Showing 1 - 20 results of 27 for search '"УСТОЙЧИВАЯ ЭНЕРГЕТИКА"', query time: 0.72s Refine Results
  1. 1
    Academic Journal

    Source: The Development of Modern Education in the Context of Pedagogical Competenciology; 205-206 ; Развитие современного образования в контексте педагогической (образовательной) компетенциологии; 205-206

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-24-0; https://phsreda.com/e-articles/10582/Action10582-110468.pdf; Майсюк Е.П. Анализ существующих методов оценки воздействия энергетических объектов на окружающую среду / Е.П. Майсюк, И.Ю. Иванова // Информационные и математические технологии в науке и управлении. – 2018. – №4 (12). – С. 113–127. – DOI 10.25729/2413–0133–2018–4-12. – EDN YVODGH.; Марченко Г.А. Эффективный энергоменеджмент – важнейший элемент, способствующий значительному снижению выбросов парниковых газов / Г.А. Марченко, И.Г. Ахметова, М.Д. Марченко // Известия высших учебных заведений. Проблемы энергетики. – 2012. – №11–12. – С. 115–119. – EDN PVFYHH.; Боровков Ю.Н. Возможности использования эксергетического метода в экологическом менеджменте / Ю.Н. Боровков, В.М. Воронцова // Научный журнал. – 2018. – №4 (27). – С. 10–16. – EDN XNRPBB.; Гусаров В.А. Метод обеспечения совместимости и интеграции АСУ энергоресурсами / В.А. Гусаров // Молодой ученый. – 2009. – №7 (7). – С. 19–22 [Электронный ресурс]. – Режим доступа: https://moluch.ru/archive/7/544/ (дата обращения: 09.03.2024). EDN MUAJXZ; Балабанов М.С. Экологические аспекты в энергосберегающей политике на этапе создания в России интеллектуальных энергосистем с активно-адаптивной сетью / М.С. Балабанов, С.В. Бабошкина, Р.Н. Хамитов // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2015. – Т. 326. №11. – С. 141–152. – EDN VQWCBR.; https://phsreda.com/article/110468/discussion_platform

