-
1Academic Journal
Authors: Chindam, A., IlanjiAkilandam, C., Venugopal, D.
Source: Problemele Energeticii Regionale 67 (3) 187-203
Subject Terms: powerquality (PQ), PV, Coupled Inductor Dual Boost converter, Coyote Optimized RBFNN MPPT, DNN, calitatea energiei, fotovoltaică, convertor elevatorcu inductor cuplat, algotitm deoptimizareCoyote, rețea neuronală, качествомощности, фотовольтаика, двойной повышающий преобразователь со связанными индукторами, оптимизированный для Coyote RBFNN MPPT
File Description: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/234400; urn:issn:18570070
-
2Academic Journal
Authors: Qin Lisongа Qin, S. E. Shcheklein, Y. E. Nemikhin, Лисуна Цинь, С. Е. Щеклеин, Ю. Е. Немихин
Source: Alternative Energy and Ecology (ISJAEE); № 2 (2025); 27-37 ; Альтернативная энергетика и экология (ISJAEE); № 2 (2025); 27-37 ; 1608-8298
Subject Terms: малозатратные ФЭ системы, plane mirror, specular reflection, photovoltaic concentrating system, photovoltaic, planar mirror photovoltaics, geometric-optical optimization, Low-cost PV systems, плоское зеркало, зеркальное отражение, фотоэлектрическая концентрирующая система, фотовольтаика, плоские зеркала для фотоэлектричества, геометрико-оптическая оптимизация
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2599/2116; Zhang Lei. Discussion on the design method of two-reflection multi-plane mirror concentrated solar photovoltaic system // Hefei University of Technology, 2009.; Fthenakis V. M., Kim H. C., Alsema E. Emissions from photovoltaic life cycles // Environmental science & technology, 2008, 42(6): 2168-2174.; Fthenakis V. M., Kim H. C. Photovoltaics: Life-cycle analyses // Solar Energy, 2011, 85(8): 1609-1628.; Peng J., Lu L., Yang H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems // Renewable and sustainable energy reviews, 2013, 19: 255-274.; Zou Jiaying. Design and research of multi-mirror concentrated solar photovoltaic system // Hefei University of Technology, 2013.; Wang Jianping, Zhang Lei. Discussion on the design method of two-reflection multi-mirror solar condenser // Energy Technology, 2009 (3):5.; Zamani H., Moghiman M., Kianifar A. Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM) // Renewable Energy, 2015, 81: 753-759.; Chen Nuofu, Bai Yiming. Concentrated photovoltaic system // Physics, 2007, 36(11): 862-868.; De Feo G., Forni M., Petito F. et al. Life cycle assessment and economic analysis of a low concentrating photovoltaic system // Environmental technology, 2016, 37(19): 2473-2482.; Sheng Fei. Research on key technologies of high efficiency concentrated solar cells and photovoltaic systems // Hubei University of Technology, 2015.; Pu Shaoxuan, Xia Chaofeng. Optical design of full-plane mirror reflecting solar condenser // Journal of Agricultural Engineering, 2011, 27(12): 282-285.; Yusuf A., Garcia D. A. Energy, exergy, economic, and environmental (4E) analysesofbifacialconcentratedthermoelectric-photovoltaicsystems // Energy, 2023, 282: 128921.; Lu Jiaqi, Zhang Ning, Yin Peng, etc. Research progress on the optical design type of solar photovoltaic condenser // Laser & Optoelectronics Progress, 2019, 56(23): 230002.; Jia Fuyun, Ma Mianjun, Sun Yanjie, etc. Optical design and optical efficiency of cylindrical Fresnel solar condenser lens // China Space Science and Technology, 2002, 22(6): 1-5.; Zhang Qian. Theoretical analysis and experimental research of linear Fresnel reflective solar condenser // University of Science and Technology of China, 2013.; Zhang Ming, Huang Liangfu, Luo Chongtai, An Dongliang, Sun Yanjie, Wang Duoshu, Guo Juntao. Design and optical efficiency of flat Fresnel lens for space use // Optoelectronic Engineering, 2001(05):18-21.; Korotkov V. V., Yavnov et al., Mitsura D. I. Solar collectors with a parabolic trough. A sustainable and efficient energy source // Bulletin of Science, 2024, 2(6 (75)): 2233-2240.; Bachhav C. Y., Sonawwanay P. D. Study on design and performance enhancement of Fresnel lens solar concentrator // Materials Today: Proceedings, 2022, 56: 2873-2879.; Zhang Yao. Optimized design of solar condenser mirror structure // University of Electronic Science and Technology, 2016.; Xu Hongyu, Xu Cheng, Wu Lining, Yang Yongping. Design and performance analysis of secondary reflector multi-dish solar concentrator // Acta Energiae Solaris Sinica, 2022, 43(10): 126-132.; Sadchikov N. A., Andreeva A. V. Linear Fresnel lenses with reduced chromatic aberration for space