14(1): 34. DOI:10.1186/s11689–022–09437-x; Zhang H., Yang L., Duan J., Zeng Q., Chen L., Fang Y. et al. Phenotypes in Children With SYNGAP1 Encephalopathy in China. Front Neurosci 2021; 15: 761473. DOI:10.3389/fnins.2021.761473; von Stülpnagel C., Hartlieb T., Borggräfe I., Coppola A., Gennaro E., Eschermann K. et al. Chewing induced reflex seizures («eating epilepsy») and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: Review of literature and report of 8 cases. Seizure 2019; 65: 131–137. DOI:10.1016/j.seizure.2018.12.020; Mignot C., von Stülpnagel C., Nava C., Ville D., Sanlaville D., Lesca G. et al. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy [published correction appears in J Med Genet. 2016; 53(10): 720]. J Med Genet 2016; 53(8): 511–522. DOI:10.1136/jmedgenet-2015–103451corr1; Weldon M., Kilinc M., Lloyd Holder J. Jr, Rumbaugh G. The first international conference on SYNGAP1-related brain disorders: a stakeholder meeting of families, researchers, clinicians, and regulators. J Neurodev Disord 2018; 10(1): 6. DOI:10.1186/s11689–018–9225–1; Parker M.J., Fryer A.E., Shears D.J., Lachlan K.L., McKee S.A., Magee A.C. et al. De novo, heterozygous, lossof-function mutations in SYNGAP1 cause a syndromic form of intellectual disability. Am J Med Genet A 2015; 167A(10): 2231–2237. DOI:10.1002/ajmg.a.37189

  6. 6
    Academic Journal

    Contributors: The study reported in this publication was carried out as part of publicly funded research project No. 056-00001-22-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121021800098-4), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 05600001-22-00 на проведение прикладных научных исследований (номер государственного учета НИР 121021800098-4)

    Source: Safety and Risk of Pharmacotherapy; Том 11, № 3 (2023); 348-360 ; Безопасность и риск фармакотерапии; Том 11, № 3 (2023); 348-360 ; 2619-1164 ; 2312-7821

    File Description: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/375/884; https://www.risksafety.ru/jour/article/downloadSuppFile/375/401; https://www.risksafety.ru/jour/article/downloadSuppFile/375/402; https://www.risksafety.ru/jour/article/downloadSuppFile/375/403; https://www.risksafety.ru/jour/article/downloadSuppFile/375/404; https://www.risksafety.ru/jour/article/downloadSuppFile/375/413; Зенков ЛР. Нейропатофизиология эпилептических энцефалопатий и непароксизмальных эпилептических расстройств и принципы их лечения. Неврология, нейропсихиатрия, психосоматика. 2010;(2):26–32.; Мухин КЮ. Вперед к Джексону! Эпилепсия и пароксизмальные состояния. 2021;13(1S):61–4. https://doi.org/10.17749/2077-8333/epi.par.con.2021.080; Specchio N, Wirrell EC, Scheffer IE, Nabbout R, Riney K, Samia P, et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: position paper by the ILAE task force on nosology and definitions. Epilepsia. 2022;63(6):1398–442. https://doi.org/10.1111/epi.17241; Marson A, Burnside G, Appleton R, Smith D, Leach JP, Sills G, et al. The SANAD II study of the effectiveness and cost-effectiveness of levetiracetam, zonisamide, or lamotrigine for newly diagnosed focal epilepsy: an open-label, non-inferiority, multicentre, phase 4, randomised controlled trial. Lancet. 2021;397(10282):1363–74. https://doi.org/10.1016/S0140-6736(21)00247-6; Knight R, Wittkowski A, Bromley RL. Neurodevelopmental outcomes in children exposed to newer antiseizure medications: a systematic review. Epilepsia. 2021;62(8):1765–79. https://doi.org/10.1111/epi.16953; Kumar R, Garzon J, Yuruk D, Hassett LC, Saliba M, Ozger C, et al. Efficacy and safety of lamotrigine in pediatric mood disorders: a systematic review. Acta Psychiatr Scand. 2023;147(3):248–56. https://doi.org/10.1111/acps.13500; Архипов ВВ, Манцеров КМ. Персонализированные методические подходы к вопросам контроля эффективности и безопасности фармакотерапии противоэпилептическими препаратами на основе технологий мобильной медицины. Персонализированная психиатрия и неврология. 2023;3(1):22–7. https://doi.org/10.52667/2712-9179-2023-3-1-22-27; Миронов МБ, Чебаненко НВ, Быченко ВГ, Рублева ЮВ, Бурд СГ, Красильщикова ТМ. Коморбидность детского церебрального паралича и доброкачественных эпилептиформных паттернов детства на ЭЭГ на примере клинических случаев дизиготных близнецов. Эпилепсия и пароксизмальные состояния. 2018;10(3):52–62. https://doi.org/10.17749/2077-8333.2018.10.3.052-062; Мухин КЮ, Миронов МБ, Боровиков КС, Петрухин АС. Фокальная эпилепсия детского возраста со структурными изменениями в мозге и доброкачественными эпилептиформными паттернами на ЭЭГ (ФЭДСИМ-ДЭПД) (предварительные результаты). Русский журнал детской неврологии. 2010;5(1):3–18.; Миронов МБ, Чебаненко НВ, Зыков ВП, Быченко ВГ, Медная ДМ, Красильщикова ТМ, Милованова ОА. Эпилептические синдромы, ассоциированные с фокальными клоническими приступами. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023;123(3):41–5. https://doi.org/10.17116/jnevro202312303141; Пылаева ОА, Мухин КЮ. Эффективность и переносимость Сейзара (ламотриджин) в лечении эпилепсии (опыт Института детской неврологии и эпилепсии им. Свт. Луки). Русский журнал детской неврологии. 2020;15(2):17–41. https://doi.org/10.17650/2073-8803-2020-15-2-17-41; Мухин КЮ, Пылаева ОА, Бобылова МЮ, Фрейдкова НВ. Ламотриджин (Сейзар) в лечении эпилепсии: результаты 4-летнего применения препарата в Объединении медицинских учреждений по диагностике, лечению и реабилитации заболеваний нервной системы и эпилепсии им. Святителя Луки. Русский журнал детской неврологии. 2022;17(3):8–36. https://doi.org/10.17650/2073-8803-2022-17-3-8-36; Мухин КЮ, Миронов МБ, Боровиков КС, Боровикова НЮ. Электро-клиническая семиология и хронологические особенности эпилептических приступов, ассоциированных с фокальной эпилепсией детского возраста со структурными изменениями в мозге и доброкачественными эпилептиформными паттернами на ЭЭГ. Эпилепсия и пароксизмальные состояния. 2012;(4):18–25.; Groszer M. Rare human ATP6V1A variants provide unique insights into V-ATPase functions. Brain. 2022;145(8):2626–28. https://doi.org/10.1093/brain/awac255; Guerrini R, Mei D, Kerti-Szigeti K, Pepe S, Koenig MK, Von Allmen G, et al. Phenotypic and genetic spectrum of ATP6V1A encephalopathy: a disorder of lysosomal homeostasis. Brain. 2022;145(8):2687–703. https://doi.org/10.1093/brain/awac145; Эффективность, безопасность и оценка результатов медикаментозной терапии больных эпилепсией. Эпилепсия и пароксизмальные состояния. 2021;13(3):306–10. https://doi.org/10.17749/2077-8333/epi.par.con.2021.093; https://www.risksafety.ru/jour/article/view/375