  2. 2
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 12 (2023); 45-65 ; Альтернативная энергетика и экология (ISJAEE); № 12 (2023); 45-65 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2513/2039; IEA. Hydrogen -Analysis - IEA. Available from: https://www.iea.org/reports/hydrogen; December 23, 2021.; IEA. Hydrogen - Fuels & Technologies - IEA. Available from: https://www.iea.org/fuels-andtechnologies/hydrogen; December 21, 2021.; Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.; El-Shafie, M., Kambara, S., & Hayakawa, Y. (2019). Hydrogen production technologies overview. Journal of Power and Energy Engineering, 7(1), 107-154.; Ratnakar, R. R., Gupta, N., Zhang, K., van Doorne, C., Fesmire, J., Dindoruk, B., & Balakotaiah, V. (2021). Hydrogen supply chain and challenges in largescale LH2 storage and transportation. International Journal of Hydrogen Energy, 46(47), 24149-24168.; Balcombe, P., Speirs, J., Johnson, E., Martin, J., Brandon, N., & Hawkes, A. (2018). The carbon credentials of hydrogen gas networks and supply chains. Renewable and Sustainable Energy Reviews, 91, 1077-1088.; Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385-25412.; Li, J., & Cheng, W. (2020). Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification. International Journal of Hydrogen Energy, 45(51), 27979-27993.; Favas, J., Monteiro, E., & Rouboa, A. (2017). Hydrogen production using plasma gasification with steam injection. International journal of hydrogen energy, 42(16), 10997-11005.; Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., . & Van der Spek, M. (2022). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66-75.; Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen?. Energy Science & Engineering, 9(10), 1676-1687.; Khan, M. H. A., Daiyan, R., Neal, P., Haque, N., MacGill, I., & Amal, R. (2021). A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. International Journal of Hydrogen Energy, 46(44), 22685-22706.; Amin, A. M., Croiset, E., & Epling, W. (2011). Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 36(4), 2904-2935.; Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). State of the art of hydrogen production via pyrolysis of natural gas. ChemBioEng Reviews, 7(5), 150-158.; Pérez, B. J. L., Jiménez, J. A. M., Bhardwaj, R., Goetheer, E., van Sint Annaland, M., & Gallucci, F. (2021). Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. international journal of hydrogen energy, 46(7), 4917-4935.; Gerloff, N. (2021). Comparative Life-Cycle- Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. Journal of Energy Storage, 43, 102759.; Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 2018;39(3):390e4. https://doi.org/10.1016/S1872-2067(17)62949-8.; Balzani, V., & Armaroli, N. (2011). The hydrogen issue. ChemSusChem, 4, 21-36.; Ball, M., & Weeda, M. (2015). The hydrogen economy–vision or reality?. International Journal of Hydrogen Energy, 40(25), 7903-7919.; Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1, 10-29.; Papadias, D. D., Peng, J. K., & Ahluwalia, R. K. (2021). Hydrogen carriers: Production, transmission, decomposition, and storage. International Journal of Hydrogen Energy, 46(47), 24169-24189.; Majumdar, A., Deutch, J. M., Prasher, R. S., & Griffin, T. P. (2021). A framework for a hydrogen economy. Joule, 5(8), 1905-1908.; Mac Dowell, N., Sunny, N., Brandon, N., Herzog, H., Ku, A. Y., Maas, W., & Shah, N. (2021). The hydrogen economy: A pragmatic path forward. Joule, 5(10), 2524-2529.; Bartels, J. R., Pate, M. B., & Olson, N. K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International journal of hydrogen energy, 35(16), 8371-8384.; Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.; Kannah, R. Y., Kavitha, S., & Preethi, O. (2021). Parthiba Karthikeyan, G. Kumar, NV Dai-Viet and J. Rajesh Banu. Bioresour. Technol, 319, 124175.; Ozturk, M., & Dincer, I. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, 46(62), 31511-31522.; Dincer, I. (2012). Green methods for hydrogen production. International journal of hydrogen energy, 37(2), 1954-1971.; Acar, C., Beskese, A., & Temur, G. T. (2018). Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. International Journal of Hydrogen Energy, 43(39), 18059-18076.; Longden, T., Beck, F. J., Jotzo, F., Andrews, R., & Prasad, M. (2022). ‘Clean’hydrogen?–Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy, 306, 118145.; Ji, M., & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635.; Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability, 13(1), 298.; Bridges, T., & Merzian, R. (2019). Hydrogen and climate: trojan horse or golden goose. Request for Input—National Hydrogen Strategy.; Droege T. What are the colors of hydrogen? Williams Companies; 2021. 23 April 2021; Available from: https://www.williams.com/2021/04/23/what-arethe-colors-ofhydrogen/ [December 22, 2021].; Dodgshun J. Hydrogen: Clearing Up the Colours. Available from: https://www.enapter.com/newsroom/hydrogenclearingup-the-colours; December 22, 2021.; Sarangi, P. K., & Nanda, S. (2020). Biohydrogen production through dark fermentation. Chemical Engineering & Technology, 43(4), 601-612.; Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920.; Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16(3), 1141.; McKenzie, B. (2020). Shaping Tomorrow’s Global Hydrogen Market. Vie De-Risked Investments.; Strategy. The dawn of green hydrogen-Maintaining the GCC's edge in a decarbonized world. Available from: https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-ofgreenhydrogen.; El-Emam, R. S., Ozcan, H., & Zamfirescu, C. (2020). Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production, 262, 121424.; Holm, T., Borsboom-Hanson, T., Herrera, O. E., & Mérida, W. (2021). Hydrogen costs from water electrolysis at high temperature and pressure. Energy Conversion and Management, 237, 114106.; Minke, C., Suermann, M., Bensmann, B., & Hanke-Rauschenbach, R. (2021). Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? International journal of hydrogen energy, 46(46), 23581-23590.; Zhao, G., Kraglund, M. R., Frandsen, H. L., Wulff, A. C., Jensen, S. H., Chen, M., & Graves, C. R. (2020). Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 45(43), 23765-23781.; Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.; Zhang, J., Ling, B., He, Y., Zhu, Y., & Wang, Z. (2022). Life cycle assessment of three types of hydrogen production methods using solar energy. International Journal of Hydrogen Energy, 47(30), 14158-14168.; Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., & Al-Jiboory, A. K. (2023). Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404.; Makhsoos, A., Kandidayeni, M., Boulon, L., & Pollet, B. G. (2023). A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production-a case study in Trois-Rivières. Energy, 282, 128911.; Hassan, Q., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy.; Zhou, Y., Li, R., Lv, Z., Liu, J., Zhou, H., & Xu, C. (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering.; Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.; Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 38(12), 4901-4934.; Nechache, A., & Hody, S. (2021). Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable and Sustainable Energy Reviews, 149, 111322.; Jeon, S. S., Lim, J., Kang, P. W., Lee, J. W., Kang, G., & Lee, H. (2021). Design principles of NiFelayered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Applied Materials & Interfaces, 13(31), 37179-37186.; Sun, M., Jiang, Y., Tian, M., Yan, H., Liu, R., & Yang, L. (2019). Deposition of platinum on borondoped TiO 2/Ti nanotube arrays as an efficient and stable photocatalyst for hydrogen generation from water splitting. RSC advances, 9(20), 11443-11450.; Clifford, C. (2022). Hydrogen power is gaining momentum, but critics say it’s neither efficient nor green enough.; Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136-24154.; Lee, D. Y., Elgowainy, A., & Dai, Q. (2018). Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Applied Energy, 217, 467-479.; Kamonsuangkasem, K., Therdthianwong, S., & Therdthianwong, A. (2013). Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel processing technology, 106, 695-703.; Moogi, S., Jae, J., Kannapu, H. P. R., Ahmed, A., Park, E. D., & Park, Y. K. (2020). Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition. Bioresource Technology, 315, 123835.; Wu, Q., Huang, F., Zhao, M., Xu, J., Zhou, J., & Wang, Y. (2016). Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy, 24, 63-71.; Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273.; Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: DefiDefinitions and carbon intensity. Energy Conversion and Management, 291, 117294.; Vega, L. F., & Kentish, S. E. (2022). The Hydrogen economy preface. Industrial & Engineering Chemistry Research, 61(18), 6065-6066.; Gür, T. M. (2021). Perspective—Electrochemical Gasification: Revisiting an Old Reaction in New Perspective and Turning "Black" Hydrogen to "Blue". Journal of The Electrochemical Society, 168(11), 114516.; Arcos, J. M. M., & Santos, D. M. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25-46.; Venables, D. S., & Brown, M. E. (1996). Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochimica acta, 285(2), 361-382.; Yamaguchi, D., Sanderson, P. J., Lim, S., & Aye, L. (2009). Supercritical water gasification of Victorian brown coal: Experimental characterisation. international journal of hydrogen energy, 34(8), 3342-3350.; Guan, Q., Ding, X. W., Jiang, R., Ouyang, P. L., Gui, J., Feng, L., . & Song, L. H. (2019). Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food chemistry, 299, 125095.; Ewe, The Colours of Hydrogen. Available online: https://www.ewe.com/en/shaping-thefuture/hydrogen/the-colours-ofhydrogen (accessed on 10 June 2022).; Hermesmann, M., & Müller, T. E. (2022). Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science, 90, 100996.; Diab, J., Fulcheri, L., Hessel, V., Rohani, V., & Frenklach, M. (2022). Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 47(61), 25831-25848.; Korányi, T. I., Németh, M., Beck, A., & Horváth, A. (2022). Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies, 15(17), 6342.; Ingale, G. U., Kwon, H. M., Jeong, S., Park, D., Kim, W., Bang, B., & Lee, U. (2022). Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming. Energies, 15(22), 8679.; Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123, 103317.; Ping, Z., Laijun, W., Songzhe, C., & Jingming, X. (2018). Progress of nuclear hydrogen production through the iodine–sulfur process in China. Renewable and Sustainable Energy Reviews, 81, 1802-1812.; Zhiznin, S. Z., Timokhov, V. M., & Gusev, A. L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45(56), 31353-31366.; Scamman, D., & Newborough, M. (2016). Using surplus nuclear power for hydrogen mobility and power-to-gas in France. International journal of hydrogen energy, 41(24), 10080-10089.; Milewski, J., Kupecki, J., Szczęśniak, A., & Uzunow, N. (2021). Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. International Journal of Hydrogen Energy, 46(72), 35765-35776.; Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., & Hamburg, S. P. (2018). Assessment of methane emissions from the US oil and gas supply chain. Science, 361(6398), 186-188.; Antzaras, A. N., & Lemonidou, A. A. (2022). Recent advances on materials and processes for intensified production of blue hydrogen. Renewable and Sustainable Energy Reviews, 155, 111917.; Oni, A. O., Anaya, K., Giwa, T., Di Lullo, G., & Kumar, A. (2022). Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management, 254, 115245.; Saha, P., Akash, F. A., Shovon, S. M., Monir, M. U., Ahmed, M. T., Khan, M. F. H., . & Akter, R. (2023). Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy. International Journal of Green Energy, 1-15.; Villavicencio, M., Brauer, J., & Trüby, J. (2022). Green hydrogen–How grey can it be?. Robert Schuman Centre for Advanced Studies Research Paper, (2022/44).; Moreno-Brieva, F., Guimón, J., & Salazar-Elena, J. C. (2023). From grey to green and from west to east: The geography and innovation trajectories of hydrogen fuel technologies. Energy Research & Social Science, 101, 103146.; IEA. Hydrogen production costs using natural gas in selected regions. Statistics - IEA; December 20, 2021. Available from: https://www.iea.org/data-andstatistics/charts/hydrogen-production-costs-usingnatural-gas-inselected-regions-2018-2.; Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L. (2018). Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. International Journal of Hydrogen Energy, 43(20), 9514-9528.; Gambhir, A., Hawkes, A., Nelson, J., Schmidt, O., & Staffell, I. (2017). Future cost and performance of water electrolysis. Int J Hydrogen Energy, 42, 30470-30492.; Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180.; Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.; Hassan, I. A., Ramadan, H. S., Saleh, M. A., & Hissel, D. (2021). Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable and Sustainable Energy Reviews, 149, 111311.; Lubitz, W., & Tumas, W. (2007). Hydrogen: an overview. Chemical reviews, 107(10), 3900-3903.; Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International journal of hydrogen energy, 39(20), 10731-10747.; Singla, M. K., Nijhawan, P., & Oberoi, A. S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research, 28, 15607-15626.; Singla, M. K., Gupta, J., Nijhawan, P., Oberoi, A. S., Alsharif, M. H., & Jahid, A. (2023). Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review. Energies, 16(15), 5761.; Singla, M. K., Gupta, J., Singh, B., Nijhawan, P., Abdelaziz, A. Y., & El-Shahat, A. (2023). Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability, 15(8), 6676.; Mahato, D. P., Sandhu, J. K., Singh, N. P., & Kaushal, V. On scheduling transaction in grid computing using cuckoo search-ant colony optimization considering load. Cluster Computing, 2020, 23, 1483-1504.; Rani, S., Babbar, H., Kaur, P., Alshehri, M. D., & Shah, S. H. A. An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue. IEEE Transactions on Intelligent Transportation Systems, 2022.; https://www.isjaee.com/jour/article/view/2513