solar panels // Letters to the Journal of Technical Physics, 2023, 49(23): 59-61.; Pokotilov V. V., Rutkovsky M. A. Using solar energy to improve the energy efficiency of residential buildings: a reference guide // Minsk: UNDP/GEF, Department for Energy Efficiency of the State Standard of the Republic of Belarus. Belarus, 2015.; Sun Gang, Weng Ningquan, and Xiao Liming. Analysis on the statistical characteristics of atmospheric refractive index structure constant Cn~2 height distribution // Journal of Atmospheric and Environmental Optics, 2011, 6(02): 83-88.; Li P. J., Liu T. X., Qin Y. L. et al. Design and performance investigation of modified dual reflector parabolic trough collector with double planar mirrors // Science China Technological Sciences, 2024, 67(3): 902-918.; He Y. L., Wang K., Qiu Y. et al. Review of the solar flux distribution in concentrated solar power: Nonuniform features, challenges, and solutions // Applied Thermal Engineering, 2019, 149: 448-474.; Sun Gang, Weng Ningquan, Xiao Liming, Ma Chengsheng. Distribution characteristics and analysis of atmospheric refractive index structure constant in different regions // High Power Laser and Particle Beams, 2005(04):485-490.; Li S., Xu J., Lou J. et al. Mirror Surface Assessment in Solar Power Applications by 2-D Coded Light //iEEE Transactions on Instrumentation and Measurement, 2019, 69(6): 3555-3565.; Zhang Kun, Luo Tao, Wang Fei-Fei, Sun Gang, Liu Qing, Qing Chun, Li Xuebin, Weng Ningquan, Zhu Wen-Yue. Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data. Acta Phys. Sin., 2022, 71(8): 089202.; Marszałek K., Winkowski P., Jaglarz J. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings // Materials Science-Poland, 2014, 32: 80-87.; Kumar V. S. R. S. P., Kumar M., Kumari N. et al. Fabrication of Al2O3/SiO2 multilayer reflective filters with excellent uniformity for demanding optical interference filters // Materials research express, 2019, 6 (6): 066410.; Zeng T., Zhu M., Chai Y. et al. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces // Photonics Research, 2021, 9(2): 229-236.; Wan L., Yang J., Liu X. et al. Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm // Polish Journal of Chemical Technology, 2024, 26(2).; Gottschalk H., Saadi M. Shape gradients for the failure probability of a mechanic component under cyclic loading: a discrete adjoint approach // Computational Mechanics, 2019, 64: 895-915.; Martínez-Pañeda E., Deshpande V. S., Niordson C. F. et al. The role of plastic strain gradients in the crack growth resistance of metals // Journal of the Mechanics and Physics of Solids, 2019, 126: 136-150.; Shishvan S. S., Assadpour-asl S., Martinez-Paneda E. A mechanism-based gradient damage model for metallic fracture // Engineering Fracture Mechanics, 2021, 255: 107927.; Che Shuping. Research on the optical and heat collection properties of linear Fresnel reflection system // Shandong: Shandong University, 2012.; Qu Lixin. Environmental adaptability design of space mirror assembly // Photoelectric engineering, 2016, 43(5): 41-46.; Apostoleris H., Stefancich M., Chiesa M. Tracking-integrated systems for concentrating photovoltaics // Nature Energy, 2016, 1(4): 1-8.; Díaz-Báñez J. M., Higes-López J. M., PérezCutiño M. A. et al. Optimal energy collection with rotational movement constraints in concentrated solar power plants // European Journal of Operational Research, 2024, 317(2): 631-642.; Lorilla F. M. A., Barroca R. Challenges and recent developments in solar tracking strategies for concentrated solar parabolic dish //indones. J. Electr. Eng. Comput. Sci, 2022, 26(3): 1368-1378.; https://www.isjaee.com/jour/article/view/2599
-
3Conference
Authors: Ivanov, Vladimir, Sapori, Daniel
Subject Terms: тандемные солнечные элементы, photovoltaics, Perovskite solar cells, перовскитные солнечные элементы, semitransparent electrode, double electron transport layer, фотовольтаика, tandem solar cells, двойной электронный транспортный слой, полупрозрачный электрод
-
4Academic Journal
Source: Горный журнал Казахстана. :42-46
Subject Terms: metallurgy-grade silicon, шихта, металлургический кремний, induction furnace, фотоэнергетика, elemental analysis, solar energy, солнечная энергетика, фотовольтаика, изложница, 7. Clean energy, slag, photovoltaic, элементный анализ, slag refining, photovoltaics, шлак, charge, шлаковое рафинирование, casting-form, индукционная печь
-
5Conference
Authors: Bogdanova, A. N., Averyanova, Yu. A.