  7. 7
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 6 (2022); 113-122 ; Российский вестник перинатологии и педиатрии; Том 67, № 6 (2022); 113-122 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1752/1333; Debopam S. Epilepsy in Angelman syndrome: A scoping review. Brain Dev 2021; 43(1): 32–44. DOI:10.1016/j.braindev.2020.08.014; Williams C.A., Beauder A.L., Clayton-Smith J., Knoll J.H., Kyllerman M., Laan L.A. et al. Angelman syndrome 2005: consensus for diagnostic criteria. Am J Med Genet A 2006; 140(5): 413–418. DOI:10.1002/ajmg.a.31074; Robinson A.A., Goldman S., Barnes G., Goodpaster L., Malow B.A. Electroencephalogram (EEG) duration needed to detect abnormalities in angelman syndrome: is 1 hour of overnight recording sufficient? J Child Neurol 2015; 30: 58–62. DOI:10.1177/0883073814530498; Leyser M., Penna P.S., de Almeida A.C., Vasconcelos M.M., Nascimento O.J. Revisiting epilepsy and the electroencephalogram patterns in Angelman syndrome. Neurol Sci 2014; 35: 701–705. DOI:10.1007/s10072–013–1586–3; Bird L.M. Angelman syndrome: review of clinical and molecular aspects. Appl Clin Genet 2014; 7: 93–104. DOI:10.2147/TACG.S57386; Bahi-Buisson N., Bienvenu T. CDKL5-related disorders: from clinical description to molecular genetics. Mol Syndromol 2012; 2(3–5): 137–152. DOI: 000331333; Bahi-Buisson N., Villeneuve N., Caietta E., Jacquette A., Maurey H., MatthÜs G. et al. Recurrent mutations in the CDKL5gene: genotype-phenotype relationships. Am J Med Genet A 2012; 158A(7): 1612–1619. DOI:10.1002/ajmg.a.35401; Fehr S., Wilson M., Downs J., Williams S., Murgia A. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet 2013; 21(3): 266–273. DOI:10.1038/ejhg.2012.156; Jakimiec M., Paprocka J., Smigiel R. CDKL5 Deficiency Disorder-A Complex Epileptic Encephalopathy. Brain Sciences 2020; 10(2): 107. DOI: org/10.3390/brainsci10020107; Adegbola A.A., Gonzales M.L., Chess A., LaSalle J.M., Cox G.F. A novel hypomorphic MECP2 point mutation is associated with a neuropsychiatric phenotype. Hum Genet 2009; 124: 615–623. DOI:10.1007/s00439–008–0585–6; Hagberg B. Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev 2002; 8: 61–65. DOI:10.1002/mrdd.10020; Ramocki M.B., Tavyev Y.J., Peters S.U. The MECP2 Duplication Syndrome Am J Med Genet A 2010; 152A(5): 1079–1088. DOI:10.1002/ajmg.a.33184; El Chehadeh S., Touraine R., Prieur F., Reardon W., Bienvenu T., Chantot-Bastaraud S. et al. Xq28 duplication including MECP2 in six unreported affected females: what can we learn for diagnosis and genetic counselling? Clin Genet 2017; 91(4): 576–588. DOI:10.1111/cge.12898; Zollino M., Zweier C., Van Balkom I.D., Sweetser D.A., Alaimo J., BÜlsma E.K. et al. Genet Diagnosis and management in Pitt-Hopkins syndrome: First international consensus statement. Clin Genet 2019; 95(4): 462–478. DOI:10.1111/cge.13506; Evans E., Einfeld S., Mowat D., Taffe J., Tonge B., Wilson M. The behavioral phenotype of Mowat– Wilson syndrome. Am J Med Genet Part A 2012; 158A: 358–366. DOI:10.1002/ajmg.a.34405; Ivanovski I., Djuric O., Caraffi S.G., Santodirocco D., Pollazzon M., Rosato S. et al. Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care. Genet Med 2018; 20: 965–975. DOI:10.1038/gim.2017.221; Koolen D.A., Kramer J.M., Neveling K., Nillesen W.M., Moore-Barton H.L., Elmslie F.V. et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat Genet 2012; 44(6): 639–641. DOI:10.1038/ng.2262; Clayton-Smith J., Webb T., Cheng X.J., Pembrey M.E., Malcolm S. Duplication of chromosome 15 in the region 15q11– 13 in a patient with developmental delay and ataxia with similarities to Angelman syndrome. J Med Genet 1993; 30: 529–531. DOI:10.1136/jmg.30.6.529; Frohlich J., Senturk D., Saravanapandian V., Golshani P., Reiter L.T., Sankar R. et al. A Quantitative Electrophysiological Biomarker of Duplication 15q11.2–q13.1 Syndrome. PLoS One. 2016; 11(12): e0167179. DOI:10.1371/journal.pone.0167179; D’Onofrio G., Riva A., Di Rosa G., Cali’ E., Efthymiou S., Gitto E. et al. Paroxysmal limb dystonias associated with GABBR2 pathogenic variant: A case-based literature review. Brain Dev 2022; 44(7): 469–473. DOI:10.1016/j.braindev.2022.03.010; Stewart D.R., Kleefstra T. The chromosome 9q subtelomere deletion syndrome. Am J Med Genet C Semin Med Genet 2007; 145(4): 383–392. DOI:10.1002/ajmg.c.30148; Kleefstra T., Leeuw N. Kleefstra Syndrome. In: M.P. Adam, G.M. Mirzaa, R.A. Pagon, S.E. Wallace, L. Bean, K.W. Gripp, A. Amemiya (eds). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022. https://www.ncbi.nlm.nih.gov/books/NBK47079 / Ссылка актив-на на 11.10.2022.; Morrow E.M., Pescosolido M.F. Christianson Syndrome. In: M.P. Adam, G.M. Mirzaa, R.A. Pagon, S.E. Wallace, L. Bean, K.W. Gripp, A. Amemiya (eds). GeneReviews® [Inter-net]. Seattle (WA): University of Washington, Seattle; 1993–2022. https://www.ncbi.nlm.nih.gov/books/NBK475801 / Ссылка активна на 11.10.2022.; Rinaldi B., Villa R., Sironi A., Garavelli L., Finelli P., Bedeschi M.F. Smith-Magenis Syndrome — Clinical Review, Biological Background and Related Disorders. Genes (Basel) 2022; 13(2): 335. DOI:10.3390/genes13020335; Goldman A.M., Potocki L., Walz K., Lynch J.K., Glaze D.G., Lupski J.R., Noebels J.L. Epilepsy and chromosomal rearrangements in Smith–Magenis Syndrome [del(17) (p11.2p11.2)]. J Child Neurol 2006; 21(2): 93–98. DOI:10.1177/08830738060210021201

  8. 8
    Academic Journal
  9. 9
  10. 10
    Academic Journal

    Contributors: This work was supported by the budget project No. 0259-2021-0009.