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Authors: V. I. Loktionov

    Source: Вестник Российского экономического университета имени Г. В. Плеханова, Vol 0, Iss 5, Pp 64-77 (2021)

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Contributors: Moghavvemi, Mahmoud

    Subject Terms: تغير المناخ, análisis coste-beneficio, تقاضای برق, sustainable Energy, تحليل التكلفة والعائد, спрос на электроэнергию, الطلب على الكهرباء, Energieeffizienz, ممیزی انرژی, устойчивая энергетика, تجزیه و تحلیل هزینه و فایده, nachhaltige Energie, گرمایش جهانی, تدقيق الطاقة, الطاقة المستدامة, Klimawandel, changement climatique, Eficiencia energética, Auditoría energética, Energieaudit, Global warming, анализ затрат и выгод, demande d'électricité, абсорбционные охладители, efficacité énergétique, انرژی پایدار, энергоаудит, globale Erwärmung, climate change, Ahorro energético, глобальное потепление, enfriadores de absorción, économies d'énergie, Kosten-Nutzen-Analyse, Energy auditing, refroidisseurs à absorption, cambio climático, Absorptionskältemaschinen, [SPI] Engineering Sciences [physics], Strombedarf, absorption chillers, Energy savings, Energía sostenible, énergie durable, энергосбережение, analyse coûts-avantages, réchauffement climatique, audit énergétique, توفير الطاقة, مبردات الامتصاص, electricity demand, بهره وری انرژی, Energieeinsparungen, ظاهرة الاحتباس الحراري, تغییرات آب و هوا, изменение климата, demanda eléctrica, صرفه جویی در انرژی, энергоэффективность, Energy efficiency, چیلرهای جذبی, Calentamiento global, cost–benefit analysis, كفاءة الطاقة

  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Енергетика: економіка, технології, екологія: науковий журнал

    File Description: С. 38-43; application/pdf

    Relation: Іншеков, Є. М. Аналіз світових тенденцій створення сталої енергетики з практикою енергоменеджменту / Є. М. Іншеков, Л. А. Плотник // Енергетика: економіка, технології, екологія : науковий журнал. – 2014. – № 2(36). – С. 38–43. – Бібліогр.: 13 назв.; https://ela.kpi.ua/handle/123456789/10120

  18. 18
  19. 19
  20. 20