Subject Terms: RENEWABLE ENERGY SOURCES, ПЕРЕРАБОТКА, PHOTOVOLTAICS, RECYCLING, УТИЛИЗАЦИЯ, СОЛНЕЧНЫЕ ПАНЕЛИ, ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ, SOLAR PANELS, ФОТОВОЛЬТАИКА, UTILIZATION
File Description: application/pdf
Access URL: https://elar.rsvpu.ru/handle/123456789/42786
-
6Conference
Authors: Nikolskaia, Anna, Kozlov, Sergey, Alexeeva, Olga, Vildanova, Marina, Karyagina, Olga, Almjasheva, Oksana, Gusarov, Victor, Shevaleevskiy, Oleg
Subject Terms: ternary complex oxides, перовскитные солнечные элементы, электронно-транспортный слой, солнечная фотовольтаика, тройные сложные оксиды, electron transport layer, 7. Clean energy, perovskite solar cells, solar photovoltaics
-
7Conference
Subject Terms: ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ, ФОТОВОЛЬТАИКА, СОЛНЕЧНЫЕ ПАНЕЛИ, УТИЛИЗАЦИЯ, ПЕРЕРАБОТКА, RENEWABLE ENERGY SOURCES, PHOTOVOLTAICS, SOLAR PANELS, UTILIZATION, RECYCLING
Subject Geographic: RSVPU
File Description: application/pdf
Relation: Экологическая безопасность в техносферном пространстве : сборник материалов Шестой Международной научно-практической конференции преподавателей, молодых ученых и студентов. - Екатеринбург, 2023
Availability: https://elar.uspu.ru/handle/ru-uspu/42786
-
8Academic Journal
Authors: Oleg V. Devitsky, Igor A. Sysoev
Source: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 3, Pp 16-21 (2022)
Subject Terms: наногетероструктуры, фотовольтаика, солнечная энергетика, фотоэлектри-ческий преобразователь, солнечный элемент, silvaco tcad, моделирование солнечных элементов, heterostructure, photovoltaics, solar energy, photoelectric converter, solar cell, modeling of solar cells, Economics as a science, HB71-74
File Description: electronic resource
-
9Academic Journal
Authors: Oleg Devitsky, Igor Sysoev, Ivan Kasyanov
Source: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 14-20 (2022)
Subject Terms: наногетероструктуры, фотовольтаика, солнечная энергетика, фотоэлектрический преобразователь, солнечный элемент, silvaco tcad, моделирование солнечных элементов, heterostructure, photovoltaics, solar energy, photoelectric converter, solar cell, modeling of solar cells, Economics as a science, HB71-74
File Description: electronic resource
-
10Academic Journal
Authors: S. Zh. Tokmoldin, V. V. Klimenov, D. V. Girin, N. A. Chuchvaga, K. P. Aimaganbetov, M. P. Kishkenebaev, S. N. Tarakanova, N. S. Tokmoldin, С. Ж. Токмолдин, В. В. Клименов, Д. В. Гирин, Н. А. Чучвага, К. П. Аймаганбетов, М. П. Кишкенебаев, С. Н. Тараканова, Н. С. Токмолдин
Contributors: The Authors are grateful to the Ministry of Education and Science of the Republic of Kazakhstan for project funding, No. AP09259279., Авторы благодарят Министерство образования и науки Республики Казахстан за финансирования проекта № AP09259279.