    Source: Vavilov Journal of Genetics and Breeding; Том 25, № 1 (2021); 92-100 ; Вавиловский журнал генетики и селекции; Том 25, № 1 (2021); 92-100 ; 2500-3259 ; 10.18699/VJ20.677

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2921/1484; Abekhoukh S., Bardoni B. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front. Cell. Neurosci. 2014;8:81. DOI 10.3389/fncel.2014.00081.; Abekhoukh S., Sahin H.B., Grossi M., Zongaro S., Maurin T., Madrigal I., Kazue-Sugioka D., Raas-Rothschild A., Doulazmi M., Carrera P., Stachon A., Scherer S., Drula Do Nascimento M.R., Trembleau A., Arroyo I., Szatmari P., Smith I.M., Milà M., Smith A.C., Giangrande A., Caillé I., Bardoni B. New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis. Model. Mech. 2017;10(4):463-474. DOI 10.1242/dmm.025809.; Ascano M. Jr., Mukherjee N., Bandaru P., Miller J.B., Nusbaum J.D., Corcoran D.L., Langlois C., Munschauer M., Dewell S., Hafner M., Williams Z., Ohler U., Tuschl T. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492: 382-386. DOI 10.1038/nature11737.; Ba W., van der Raadt J., Nadif Kasri N. Rho GTPase signaling at the synapse: implications for intellectual disability. Exp. Cell Res. 2013; 319(15):2368-2374. DOI 10.1016/j.yexcr.2013.05.033.; Bamburg J.R., Bernstein B.W. Actin dynamics and cofilin-actin rods in Alzheimer disease. Cytoskeleton (Hoboken). 2016;73(9):477-497. DOI 10.1002/cm.21282.; Bastos de Figueiredo J.C., Diambra L., Glass L., Malta C.P. Chaos in two-looped negative feedback systems. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 2002;65:051905.; Basu S., Lamprecht R. The role of actin cytoskeleton in dendritic spines in the maintenance of long-term memory. Front. Mol. Neurosci. 2018;11:143. DOI 10.3389/fnmol.2018.00143.; Beggs J.E., Tian S., Jones G.G., Xie J., Iadevaia V., Jenei V., Thomas G., Proud C.G. The MAP kinase-interacting kinases regulate cell migration, vimentin expression and eIF4E/CYFIP1 binding. Biochem J. 2015;467(1):63-76. DOI 10.1042/BJ20141066.; Ben Zablah Y., Merovitch N., Jia Z. The role of ADF/сofilin in synaptic physiology and Alzheimer’s disease. Front. Cell Dev. Biol. 2020; 8:594998. DOI 10.3389/fcell.2020.594998.; Borovac J., Bosch M., Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol. Cell. Neurosci. 2018;91:122-130. DOI 10.1016/j.mcn.2018.07.001.; Bramham C.R. Local protein synthesis, actin dynamics, and LTP consolidation. Curr. Opin. Neurobiol. 2008;18(5):524-531. DOI 10.1016/j.conb.2008.09.013.; Briz V., Zhu G., Wang Y., Liu Y., Avetisyan M., Bi X., Baudry M. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J. Neurosci. 2015;35(5):2269-2282. DOI 10.1523/JNEUROSCI.2302-14.2015.; Brown V., Small K., Lakkis L., Feng Y., Gunter C., Wilkinson K.D., Warren S.T. Purified recombinant Fmrp exhibits selective RNA binding as an intrinsic property of the fragile X mental retardation protein. J. Biol. Chem. 1998;273(25):15521-15527. DOI 10.1074/jbc.273.25.15521.; Buffington S.A., Huang W., Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci. 2014;37:17-38. DOI 10.1146/annurev-neuro-071013-014100.; Cai Z., Chen G., He W., Xiao M., Yan L.J. Activation of mTOR: a culprit of Alzheimer’s disease? Neuropsychiatr. Dis. Treat. 2015;11: 1015-1030. DOI 10.2147/NDT.S75717.; Cajigas I.J., Will T., Schuman E.M. Protein homeostasis and synaptic plasticity. EMBO J. 2010;29:2746-2752. DOI 10.1038/emboj.2010.173.; Chen B., Chou H.T., Brautigam C.A., Xing W., Yang S., Henry L., Doolittle L.K., Walz T., Rosen M.K. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. Elife. 2017;6:e29795. DOI 10.7554/eLife.29795.; Chen E., Joseph S. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins. Biochimie. 2015; 114:147-154. DOI 10.1016/j.biochi.2015.02.005.; Chen E., Sharma M.R., Shi X., Agrawal R.K., Joseph S. Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol. Cell. 2014;54:407-417. DOI 10.1016/j.molcel.2014.03.023.; Chen L.Y., Rex C.S., Babayan A.H., Kramár E.A., Lynch G., Gall C.M., Lauterborn J.C. Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J. Neurosci. 2010;30(33):10977-10984. DOI 10.1523/JNEUROSCI.1077-10.2010.; Chestkov I.V., Jestkova E.M., Ershova E.S., Golimbet V.E., Lezheiko T.V., Kolesina N.Y., Porokhovnik L.N., Lyapunova N.A., Izhevskaya V.L., Kutsev S.I., Veiko N., Kostyuk S.V. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr. Res. 2018;197:305-314. DOI 10.1016/j.schres.2018.01.001.; Cory G.O.C., Ridley A.J. Cell motility: braking WAVEs. Nature. 2002; 418:732-733. DOI 10.1038/418732a.; Costa-Mattioli M., Sossin W.S., Klann E., Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009;61:10-26. DOI 10.1016/j.neuron.2008.10.055.; Darnell J.C., Klann E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 2013;16(11): 1530-1536. DOI 10.1038/nn.3379.; Darnell J.C., Van Driesche S.J., Zhang C., Hung K.Y., Mele A., Fraser C.E., Stone E.F., Chen C., Fak J.J., Chi S.W., Licatalosi D.D., Richter J.D., Darnell R.B. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146: 247-261. DOI 10.1016/j.cell.2011.06.013.; Dasgupta I., McCollum D. Control of cellular responses to mechanical cues through YAP/TAZ regulation. J. Biol. Chem. 2019;294(46): 17693-17706. DOI 10.1074/jbc.REV119.007963.; De Rubeis S., Pasciuto E., Li K.W., Fernández E., Di Marino D., Buzzi A., Ostroff L.E., Klann E., Zwartkruis F.J., Komiyama N.H., Grant S.G., Poujol C., Choquet D., Achsel T., Posthuma D., Smit A.B., Bagni C. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron. 2013;79(6):1169-1182. DOI 10.1016/j.neuron.2013.06.039.; de Sena Cortabitarte A., Degenhardt F., Strohmaier J., Lang M., Weiss B., Roeth R., Giegling I., Heilmann-Heimbach S., Hofmann A., Rujescu D., Fischer C., Rietschel M., Nöthen M.M., Rappold G.A., Berkel S. Investigation of SHANK3 in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2017;174(4):390-398. DOI 10.1002/ajmg.b.32528.; Decroly O., Goldbeter A. Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. USA. 1982;79:6917-6921. DOI 10.1073/pnas.79.22.6917.; Derivery E., Lombard B., Loew D., Gautreau A. The Wave complex is intrinsically inactive. Cell Motil. Cytoskeleton. 2009;66(10):777-790. DOI 10.1002/cm.20342.; Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., Zanconato F., Le Digabel J., Forcato M., Bicciato S., Elvassore N., Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474(7350):179-183. DOI 10.1038/nature10137.; Feng Y., Absher D., Eberhart D.E., Brown V., Malter H.E., Warren S.T. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol. Cell. 1997;1(1):109-118. DOI 10.1016/s1097-2765(00)80012-x.; Forrest M.P., Parnell E., Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat. Rev. Neurosci. 2018;19(4):215-234. DOI 10.1038/nrn.2018.16.; Fu Y.J., Liu D., Guo J.L., Long H.Y., Xiao W.B., Xiao W., Feng L., Luo Z.H., Xiao B. Dynamic change of shanks gene mRNA expression and DNA methylation in epileptic rat model and human patients. Mol. Neurobiol. 2020;57(9):3712-3726. DOI 10.1007/s12035-020-01968-5.; Gkogkas C.G., Sonenberg N. Translational control and autism-like behaviors. Cell. Logist. 2013;3:e24551. DOI 10.4161/cl.24551.; Gobert D., Schohl A., Kutsarova E., Ruthazer E.S. TORC1 selectively regulates synaptic maturation and input convergence in the developing visual system. Dev. Neurobiol. 2020. DOI 10.1002/dneu.22782.; Goldbeter A., Gonze D., Houart G., Leloup J.C., Halloy J., Dupont G. From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos. 2001;11:247-260. DOI 10.1063/1.1345727.; Gross C., Nakamoto M., Yao X., Chan C.B., Yim S.Y., Ye K., Warren S.T., Bassell G.J. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 2010;30:10624-10638. DOI 10.1523/JNEUROSCI.0402-10.2010.; Hong L., Li Y., Liu Q., Chen Q., Chen L., Zhou D. The Hippo signaling pathway in regenerative medicine. Methods Mol. Biol. 2019; 1893:353-370. DOI 10.1007/978-1-4939-8910-2_26.; Hu J.K., Du W., Shelton S.J., Oldham M.C., DiPersio C.M., Klein O.D. An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell. 2017;21(1):91-106. DOI 10.1016/j.stem.2017.03.023.; Huber K.M., Kayser M.S., Bear M.F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000;288(5469):1254-1257. DOI 10.1126/science.288.5469.1254.; Huber K.M., Klann E., Costa-Mattioli M., Zukin R.S. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J. Neurosci. 2015;35(41):13836-13842. DOI 10.1523/JNEUROSCI.2656-15.2015.; Iacoangeli A., Tiedge H. Translational control at the synapse: role of RNA regulators. Trends Biochem. Sci. 2013;38(1):47-55. DOI 10.1016/j.tibs.2012.11.001.; Ip C.K., Cheung A.N., Ngan H.Y., Wong A.S. p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene. 2011;30(21):2420-2432. DOI 10.1038/onc.2010.615.; Johnson S.C., Rabinovitch P.S., Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493(7432): 338-345. DOI 10.1038/nature11861.; Khlebodarova T.M., Kogai V.V., Fadeev S.I., Likhoshvai V.A. Chaos and hyperchaos in simple gene network with negative feedback and time delays. J. Bioinform. Comput. Biol. 2017;15(2):1650042. DOI 10.1142/S0219720016500426.; Khlebodarova T.M., Kogai V.V., Likhoshvai V.A. On the dynamical aspects of local translation at the activated synapse. BMC Bioinformatics. 2020;21(Suppl. 11):258. DOI 10.1186/s12859-020-03597-0.; Khlebodarova T.M., Kogai V.V., Trifonova E.A., Likhoshvai V.A. Dynamic landscape of the local translation at activated synapses. Mol. Psych. 2018;23(1):107-114. DOI 10.1038/mp.2017.245.; Khlebodarova T.M., Likhoshvai V.A., Kogai V.V. On the chaotic potential of local translation at activated synapses. In: Mathematical Biology and Bioinformatics. Puschino: IMPB RAS, 2018;7:e68.1-e68.6. DOI 10.17537/icmbb18.6. (in Russian); Klein M.E., Monday H., Jordan B.A. Proteostasis and RNA binding proteins in synaptic plasticity and in the pathogenesis of neuropsychiatric disorders. Neural Plast. 2016;2016:3857934. DOI 10.1155/2016/3857934.; Kogai V.V., Khlebodarova T.M., Fadeev S.I., Likhoshvai V.A. Complex dynamics in alternative mRNA splicing: mathematical model. Vychislitelnye Technologii = Computational Technologies. 2015; 20(1):38-52. (in Russian); Kogai V.V., Likhoshvai V.A., Fadeev S.I., Khlebodarova T.M. Multiple scenarios of transition to chaos in the alternative splicing model. Int. J. Bifurcat. Chaos. 2017;27(2):1730006. DOI 10.1142/S0218127417300063.; Lauterborn J.C., Cox C.D., Chan S.W., Vanderklish P.W., Lynch G., Gall C.M. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease. Brain Pathol. 2020;30(2):319-331. DOI 10.1111/bpa.12779.; Levy Nogueira M., da Veiga Moreira J., Baronzio G.F., Dubois B., Steyaert J.M., Schwartz L. Mechanical stress as the common denominator between chronic inflammation, cancer, and Alzheimer’s disease. Front. Oncol. 2015;5:197. DOI 10.3389/fonc.2015.00197.; Levy Nogueira M., Epelbaum S., Steyaert J.M., Dubois B., Schwartz L. Mechanical stress models of Alzheimer’s disease pathology. Alzheimers Dement. 