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 2 (2022); 125-136 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 2 (2022); 125-136 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-2
Subject Terms: фотовольтаика, HIT, agrarian industry, electric generator, photovoltaic, аграрная промышленность, электрогенератор
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/464/372; Энергетика Иордании. EES EAEC. Мирровая энергетика. https://www.eeseaec.org/energetika-stran-mira/energetika-iordanii (дата обращения: 17.05.2022).; Al-Saidi M., Lahham N. Solar energy farming as a development innovation for vulnerable water basins. Development in Practice. 2019; 29(5): 619—634. https://doi.org/10.1080/09614524.2019.1600659; Majewski J., Szymanek M. Technical, economic and legal conditions of the development of photovoltaic generation in Poland. Acta Energetica. 2012; 2(11): 21—26.; Swanson R.M. The promise of concentrators. Progress in Photovoltaics: Research and Application. 2000; 8(1): 93—104. https://doi.org/10.1002/(sici)1099-159x(200001/02)8:13.0.co; Photovoltaic device performance calibration services. https://pvdpc.nrel.gov/ (дата обращения: 22.08.2019).; Андреев В.М. Концентраторная солнечная фотоэнергетика. Альтернативная энергетика и экология (ISJAEE). 2012; (5-6): 40—44.; Алфёров Ж.И., Андреев В.М., Румянцев В.Д. Тенденции и перспективы развития солнечной фотоэнергетики. Физика и техника полупроводников. 2004; 38(8): 937—948.; Andreev V.M., Grilikhes V.A., Rumyantsev V.D. Photovoltaic conversion of concentrated sunlight. John Wiley & Sons Ltd; 1997. 312 p.; Andreev V.M., Khvostikov V.P., Rumyantsev V.D., Paleeva E.V., Shvarts M.Z., Algora C. Technical digest of the international PVSEC-11. Proc. of the 24th Linear Accelerator Meeting. Japan, Sapporo. July 7–9, 1999. 147 p.; Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cell efficiency tables (version 42). Progress in Photovoltaics. 2013; 21(5): 827—837. https://doi.org/10.1002/pip.2404; Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cell efficiency tables (version 43). Progress in Photovoltaics. 2014; 22(1): 1—9. https://doi.org/10.1002/pip.2452; Sawada T., Terada N., Tsuge S., Baba T., Takahama T., Wakisaka K., Tsuda S., Nakano S. High-efficiency a-Si/c-Si heterojunction solar cell. Proc. of 1994 IEEE 1st World Conf. on Photovoltaic Energy Conversion – WCPEC (A Joint Conference of PVSC, PVSEC and PSEC). Waikoloa, HI, USA. 5–9 Dec., 1994. USA: IEEE; 1994: 1219—1226. https://doi.org/10.1109/WCPEC.1994.519952; Yamamoto K. 25.1% efficiency Cu metallized heterojunction crystalline Si solar cell. 25th Int. Photovoltaic Sc. and Eng. Conf. Busan, Korea. November, 2015.; Dimroth F., Tibbits T., Niemeyer M., Predan F., Beutel P., Karcher C., Oliva E., Siefer G., Lackner D., Fus-Kailuweit P., Bett A., Krause R., Drazek C., Guiot E., Wasselin J., Tauzin A., Signamarcheix T. Four-junction wafer-bonded concentrator solar cells. IEEE Journal of Photovoltaics. 2016; 6(1): 343—349. https://doi.org/10.1109/JPHOTOV.2015.2501729; Geisz J.F., Steiner M.A., Jain N., Schulte K., France R., McMahon W., Perl E., Friedman D. Building a six-junction inverted metamorphic concentrator solar cell. IEEE Journal of Photovoltaics. 2018; 8(2): 626—632. https://doi.org/10.1109/JPHOTOV.2017.2778567; Dimroth F, Tibbits TND, Niemeyer M, et al. Four-junction wafer-bonded concentrator solar cells. IEEE Journal of Photovoltaics. 2016; 6(1): 343—349. https://doi.org/10.1109/PVSC.2015.7356148; Sharp develops concentrator solar cell with world’s highest conversion efficiency of 43.5%: Achieved with concentrator triple-junction compound solar cell. Press release Sharp Corporation. May 31, 2012. http://sharp-world.com/corporate/news/120531.html; Slade A., Garboushian V. 27.6% efficient silicon concentrator cell for mass production. Techn. Digest. 