2016a;12(3):324-333. DOI 10.1016/j.jalz.2015.10.005.; Levy Nogueira M., Hamraz M., Abolhassani M., Bigan E., Lafitte O., Steyaert J.M., Dubois B., Schwartz L. Mechanical stress increases brain amyloid β, tau, and α-synuclein concentrations in wild-type mice. Alzheimers Dement. 2018;14(4):444-453. DOI 10.1016/j.jalz.2017.11.003.; Levy Nogueira M., Lafitte O., Steyaert J.M., Bakardjian H., Dubois B., Hampel H., Schwartz L. Mechanical stress related to brain atrophy in Alzheimer’s disease. Alzheimers Dement. 2016b;12(1):11-20. DOI 10.1016/j.jalz.2015.03.005.; Likhoshvai V.A., Fadeev S.I., Kogai V.V., Khlebodarova T.M. On the chaos in gene networks. J. Bioinform. Comput. Biol. 2013;11(1): 1340009. DOI 10.1142/S021972001340009X.; Likhoshvai V.A., Golubyatnikov V.P., Khlebodarova T.M. Limit сycles in models of circular gene networks regulated by negative feedbacks. BMC Bioinformatics. 2020;21(Suppl. 11):255. DOI 10.1186/s12859-020-03598-z.; Likhoshvai V.A., Khlebodarova T.M. On stationary solutions of delay differential equations: a model of local translation in synapses. Matematicheskaya Biologiya i Bioinformatika = Mathematical Biology and Bioinformatics. 2019;14(2):554-569. DOI 10.17537/2019.14.554. (in Russian); Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Alternative splicing can lead to chaos. J. Bioinform. Comput. Biol. 2015; 13(1):1540003. DOI 10.1142/S021972001540003X.; Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Chaos and hyperchaos in a model of ribosome autocatalytic synthesis. Sci. Rep. 2016;6:38870. DOI 10.1038/srep38870.; Louros S.R., Osterweil E.K. Perturbed proteostasis in autism spectrum disorders. J. Neurochem. 2016;139(6):1081-1092. DOI 10.1111/jnc.13723.; Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197(4300):287-289. DOI 10.1126/science.267326.; Majumder P., Chu J.F., Chatterjee B., Swamy K.B., Shen C.J. Co-regulation of mRNA translation by TDP-43 and fragile X syndrome protein FMRP. Acta Neuropathol. 2016;132(5):721-738. DOI 10.1007/s00401-016-1603-8.; Martin I. Decoding Parkinson’s disease pathogenesis: the role of deregulated mRNA translation. J. Parkinsons Dis. 2016;6(1):17-27. DOI 10.3233/JPD-150738.; McCarthy N. Signalling: YAP, PTEN and miR-29 size each other up. Nat. Rev. Cancer. 2013;13(1):4-5. DOI 10.1038/nrc3422.; Mei Y., Monteiro P., Zhou Y., Kim J.A., Gao X., Fu Z., Feng G. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530(7591):481-484. DOI 10.1038/nature16971.; Meng X.F., Yu J.T., Song J.H., Chi S., Tan L. Role of the mTOR signaling pathway in epilepsy. J. Neurol. Sci. 2013;332(1-2):4-15. DOI 10.1016/j.jns.2013.05.029.; Millard T.H., Sharp S.J., Machesky L.M. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 2004;380(Pt. 1):1-17. DOI 10.1042/BJ20040176.; Molinie N., Gautreau A. The Arp2/3 regulatory system and its deregulation in cancer. Physiol. Rev. 2018;98(1):215-238. DOI 10.1152/physrev.00006.2017.; Monteiro P., Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci. 2017;18(3):147-157. DOI 10.1038/nrn.2016.183.; Muddashetty R.S., Kelić S., Gross C., Xu M., Bassell G.J. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J. Neurosci. 2007;27(20):5338-5348. DOI 10.1523/JNEUROSCI.0937-07.2007.; Nakashima M., Kato M., Aoto K., Shiina M., Belal H., Mukaida S., Kumada S., Sato A., Zerem A., Lerman-Sagie T., Lev D., Leong H.Y., Tsurusaki Y., Mizuguchi T., Miyatake S., Miyake N., Ogata K., Saitsu H., Matsumoto N. De novo hotspot variants in CYFIP2 cause early-onset epileptic encephalopathy. Ann. Neurol. 2018;83(4):794-806. DOI 10.1002/ana.25208.; Nalavadi V.C., Muddashetty R.S., Gross C., Bassell G.J. Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. J. Neurosci. 2012;32(8):2582-2587. DOI 10.1523/JNEUROSCI.5057-11.2012.; Napoli I., Mercaldo V., Boyl P.P., Eleuteri B., Zalfa F., De Rubeis S., Di Marino D., Mohr E., Massimi M., Falconi M., Witke W., CostaMattioli M., Sonenberg N., Achsel T., Bagni C. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 2008;134(6):1042-1054. DOI 10.1016/j.cell.2008.07.031.; Narayanan U., Nalavadi V., Nakamoto M., Pallas D.C., Ceman S., Bassell G.J., Warren S.T. FMRP phosphorylation reveals an immediateearly signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 2007;27(52):14349-14357. DOI 10.1523/JNEUROSCI.2969-07.2007.; Narayanan U., Nalavadi V., Nakamoto M., Thomas G., Ceman S., Bassell G.J., Warren S.T. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem. 2008;283(27):18478-18482. DOI 10.1074/jbc.C800055200.; Nishiyama J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Psychiat. Clin. Neurosci. 2019;73(9):541-550. DOI 10.1111/pcn.12899.; Onore C., Yang H., Van de Water J., Ashwood P. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 2017;5:43. DOI 10.3389/fped.2017.00043.; Panciera T., Azzolin L., Cordenonsi M., Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 2017;18(12):758-770. DOI 10.1038/nrm.2017.87.; Peça J., Feliciano C., Ting J.T., Wang W., Wells M.F., Venkatraman T.N., Lascola C.D., Fu Z., Feng G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011; 472(7344):437-442. DOI 10.1038/nature09965.; Pei J.J., Hugon J. mTOR-dependent signalling in Alzheimer’s disease. J. Cell. Mol. Med. 2008;12(6b):2525-2532. DOI 10.1111/j.1582-4934.2008.00509.x.; Penzes P., Rafalovich I. Regulation of the actin cytoskeleton in dendritic spines. Adv. Exp. Med. Biol. 2012;970:81-95. DOI 10.1007/978-3-7091-0932-8_4.; Porokhovnik L. Individual copy number of ribosomal genes as a factor of mental retardation and autism risk and severity. Cells. 2019; 8(10):1151. DOI 10.3390/cells8101151.; Porokhovnik L.N., Lyapunova N.A. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Res. 2019; 27(1-2):5-17. DOI 10.1007/s10577-018-9587-y.; Pramparo T., Pierce K., Lombardo M.V., Carter Barnes C., Marinero S., Ahrens-Barbeau C., Murray S.S., Lopez L., Xu R., Courchesne E. Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practice. JAMA Psychiatry. 2015;72:386-394. DOI 10.1001/jamapsychiatry.2014.3008.; Pyronneau A., He Q., Hwang J.Y., Porch M., Contractor A., Zukin R.S. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci. Signal. 2017;10(504):eaan0852. DOI 10.1126/scisignal.aan0852.; Reddy P., Deguchi M., Cheng Y., Hsueh A.J. Actin cytoskeleton regulates Hippo signaling. PLoS One. 2013;8(9):e73763. DOI 10.1371/journal.pone.0073763.; Rex C.S., Chen L.Y., Sharma A., Liu J., Babayan A.H., Gall C.M., Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 2009;186(1):85-97. DOI 10.1083/jcb.200901084.; Rosenberg T., Gal-Ben-Ari S., Dieterich D.C., Kreutz M.R., Ziv N.E., Gundelfinger E.D., Rosenblum K. The roles of protein expression in synaptic plasticity and memory consolidation. Front. Mol. Neurosci. 2014;7:86. DOI 10.3389/fnmol.2014.00086.; Santini E., Huynh T.N., Klann E. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory. Prog. Mol. Biol. Transl. Sci. 2014;122:131-167. DOI 10.1016/B978-0-12-420170-5.00005-2.; Schaks M., Reinke M., Witke W., Rottner K. Molecular dissection of neurodevelopmental disorder-causing mutations in CYFIP2. Cells. 2020;9(6):1355. DOI 10.3390/cells9061355.; Schaks M., Singh S.P., Kage F., Thomason P., Klünemann T., Steffen A., Blankenfeldt W., Stradal T.E., Insall R.H., Rottner K. Distinct interaction sites of RAC GTPase with WAVE regulatory complex have non-redundant functions in vivo. Curr. Biol. 2018;28(22): 3674-3684.e6. DOI 10.1016/j.cub.2018.10.002.; Seo J., Kim J. Regulation of Hippo signaling by actin remodeling. BMB Rep. 2018;51(3):151-156. DOI 10.5483/bmbrep.2018.51.3.012.; Sharma A., Hoeffer C.A., Takayasu Y., Miyawaki T., McBride S.M., Klann E., Zukin R.S. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 2010;30(2):694-702. DOI 10.1523/JNEUROSCI.3696-09.2010.; Suzuki Y., Lu M., Ben-Jacob E., Onuchic J.N. Periodic, quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci. Rep. 2016;6:21037. DOI 10.1038/srep21037.; Tapon N., Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 1997;9(1): 86-92. DOI 10.1016/s0955-0674(97)80156-1.; Totaro A., Panciera T., Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 2018;20(8):888-899. DOI 10.1038/s41556-018-0142-z.; Trifonova E.A., Khlebodarova T.M., Gruntenko N.E. Molecular mechanisms of autism as a form of synaptic dysfunction. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(6):959-967. DOI 10.18699/VJ16.217. (in Russian); Trifonova E.A., Khlebodarova T.M., Gruntenko N.E. Molecular mechanisms of autism as a form of synaptic dysfunction. Russ. J. Genet.: Appl. Res. 2017;7(8):869-877.; Troca-Marin J.A., Alves-Sampaio A., Montesinos M.L. Deregulated mTOR-mediated translation in intellectual disability. Prog. Neurobiol. 2012;96(2):268-282. DOI 10.1016/j.pneurobio.2012.01.005.; Tumaneng K., Schlegelmilch K., Russell R.C., Yimlamai D., Basnet H., Mahadevan N., Fitamant J., Bardeesy N., Camargo F.D., Guan K.L. YAP mediates crosstalk between the Hippo and PI(3) K–TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 2012;14(12):1322-1329. DOI 10.1038/ncb2615.; Won H., Mah W., Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front. Mol. Neurosci. 2013;6:19. DOI 10.3389/fnmol.2013.00019.; Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Epilepsia. 2010;51(1):27-36. DOI 10.1111/j.1528-1167.2009.02341.x.; Wostyn P. Intracranial pressure and Alzheimer’s disease: a hypothesis. Med. Hypotheses. 1994;43(4):219-222. DOI 10.1016/0306-9877(94)90069-8.; Yu F.X., Zhao B., Guan K.L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811-828. DOI 10.1016/j.cell.2015.10.044.; Zamboni V., Jones R., Umbach A., Ammoni A., Passafaro M., Hirsch E., Merlo G.R. Rho GTPases in intellectual disability: from genetics to therapeutic opportunities. Int. J. Mol. Sci. 2018;19:1821. DOI 10.3390/ijms19061821.; Zhang Y., Lee Y., Han K. Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy. BMB Rep. 2019;52(5):304-311. DOI 10.5483/BMBRep.2019.52.5.097.; Zhou J., Parada L.F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 2012;22(5):873-879. DOI 10.1016/j.conb.2012.05.004.; Zhu T., Ma Z., Wang H., Jia X., Wu Y., Fu L., Li Z., Zhang C., Yu G. YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways. Mol. Cell. Biochem. 2020; 475(1-2):137-149. DOI 10.1007/s11010-020-03866-9.; Zukin R.S., Richter J.D., Bagni C. Signals, synapses, and synthesis: how new proteins control plasticity. Front. Neural Circuits. 2009; 3:14. DOI 10.3389/neuro.04.014.2009.; Zweier M., Begemann A., McWalter K., Cho M.T., Abela L., Banka S., Behring B., Berger A., Brown C.W., Carneiro M., Chen J., Cooper G.M. Deciphering Developmental Disorders (DDD) Study, Finnila C.R., Guillen Sacoto M.J., Henderson A., Hüffmeier U., Joset P., Kerr B., Lesca G., Leszinski G.S., McDermott J.H., Meltzer M.R., Monaghan K.G., Mostafavi R., Õunap K., Plecko B., Powis Z., Purcarin G., Reimand T., Riedhammer K.M., Schreiber J.M., Sirsi D., Wierenga K.J., Wojcik M.H., Papuc S.M., Steindl K., Sticht H., Rauch A. Spatially clustering de novo variants in CYFIP2, encoding the cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures. Eur. J. Hum. Genet. 2019;27(5):747-759. DOI 10.1038/s41431-018-0331-z.; https://vavilov.elpub.ru/jour/article/view/2921

  11. 11
    Academic Journal

    Source: Russian Journal of Child Neurology; Том 16, № 1-2 (2021); 69-75 ; Русский журнал детской неврологии; Том 16, № 1-2 (2021); 69-75 ; 2412-9178 ; 2073-8803 ; 10.17650/2073-8803-2021-16-1-2

    File Description: application/pdf

    Relation: https://rjdn.abvpress.ru/jour/article/view/364/246; Белоусова Е.Д., Заваденко Н.Н., Холин А.А., Шарков A.A. Новые международные классификации эпилепсий и эпилептических приступов Международной лиги по борьбе с эпилепсией (2017). Журнал неврологии и психиатрии им. С.С. Корсакова 2017;117(7):99–106. [Belousova E.D., Zavadenko N.N., Kholin A.A., Sharkov A.A. New international classifications of epilepsy and epileptic seizures of the International League Against Epilepsy (2017). Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry 2017;117(7):99–106. (In Russ.)].; Мухин К.Ю., Пылаева О.А. Формирование когнитивных и психических нарушений при эпилепсии: роль различных факторов, связанных с заболеваниеми лечением (обзор литературы и описания клинических случаев). Русский журнал детской неврологии 2017;3(12):7–33. [Mukhin K.Yu., Pylaeva O.A. Development of cognitive and mental disorders in epilepsy: the role of various factors associated with the disease and treatment (literature review and case reports). Russkiy zhurnal detskoy nevrologii = Russian Journal of Child Neurology 2017;12(3):7–33. (In Russ.)].; Hamdan F.F., Myers C.T., Cossette P. et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet 2017;101(5):664–85. DOI:10.1016/j.ajhg.2017.09.008.; Higashimori A., Dong Yu., Zhang Y. et al. Forkhead box F2 suppresses gastric cancer through a novel FOXF2-IRF2BPL-bCatenin signaling axis. Cancer Research 2018;7(78):1643–56.; Marcogliese P., Shashi V., Spillmann R.C. et al. Loss-of-function in IRF2BPL is associated with neurological phenotypes. BioRxiv 2018:322495.; McRae J.F., Clayton S., Fitzgerald T.W. et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature 2017;7642(542):433–8.; Scheffer I.E., Liao J. Deciphering the concepts behind “Epileptic encephalopathy” and “Developmental and epileptic encephalopathy”. Eur J Paediatr Neurol 2020;24:11–4.; Skorvanek M., Dusek P., Rydzanicz M. et al. Neurodevelopmental disorder associated with IRF2BPL gene mutation: Expanding the phenotype? Parkinsonism Relat Disord 2019;62:239–41. DOI:10.1016/j.parkreldis.2019.01.017.; Tran Mau-Them F., Guibaud L., Duplomb L. et al. De novo truncating variants in the intronless IRF2BPL are responsible for developmental epileptic encephalopathy. Genet Med 2019;4(21):1008–14.; https://rjdn.abvpress.ru/jour/article/view/364

  12. 12
    Academic Journal

    Source: Russian Journal of Child Neurology; Том 15, № 3-4 (2020); 78-91 ; Русский журнал детской неврологии; Том 15, № 3-4 (2020); 78-91 ; 2412-9178 ; 2073-8803 ; 10.17650/2073-8803-2020-15-3-4

    File Description: application/pdf

    Relation: https://rjdn.abvpress.ru/jour/article/view/354/240; Beaujard M.P., Jouannic J.M., Bessières B. et al. Prenatal detection of a de novo terminal inverted duplication 4p in a fetus with the Wolf–Hirschhorn syndrome phenotype. Prenat Diagn 2005;25(6):451–5.; Chen C.P., Su Y.N., Chen Y.Y. et al. Wolf–Hirschhorn (4p–) syndrome: prenatal diagnosis, molecular cytogenetic characterization and association with a 1.2-Mb microduplication at 8p22-p21.3 and a 1.1-Mb microduplication at 10p15.3 in a fetus with an apparently pure 4p deletion. Taiwan J Obstet Gynecol 2011;50(4):506–11. DOI:10.1016/j.tjog.2011.10.019.; Hirsch B., Baldinger S. Pericentric inversion of chromosome 4 giving rise to dup(4p) and dup(4q) recombinants within a single kindred. Am J Med Genet 1993;45(1):5–8.; Malvestiti F., Benedicenti F., De Toffol S. et al. Recombinant chromosome 4 from a familial pericentric inversion: prenatal and adulthood wolf-hirschhorn phenotypes. Case Rep Genet 2013;2013:306098. DOI:10.1155/2013/306098.; Paskulin G.A., Riegel M., Cotter P.D. et al. Inv dup del(4) (:p13→p16.3::p16.3→qter) in a girl without typical manifestations of Wolf–Hirschhorn syndrome. Am J Med Genet A 2009;149A(6):1302–7. DOI:10.1002/ajmg.a.32888.; Puig M., Casillas S., Villatoro S., Cáceres M. Human inversions and their functional consequences. Brief Funct Genomics 2015;14(5):369–79. DOI:10.1093/bfgp/elv020.; Stipoljev F., Stanojevic M., Kurjak A. Familial pericentric inversion of chromosome 4: inv(4)(p16.1q12). Clin Genet 2002:61:386–8.; Verrotti A., Carelli A., di Genova L., Striano P. Epilepsy and chromosome 18 abnormalities: A review. Seizure 2015;32:78–8. DOI:10.1016/j.seizure.2015.09.013.; Villa A., Urioste M., Carrascosa M.C. et al. Pericentric inversions of chromosome 4: report of a new family and review of the literature. Clin Genet 1995;48(5):255–60.; Zollino M., Murdolo M., Marangi G. et al. On the nosology and pathogenesis of Wolf–Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review. Am J Clin Genet C 2008;148(4):257–69.; https://rjdn.abvpress.ru/jour/article/view/354

  13. 13
    Academic Journal

    Source: Medical Genetics; Том 19, № 11 (2020); 47-53 ; Медицинская генетика; Том 19, № 11 (2020); 47-53 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1795/1428; Российское общество психиатров. Расстройство аутистического спектра: диагностика, лечение, наблюдение. Клинические рекомендации (протокол лечения) - 2015. - 50 c. http//www: psychiatry.ru; Chaste P., Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281-292.; Liao H.M., Gau S.S., Tsai W.C., Fang JS., Su Y.C., Chou M.C., Liu S.K., Chou W.J., Wu Y.Y., Chen C.H. Chromosomal abnormalities in patients with autism spectrum disorders from Taiwan. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(7):734-741.; Berg J.M., Geschwind D.H. Autism genetics: searching for specificity and convergence. Genome Biol. 2012;13:247.; Iossifov I., O’Roak B.J., Sanders S.J. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;525 (7526):216-221.; Helsmoortel C., Vulto-van Silfhout A.T., Coe B.P., et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet. 2014;46:380e4.; Krajewska-Walasek M., Jurkiewicz D., PiekutowskaAbramczuk D., et al. Additional data on the clinical phenotype of Helsmoortel-Van der Aa syndrome associated with a novel truncating mutation in ADNP gene. Am J Med Genet A. 2016;170:1647e50.; Coe B.P., Witherspoon K., Rosenfeld J.A., et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46:1063e71.; De Rubeis S., He X., Goldberg A.P., et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209e15.; Pescosolido M.F., Schwede M., Johnson Harrison A., et al. Expansion of the clinical phenotype associated with mutations in activity-dependent neuroprotective protein. J Med Genet. 2014;51:587e9.; Vandeweyer G., Helsmoortel C., Van Dijck A., et al. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. Am J Med Genet C. 2014;166:315e26.; Pascolini G., Agolini E., Majore S., Novelli A., Grammatico P., Digilio M.C. Helsmoortel-Van der Aa Syndrome as emerging clinical diagnosis in intellectually disabled children with autistic traits and ocular involvement. Eur J Paediatr Neurol. 2018 May;22(3):552-557.; Zamostiano R., Pinhasov A., Gelber E., et al. Cloning and characterization of the human activity-dependent neuroprotective protein. J Biol Chem. 2001;276:708e14.; Magen I., Gozes I. Davunetide: peptide therapeutic in neurological disorders. Curr Med Chem. 2014;21:2591e8.; Pinhasov A., Mandel S., Torchinsky A. et al. Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res Dev Brain Res. 2003;144:83e90.; Takenouchi T., Miwa T., Sakamoto Y., Sakaguchi Y., Uehara T., Takahashi T., et al. Further evidence that a blepharophimosis syndrome phenotype is associated with a specific class of mutation in the ADNP gene. Am J Med Genet A. 2017;173:1631e4.; Verloes A., Bremond-Gignac D., Isidor B., et al. Blepharophimosis-mental retardation (BMR) syndromes: a proposed clinical classification of the so-called Ohdo syndrome, a delineation of two new BMR syndromes, one xlinked and one autosomal recessive. Am J Med Genet. 2006;140:1285e96.; Clayton-Smith J., O’Sullivan J., Daly S., et al. Whole-exomesequencing identifies mutation in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet. 2011;89:675e81.; Vulto-van Silfhout A.T., De Vries B.B.A., van Bon B.W.M., et al. Mutations in MED12 cause X-linked Ohdo syndrome. Am J Hum Genet. 2013;92:401e6.