15th Inter. Photovoltaic Sc. and Eng. Conf. Beijing, October 11–13, 2005; 701 р. https://www.researchgate.net/publication/267779112_276_Efficient_Silicon_Concentrator_Solar_Cells_for_Mass_Production; Ward J.S., Ramanathan K., Hasoon F.S., Coutts T.J., Keane J., Contreras M.A., Moriarty T., Noufi R.A. 21.5% efficient Cu (In,Ga) Se2 thin-film concentrator solar cell. Progress in Photovoltaics Research and Application. 2002; 10(1): 41—46. https://doi.org/10.1002/pip.424; Chiang C.J., Richards E.H. A twenty percent efficient photovoltaic concentrator module. Proc. IEEE Conf. on Photovoltaic Specialists. Kissimmee, FL, USA. 21–25 May, 1990. IEEE; 1990: 861—863. https://doi.org/10.1109/PVSC.1990.111743; Yoshikawa K., Kawasaki H., Yoshida W., Irie T., Konishi K., Nakano K., Uto T., Adachi D., Kanematsu M., Uzu H., Yamamoto K. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy. 2017; 2(5): 17032. https://doi.org/10.1038/NENERGY.2017.32; Токмолдин Н.С., Чучвага Н.А., Вербицкий В.Н., Теруков Е.И., Титов А.С., Токмолдин С.Ж., Жолдыбаев К.С. Использование солнечных элементов с двусторонней контактной сеткой в условиях Казахстана. Журнал технической физики. 2017; 87(12): 1879—1883. https://doi.org/10.21883/JTF.2017.12.45213.2274; López A.L., Andreev V.M. (eds.). Silicon concentrator solar cells. In: Concentrator photovoltaics. Vol. 130. Springer series in optical sciences. Heidelberg, Berlin: Springer; 2007: 51—66. https://doi.org/10.1007/978-3-540-68798-6_3; https://met.misis.ru/jour/article/view/464
-
11Academic Journal
Authors: Naseer T. Alwan, S. E. Shcheklein, Насир Т. Алван, С. Е. Щеклеин
Contributors: The article was prepared with the financial support of the Government of the Russian Federation (Contract № 02.А03.21.0006)., The article was prepared with the financial support of the Government of the Russian Federation (Contract №02.А03.21.0006).
Source: Alternative Energy and Ecology (ISJAEE); № 28-30 (2020); 39-46 ; Альтернативная энергетика и экология (ISJAEE); № 28-30 (2020); 39-46 ; 1608-8298
Subject Terms: пустыня, vapor- compression refrigeration, photovoltaics, accumulate, atmosphere, sun, desert, парокомпрессионное охлаждение, фотовольтаика, аккумулирование, атмосфера, солнце
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2148/1767; S. Edition, Copyright, 2009. https://doi.org/10.1016/b978-0-12-374501-9.00014-5.; Y. Sayato, WHO Guidelines for Drinking-Water Quality, Eisei Kagaku. 35 (1989) 307–312. https://doi.org/10.1248/jhs1956.35.307.; World Health Organization (WHO), "Guidelines for Drinking-water Quality", Third Edition Incorporating the First and Second Addenda, Vol. 1, Geneva, 2008.; A.M.K. El-Ghonemy, Fresh water production from/by atmospheric air for arid regions, using solar energy: Review, Renew. Sustain. Energy Rev. 16 (2012) 6384–6422. https://doi.org/10.1016/j.rser.2012.06.029.; H. Kim, S.R. Rao, E.A. Kapustin, L. Zhao, S. Yang, O.M. Yaghi, E.N. Wang, Adsorption-based atmospheric water harvesting device for arid climates, Nat. Commun. 9 (2018) 1–8. https://doi.org/10.1038/s41467-018-03162-7.; H. Yang, SuKim, S.R. Rao, S. Narayanan, E.A. Kapustin, H. Furukawa, A.S. Umans, O.M. Yaghi, E.N. Wang, Powered By Natural Sunlight, Science (80-. ). 434 (2017) 430–434. https://doi.org/10.1126/science.aam8743.; J.O. Juvik, D. Nullet, Comments on “A Proposed Standard Fog Collector for Use in High-Elevation Regions,” J. Appl. Meteorol. 34 (1995) 2108–2110. https://doi.org/10.1175/1520-0450(1995)0342.0.co;2.; O. Klemm, R.S. Schemenauer, A. Lummerich, P. Cereceda, V. Marzol, D. Corell, J. Van Heerden, D. Reinhard, T. Gherezghiher, J. Olivier, P. Osses, J. Sarsour, E. Frost, M.J. Estrela, J.A. Valiente, G.M. Fessehaye, Fog as a fresh-water resource: Overview and perspectives, Ambio. 41 (2012) 221–234. https://doi.org/10.1007/s13280-012-0247-8.; M. Muselli, D. Beysens, J. Marcillat, I. Milimouk, T. Nilsson, A. Louche, Dew water collector for potable water in Ajaccio (Corsica Island, France), Atmos. Res. 64 (2002) 297–312. https://doi.org/10.1016/S0169-8095(02)00100-X.; K.C. Park, S.S. Chhatre, S. Srinivasan, R.E. Cohen, G.H. McKinley, Optimal design of permeable fiber network structures for fog harvesting, Langmuir. 