  14. 14
    Academic Journal

    Source: Modern Pediatrics. Ukraine; No. 4(116) (2021): Modern Pediatrics. Ukraine; 56-75
    Современная педиатрия. Украина; № 4(116) (2021): Современная педиатрия. Украина; 56-75
    Сучасна педіатрія. Україна; № 4(116) (2021): Сучасна педіатрія. Україна; 56-75

    File Description: application/pdf

  15. 15
  16. 16
    Academic Journal

    Contributors: The study was performed as part of the state task of the Ministry of Education and Science of Russia to carry out research work in 2019, Исследование проведено в рамках государственного задания Минобрнауки России на выполнение научно-исследовательских работ в 2019 г

    Source: Russian Journal of Child Neurology; Vol 14, No 3 (2019); 28-36 ; Русский журнал детской неврологии; Vol 14, No 3 (2019); 28-36 ; 2412-9178 ; 2073-8803

    File Description: application/pdf

  17. 17
  18. 18
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей IV Международной научно-практической конференции молодых учёных и студентов, IV Всероссийского форума медицинских и фармацевтических вузов «За качественное образование», (Екатеринбург, 10-12 апреля 2019): в 3-х т. - Екатеринбург: УГМУ, CD-ROM.; http://elib.usma.ru/handle/usma/4093

  19. 19
  20. 20
    Academic Journal

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 11, No 4 (2019); 77-81 ; Неврология, нейропсихиатрия, психосоматика; Vol 11, No 4 (2019); 77-81 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2019-4

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1213/967; Howard MA, Baraban SC. Catastrophic Epilepsies of Childhood. Annu Rev Neurosci. 2017 Jul 25;40:149-166. doi:10.1146/annurev-neuro-072116-031250.; Kuzniecky R. Catastrophic focal epilepsy. Epilepsia. 2004;45 Suppl 4:2-3.; Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017 Apr;58(4):522-530. doi:10.1111/epi.13670. Epub 2017 Mar 8.; Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017 Apr;58(4):512-521. doi:10.1111/epi.13709. Epub 2017 Mar 8.; Авакян ГН, Блинов ДВ, Лебедева АВ и др. Классификация эпилепсии Международной противоэпилептической лиги: пересмотр и обновление 2017 года. Эпилепсия и пароксизмальные состояния. 2017;9(1): 6-25.; Котов АС, Толстова НВ. К вопросу об идиопатических генерализованных и криптогенных фокальных эпилепсиях у подростков и молодых взрослых. Неврологический журнал. 2012;(1):21-5.; Петрухин АС, Мухин КЮ, Благосклонова НК, Алиханов АА. Эпилептология детского возраста. Москва; 2000. 623 с.; Редакционная статья. Рекомендации экспертного совета по нейрофизиологии российской противоэпилептической лиги по проведению рутинной ЭЭГ. Эпилепсия и пароксизмальные состояния. 2016;8(4): 99-108.; Lombardo AJ, Kuzniecky R, Powers RE, Brown GB. Altered brain sodium channel transcript levels in human epilepsy. Brain Res Mol Brain Res. 1996 Jan;35(1-2):84-90.; Lö scher W, Schmidt D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia. 2006 Aug;47(8):1253-84.; Vreugdenhil M, van Veelen CW, van Rijen PC, et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res. 1998 Sep;32(1-2):309-20.; Avanzini G. Is tolerance to antiepileptic drugs clinically relevant? Epilepsia. 2006 Aug; 47(8):1285-7.; Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol. 2003 Apr;53(4): 469-79.; Von Oertzen J, Urbach H, Jungbluth S, et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry. 2002 Dec;73(6):643-7.; Baxter P, Clarke A, Cross H, et al. Idiopathic catastrophic epileptic encephalopathy presenting with acute onset intractable status. Seizure. 2003 Sep;12(6):379-87.; Nariai H, Duberstein S, Shinnar S. Treatment of Epileptic Encephalopathies: Current State of the Art. J Child Neurol. 2018 Jan;33(1): 41-54. doi:10.1177/0883073817690290. Epub 2017 Jan 30.; Villanueva VE, Serratosa JM. The course of the catastrophic epilepsies. Rev Neurol. 2002 Mar; 16-31;34(6):501-5.; Park JT, Fernandez-Baca Vaca G, Tangen RB, et al. Noninvasive Presurgical Data for OneStage Leucotomy in Catastrophic Epilepsy. World Neurosurg. 2018 Aug;116:268-273. doi:10.1016/j.wneu.2018.05.182. Epub 2018 Jun 1.; Grioni D, Landi A, Gasperini S, et al. Vagal Nerve Stimulation in the Treatment of DrugResistant Epileptic Encephalopathies in Inborn Errors of Metabolism: Report of 2 Cases. Child Neurol Open. 2015 Oct 25;2(4):2329048X15612432. doi:10.1177/2329048X15612432.eCollection 2015 Oct-Dec.; Blumer D, Davies K, Alexander A, Morgan S. Major Psychiatric Disorders Subsequent to Treating Epilepsy by Vagus Nerve Stimulation. Epilepsy Behav. 2001 Oct;2(5): 466-472.; Рудакова ИГ, Белова ЮА, Котов АС. Фармакорезистентная эпилепсия поддается лечению. Вестник эпилептологии. 2013;(1): 3-7.; Китаева ВЕ, Котов АС. Эффективность лечения пациентов с длительным течением медиальной височной эпилепсии. Эпилепсия и пароксизмальные состояния. 2018; 10(3):31-7.; Котов СВ, Рудакова ИГ, Морозова ОС. Влияние современных антиэпилептических препаратов на качество жизни больных эпилепсией. Журнал неврологии и психиатрии им. С.С. Корсакова. 2008;108(3):36.; Glauser TA. Following catastrophic epilepsy patients from childhood to adulthood. Epilepsia. 2004;45 Suppl 5:23-6.