29 (2013) 13269–13277. https://doi.org/10.1021/la402409f.; R. V. Wahlgren, Atmospheric water vapour processor designs for potable water production: A review, Water Res. 35 (2001) 1–22. https://doi.org/10.1016/S0043-1354(00)00247-5.; Alwan, N.T., Shcheklein, S.E., Ali, O.M. Evaluation of the productivity for new design single slope solar still at different saltwater depth. Journal of Physics: Conference Series, (2020), 1706(1), 012002. https://doi.org/10.1088/1742-6596/1706/1/012002.; Alwan, N.T., Shcheklein, S.E., Ali, O.M. Effect of Hollow Drum Rotational Speed Variation on the Productivity of Modified Solar Still According to Yekaterinburg City, Russia. Applied Solar Energy (English translation of Geliotekhnika), (2020), 56(4), стр. 276–283. https://doi.org/10.3103/S0003701X20040040.; Alwan, N.T., Shcheklein, S.E., Ali, O.M. Experimental investigation of modified solar still integrated with solar collector. Case Studies in Thermal Engineering, (2020), 19, 100614. https://doi.org/10.1016/j.csite.2020.100614.; Chvilov P.V., Scherbina L.A., Svinticka N.N. Study of the process of sorbation of water from the air granulul polyamide-6. Food technology and technology. 2017. S. 207.; Alexeyev V.V., Dvoryaninov A.V. Installation with radiation cooling to obtain fresh water from moist air Patent for the invention of RU 2182623 C2, (2002).; Andreev Y.P., Goldman V.L., Eliseev V.S., Eliseev N.N., Fedurkin E.B. The way to obtain fresh water from the humid air Author's certificate SU 421631 A1, (1974).; Vasilyev G.P., Gatov V.M., Kim L.N., A.V., A.V. Sakharov, zakharkin G.V. Device for obtaining water from warm humid air Patent for the invention of RU 2011934 C1, (1994).; Mironov V.V., Ivanyushin Y.A., Yakimov I.V. Using the energy of sea waves to obtain fresh water from the air. Herald of the School of Engineering of the Far Eastern Federal University. (2017). № 3 (32). S. 95-102.; Serkov A.T., Serkov A.A., Radishevsky M.B., Kalacheva A.V., Serkov A.A. The way water is extracted from warm humid air and the device for its implementation. Patent for the invention of RU 2719813 C1, (2020).; Mironov V.V., Gernakov E.A., Ivanyushin Y.A., Mironov D.V. Getting fresh water from the air using pneumatic energy generated by the sea wave. Izvestia universities. Investment. Construction. Real estate. 2017. T. 7. № 3 (22). S. 89-94.; https://www.isjaee.com/jour/article/view/2148
-
12Academic Journal
Authors: Oleg Devitsky, Igor Sysoev, Ivan Kasyanov
Source: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 14-20 (2022)
Subject Terms: наногетероструктуры, фотовольтаика, солнечная энергетика, фотоэлектрический преобразователь, солнечный элемент, silvaco tcad, моделирование солнечных элементов, heterostructure, photovoltaics, solar energy, photoelectric converter, solar cell, modeling of solar cells, Economics as a science, HB71-74
-
13Academic Journal
Subject Terms: синтез нитевидных нанокристаллов, светоулавливающие структуры, нанокристаллы кремния, инновационные технологии, нитевидные нанокристаллы, поглощение света, нанокристаллы, фотовольтаика, коаксиальные p-n переходы
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/36622
-
14Conference
Subject Terms: мониторинг, программные системы, солнечные панели, фотовольтаика, интеллектуальные системы, системы контроля, возобновляемые источники энергии, сбор данных
Relation: Journal of Physics: Conference Series. Vol. 803 : Information Technologies in Business and Industry (ITBI2016). — Bristol, 2017.; Nalamvar H. S. Automated Intelligent Monitoring and the Controlling Software System for Solar Panels / H. S. Nalamvar, M. A. Ivanov, S. A. Baydali // Journal of Physics: Conference Series. — 2017. — Vol. 803 : Information Technologies in Business and Industry (ITBI2016) : International Conference, 21–26 September 2016, Tomsk, Russian Federation : [proceedings]. — [012107, 5 p.].; http://earchive.tpu.ru/handle/11683/38169
-
15Conference
Authors: Kobezsky, V. A., Sokolov, M. M.
Subject Terms: RENEWABLE ENERGY, СОЛНЕЧНЫЙ ТРЕКЕР, ВОЗОБНОВЛЯЕМАЯ ЭНЕРГЕТИКА, PHOTOVOLTAICS, SOLAR TRACKER, ENERGY SUPPLY, СОЛНЕЧНЫЕ ПАНЕЛИ, SOLAR PANELS, ФОТОВОЛЬТАИКА, ЭНЕРГОСНАБЖЕНИЕ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/64029
-
16Academic Journal
Subject Terms: photovoltaic, taxonomy, emerging Dye-sensitized solar cells, натуральные красители, классификация, metallic and bimetallic nanoparticles, материалы, фотовольтаика, металлические и биметаллические наночастицы, 7. Clean energy, сенсибилизированные красителем солнечные элементы, natural pigments, materials
-
17Academic Journal
Authors: Ratner, S. V.
Subject Terms: RENEWABLE ENERGY, ВОЗОБНОВЛЯЕМАЯ ЭНЕРГЕТИКА, EFFICIENCY, PHOTOVOLTAICS, NONPARAMETRIC CORRELATION, MICROGENERATION, ГОСУДАРСТВЕННОЕ СТИМУЛИРОВАНИЕ, ФОТОВОЛЬТАИКА, ЭФФЕКТИВНОСТЬ, НЕПАРАМЕТРИЧЕСКАЯ КОРРЕЛЯЦИЯ, GOVERNMENT INCENTIVES, МИКРОГЕНЕРАЦИЯ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/66438
-
18Academic Journal
Subject Terms: тиофен, препаративные методы синтеза, органические фотосенсибилизаторы, фотовольтаика, синтез производных тиофена
File Description: application/pdf
Access URL: https://rep.bsatu.by/handle/doc/8276
-
19Academic Journal
Authors: Гросс, Карлис Агрис, Крауиньш, Петр Янович, Крауиньш, Дмитрий Петрович, Кухта, Мария Сергеевна, Соколов, Александр Петрович, Gross, Karlis Agris, Krauinsh, Petr Yanovich, Krauinsh, Dmitry Petrovich, Kukhta, Maria Sergeevna, Sokolov, Aleksandr Petrovich
Source: Известия Томского политехнического университета
Subject Terms: солнечная энергетика, фотовольтаика, солнечная панель, фотоэлектрическая панель, коэффициент фактической инсоляции, сферический архитектурный купол, солнечные панели, фотоэлектрические панели, инсоляция, solar energy, photovoltaics, solar panel, photovoltaic panel, actual insolation factor, spherical architectural dome
File Description: application/pdf
Relation: Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. 2018. Т. 329, № 3; http://earchive.tpu.ru/handle/11683/47043
Availability: http://earchive.tpu.ru/handle/11683/47043
-
20Academic Journal
Source: Education and science in the modern context; 120-122 ; Образование и наука в современных реалиях; 120-122
Subject Terms: солнечная энергетика, Чили, фотовольтаика, концентрирующая солнечная энергетика
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6041538-8-8; https://interactive-plus.ru/e-articles/576/Action576-473473.pdf; Akimova V. Solar energy production: specifics of its territorial structure and modern geographical trends // Geography, environment, sustainability. – 2018. – Vol. 11. – №3. – P. 100–110.; Статистическая база данных EIA [Электронный ресурс]. – Режим доступа: http://www.eia.gov/beta/international/?fips=su (дата обращения: 15.09.2018).; Solar Gis // ГИС портал [Электронный ресурс]. – Режим доступа: www.solargis.info (дата обращения: 15.09.2018).