-
1Academic Journal
Authors: Фуст Валерий Ильич, Нефтекамский филиал ФГБОУ ВО «Уфимский университет науки и технологий», Valerii I. Fust,
Neftekamskii filial FGBOU VO "Ufimskii universitet nauki i tekhnologii", Рыжиков Олег Леонидович, Oleg L. Ryzhikov, Сафиуллин Рузил Ахнафович, Ruzil A. Safiullin Source: The Development of Modern Education in the Context of Pedagogical Competenciology; 205-206 ; Развитие современного образования в контексте педагогической (образовательной) компетенциологии; 205-206
Subject Terms: окружающая среда, воздействие, автоматизированные системы мониторинга энергопотребления, энергопотребление, устойчивая энергетика, выбросы, технологические проблемы
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-24-0; https://phsreda.com/e-articles/10582/Action10582-110468.pdf; Майсюк Е.П. Анализ существующих методов оценки воздействия энергетических объектов на окружающую среду / Е.П. Майсюк, И.Ю. Иванова // Информационные и математические технологии в науке и управлении. – 2018. – №4 (12). – С. 113–127. – DOI 10.25729/2413–0133–2018–4-12. – EDN YVODGH.; Марченко Г.А. Эффективный энергоменеджмент – важнейший элемент, способствующий значительному снижению выбросов парниковых газов / Г.А. Марченко, И.Г. Ахметова, М.Д. Марченко // Известия высших учебных заведений. Проблемы энергетики. – 2012. – №11–12. – С. 115–119. – EDN PVFYHH.; Боровков Ю.Н. Возможности использования эксергетического метода в экологическом менеджменте / Ю.Н. Боровков, В.М. Воронцова // Научный журнал. – 2018. – №4 (27). – С. 10–16. – EDN XNRPBB.; Гусаров В.А. Метод обеспечения совместимости и интеграции АСУ энергоресурсами / В.А. Гусаров // Молодой ученый. – 2009. – №7 (7). – С. 19–22 [Электронный ресурс]. – Режим доступа: https://moluch.ru/archive/7/544/ (дата обращения: 09.03.2024). EDN MUAJXZ; Балабанов М.С. Экологические аспекты в энергосберегающей политике на этапе создания в России интеллектуальных энергосистем с активно-адаптивной сетью / М.С. Балабанов, С.В. Бабошкина, Р.Н. Хамитов // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2015. – Т. 326. №11. – С. 141–152. – EDN VQWCBR.; https://phsreda.com/article/110468/discussion_platform
-
2Academic Journal
Authors: Manish Kumar Singla, Jyoti Gupta, S. Beryozkina, Murodbek Safaraliev, Manpreet Singh, Маниш Кумар Сингла, Джиоти Гупта, С. Березкина, Муродбек Сафаралиев, Манприт Сингх
Source: Alternative Energy and Ecology (ISJAEE); № 12 (2023); 45-65 ; Альтернативная энергетика и экология (ISJAEE); № 12 (2023); 45-65 ; 1608-8298
Subject Terms: устойчивая энергетика, hydrogen color, hydrogen production, fuel cell, cost, sustainable energy, цвет водорода, производство водорода, топливный элемент, стоимость
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2513/2039; IEA. Hydrogen -Analysis - IEA. Available from: https://www.iea.org/reports/hydrogen; December 23, 2021.; IEA. Hydrogen - Fuels & Technologies - IEA. Available from: https://www.iea.org/fuels-andtechnologies/hydrogen; December 21, 2021.; Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.; El-Shafie, M., Kambara, S., & Hayakawa, Y. (2019). Hydrogen production technologies overview. Journal of Power and Energy Engineering, 7(1), 107-154.; Ratnakar, R. R., Gupta, N., Zhang, K., van Doorne, C., Fesmire, J., Dindoruk, B., & Balakotaiah, V. (2021). Hydrogen supply chain and challenges in largescale LH2 storage and transportation. International Journal of Hydrogen Energy, 46(47), 24149-24168.; Balcombe, P., Speirs, J., Johnson, E., Martin, J., Brandon, N., & Hawkes, A. (2018). The carbon credentials of hydrogen gas networks and supply chains. Renewable and Sustainable Energy Reviews, 91, 1077-1088.; Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385-25412.; Li, J., & Cheng, W. (2020). Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification. International Journal of Hydrogen Energy, 45(51), 27979-27993.; Favas, J., Monteiro, E., & Rouboa, A. (2017). Hydrogen production using plasma gasification with steam injection. International journal of hydrogen energy, 42(16), 10997-11005.; Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., . & Van der Spek, M. (2022). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66-75.; Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen?. Energy Science & Engineering, 9(10), 1676-1687.; Khan, M. H. A., Daiyan, R., Neal, P., Haque, N., MacGill, I., & Amal, R. (2021). A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. International Journal of Hydrogen Energy, 46(44), 22685-22706.; Amin, A. M., Croiset, E., & Epling, W. (2011). Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 36(4), 2904-2935.; Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). State of the art of hydrogen production via pyrolysis of natural gas. ChemBioEng Reviews, 7(5), 150-158.; Pérez, B. J. L., Jiménez, J. A. M., Bhardwaj, R., Goetheer, E., van Sint Annaland, M., & Gallucci, F. (2021). Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. international journal of hydrogen energy, 46(7), 4917-4935.; Gerloff, N. (2021). Comparative Life-Cycle- Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. Journal of Energy Storage, 43, 102759.; Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 2018;39(3):390e4. https://doi.org/10.1016/S1872-2067(17)62949-8.; Balzani, V., & Armaroli, N. (2011). The hydrogen issue. ChemSusChem, 4, 21-36.; Ball, M., & Weeda, M. (2015). The hydrogen economy–vision or reality?. International Journal of Hydrogen Energy, 40(25), 7903-7919.; Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1, 10-29.; Papadias, D. D., Peng, J. K., & Ahluwalia, R. K. (2021). Hydrogen carriers: Production, transmission, decomposition, and storage. International Journal of Hydrogen Energy, 46(47), 24169-24189.; Majumdar, A., Deutch, J. M., Prasher, R. S., & Griffin, T. P. (2021). A framework for a hydrogen economy. Joule, 5(8), 1905-1908.; Mac Dowell, N., Sunny, N., Brandon, N., Herzog, H., Ku, A. Y., Maas, W., & Shah, N. (2021). The hydrogen economy: A pragmatic path forward. Joule, 5(10), 2524-2529.; Bartels, J. R., Pate, M. B., & Olson, N. K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International journal of hydrogen energy, 35(16), 8371-8384.; Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.; Kannah, R. Y., Kavitha, S., & Preethi, O. (2021). Parthiba Karthikeyan, G. Kumar, NV Dai-Viet and J. Rajesh Banu. Bioresour. Technol, 319, 124175.; Ozturk, M., & Dincer, I. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, 46(62), 31511-31522.; Dincer, I. (2012). Green methods for hydrogen production. International journal of hydrogen energy, 37(2), 1954-1971.; Acar, C., Beskese, A., & Temur, G. T. (2018). Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. International Journal of Hydrogen Energy, 43(39), 18059-18076.; Longden, T., Beck, F. J., Jotzo, F., Andrews, R., & Prasad, M. (2022). ‘Clean’hydrogen?–Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy, 306, 118145.; Ji, M., & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635.; Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability, 13(1), 298.; Bridges, T., & Merzian, R. (2019). Hydrogen and climate: trojan horse or golden goose. Request for Input—National Hydrogen Strategy.; Droege T. What are the colors of hydrogen? Williams Companies; 2021. 23 April 2021; Available from: https://www.williams.com/2021/04/23/what-arethe-colors-ofhydrogen/ [December 22, 2021].; Dodgshun J. Hydrogen: Clearing Up the Colours. Available from: https://www.enapter.com/newsroom/hydrogenclearingup-the-colours; December 22, 2021.; Sarangi, P. K., & Nanda, S. (2020). Biohydrogen production through dark fermentation. Chemical Engineering & Technology, 43(4), 601-612.; Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920.; Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16(3), 1141.; McKenzie, B. (2020). Shaping Tomorrow’s Global Hydrogen Market. Vie De-Risked Investments.; Strategy. The dawn of green hydrogen-Maintaining the GCC's edge in a decarbonized world. Available from: https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-ofgreenhydrogen.; El-Emam, R. S., Ozcan, H., & Zamfirescu, C. (2020). Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production, 262, 121424.; Holm, T., Borsboom-Hanson, T., Herrera, O. E., & Mérida, W. (2021). Hydrogen costs from water electrolysis at high temperature and pressure. Energy Conversion and Management, 237, 114106.; Minke, C., Suermann, M., Bensmann, B., & Hanke-Rauschenbach, R. (2021). Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? International journal of hydrogen energy, 46(46), 23581-23590.; Zhao, G., Kraglund, M. R., Frandsen, H. L., Wulff, A. C., Jensen, S. H., Chen, M., & Graves, C. R. (2020). Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 45(43), 23765-23781.; Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.; Zhang, J., Ling, B., He, Y., Zhu, Y., & Wang, Z. (2022). Life cycle assessment of three types of hydrogen production methods using solar energy. International Journal of Hydrogen Energy, 47(30), 14158-14168.; Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., & Al-Jiboory, A. K. (2023). Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404.; Makhsoos, A., Kandidayeni, M., Boulon, L., & Pollet, B. G. (2023). A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production-a case study in Trois-Rivières. Energy, 282, 128911.; Hassan, Q., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy.; Zhou, Y., Li, R., Lv, Z., Liu, J., Zhou, H., & Xu, C. (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering.; Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.; Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 38(12), 4901-4934.; Nechache, A., & Hody, S. (2021). Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable and Sustainable Energy Reviews, 149, 111322.; Jeon, S. S., Lim, J., Kang, P. W., Lee, J. W., Kang, G., & Lee, H. (2021). Design principles of NiFelayered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Applied Materials & Interfaces, 13(31), 37179-37186.; Sun, M., Jiang, Y., Tian, M., Yan, H., Liu, R., & Yang, L. (2019). Deposition of platinum on borondoped TiO 2/Ti nanotube arrays as an efficient and stable photocatalyst for hydrogen generation from water splitting. RSC advances, 9(20), 11443-11450.; Clifford, C. (2022). Hydrogen power is gaining momentum, but critics say it’s neither efficient nor green enough.; Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136-24154.; Lee, D. Y., Elgowainy, A., & Dai, Q. (2018). Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Applied Energy, 217, 467-479.; Kamonsuangkasem, K., Therdthianwong, S., & Therdthianwong, A. (2013). Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel processing technology, 106, 695-703.; Moogi, S., Jae, J., Kannapu, H. P. R., Ahmed, A., Park, E. D., & Park, Y. K. (2020). Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition. Bioresource Technology, 315, 123835.; Wu, Q., Huang, F., Zhao, M., Xu, J., Zhou, J., & Wang, Y. (2016). Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy, 24, 63-71.; Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273.; Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: DefiDefinitions and carbon intensity. Energy Conversion and Management, 291, 117294.; Vega, L. F., & Kentish, S. E. (2022). The Hydrogen economy preface. Industrial & Engineering Chemistry Research, 61(18), 6065-6066.; Gür, T. M. (2021). Perspective—Electrochemical Gasification: Revisiting an Old Reaction in New Perspective and Turning "Black" Hydrogen to "Blue". Journal of The Electrochemical Society, 168(11), 114516.; Arcos, J. M. M., & Santos, D. M. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25-46.; Venables, D. S., & Brown, M. E. (1996). Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochimica acta, 285(2), 361-382.; Yamaguchi, D., Sanderson, P. J., Lim, S., & Aye, L. (2009). Supercritical water gasification of Victorian brown coal: Experimental characterisation. international journal of hydrogen energy, 34(8), 3342-3350.; Guan, Q., Ding, X. W., Jiang, R., Ouyang, P. L., Gui, J., Feng, L., . & Song, L. H. (2019). Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food chemistry, 299, 125095.; Ewe, The Colours of Hydrogen. Available online: https://www.ewe.com/en/shaping-thefuture/hydrogen/the-colours-ofhydrogen (accessed on 10 June 2022).; Hermesmann, M., & Müller, T. E. (2022). Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science, 90, 100996.; Diab, J., Fulcheri, L., Hessel, V., Rohani, V., & Frenklach, M. (2022). Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 47(61), 25831-25848.; Korányi, T. I., Németh, M., Beck, A., & Horváth, A. (2022). Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies, 15(17), 6342.; Ingale, G. U., Kwon, H. M., Jeong, S., Park, D., Kim, W., Bang, B., & Lee, U. (2022). Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming. Energies, 15(22), 8679.; Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123, 103317.; Ping, Z., Laijun, W., Songzhe, C., & Jingming, X. (2018). Progress of nuclear hydrogen production through the iodine–sulfur process in China. Renewable and Sustainable Energy Reviews, 81, 1802-1812.; Zhiznin, S. Z., Timokhov, V. M., & Gusev, A. L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45(56), 31353-31366.; Scamman, D., & Newborough, M. (2016). Using surplus nuclear power for hydrogen mobility and power-to-gas in France. International journal of hydrogen energy, 41(24), 10080-10089.; Milewski, J., Kupecki, J., Szczęśniak, A., & Uzunow, N. (2021). Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. International Journal of Hydrogen Energy, 46(72), 35765-35776.; Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., & Hamburg, S. P. (2018). Assessment of methane emissions from the US oil and gas supply chain. Science, 361(6398), 186-188.; Antzaras, A. N., & Lemonidou, A. A. (2022). Recent advances on materials and processes for intensified production of blue hydrogen. Renewable and Sustainable Energy Reviews, 155, 111917.; Oni, A. O., Anaya, K., Giwa, T., Di Lullo, G., & Kumar, A. (2022). Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management, 254, 115245.; Saha, P., Akash, F. A., Shovon, S. M., Monir, M. U., Ahmed, M. T., Khan, M. F. H., . & Akter, R. (2023). Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy. International Journal of Green Energy, 1-15.; Villavicencio, M., Brauer, J., & Trüby, J. (2022). Green hydrogen–How grey can it be?. Robert Schuman Centre for Advanced Studies Research Paper, (2022/44).; Moreno-Brieva, F., Guimón, J., & Salazar-Elena, J. C. (2023). From grey to green and from west to east: The geography and innovation trajectories of hydrogen fuel technologies. Energy Research & Social Science, 101, 103146.; IEA. Hydrogen production costs using natural gas in selected regions. Statistics - IEA; December 20, 2021. Available from: https://www.iea.org/data-andstatistics/charts/hydrogen-production-costs-usingnatural-gas-inselected-regions-2018-2.; Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L. (2018). Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. International Journal of Hydrogen Energy, 43(20), 9514-9528.; Gambhir, A., Hawkes, A., Nelson, J., Schmidt, O., & Staffell, I. (2017). Future cost and performance of water electrolysis. Int J Hydrogen Energy, 42, 30470-30492.; Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180.; Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.; Hassan, I. A., Ramadan, H. S., Saleh, M. A., & Hissel, D. (2021). Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable and Sustainable Energy Reviews, 149, 111311.; Lubitz, W., & Tumas, W. (2007). Hydrogen: an overview. Chemical reviews, 107(10), 3900-3903.; Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International journal of hydrogen energy, 39(20), 10731-10747.; Singla, M. K., Nijhawan, P., & Oberoi, A. S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research, 28, 15607-15626.; Singla, M. K., Gupta, J., Nijhawan, P., Oberoi, A. S., Alsharif, M. H., & Jahid, A. (2023). Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review. Energies, 16(15), 5761.; Singla, M. K., Gupta, J., Singh, B., Nijhawan, P., Abdelaziz, A. Y., & El-Shahat, A. (2023). Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability, 15(8), 6676.; Mahato, D. P., Sandhu, J. K., Singh, N. P., & Kaushal, V. On scheduling transaction in grid computing using cuckoo search-ant colony optimization considering load. Cluster Computing, 2020, 23, 1483-1504.; Rani, S., Babbar, H., Kaur, P., Alshehri, M. D., & Shah, S. H. A. An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue. IEEE Transactions on Intelligent Transportation Systems, 2022.; https://www.isjaee.com/jour/article/view/2513
-
3Conference
Authors: Calaborudin, A. V., Radchenko, R. V.
Subject Terms: ПРОЕКТНО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕ, PROBLEM-BASED LEARNING, STUDENT-CENTERED PEDAGOGY, ВЫСШЕЕ ЭНЕРГЕТИЧЕСКОЕ ОБРАЗОВАНИЕ, CARBON-FREE ENERGY, SUSTAINABLE ENERGY, ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАТАЛОНИИ, ENERGY ENGINEERING EDCATION, УНИВЕРСИТЕТ БАРСЕЛОНЫ, PROJECT-BASED LEARNING, СТУДЕНТНО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕ, ПРОБЛЕМНО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕ, БЕЗУГЛЕРОДНАЯ ЭНЕРГЕТИКА, UNIVERSITAT POLITECNICA DE CATALUNYA, UNIVERSITAT DE BARCELONA, УСТОЙЧИВАЯ ЭНЕРГЕТИКА
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/74906
-
4Academic Journal
Subject Terms: энергоэффективность, устойчивая энергетика, цели устойчивого развития, энергоснабжение, устойчивое развитие
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/32902
-
5Academic Journal
Subject Terms: энергоэффективность, устойчивая энергетика, цели устойчивого развития, энергоснабжение, устойчивое развитие
File Description: application/pdf
Access URL: https://openrepository.ru/article?id=412116
-
6Academic Journal
Authors: Ziabina, Yevheniia Anatoliivna, Pimonenko, Tetiana Volodymyrivna, Liulov, Oleksii Valentynovych, Us, Yana Oleksandrivna, Proshkin, D.
Source: E3S Web of Conferences, Vol 307, p 09002 (2021)
Subject Terms: энергетическая политика, 0301 basic medicine, sustainable development, енергетична політика, устойчивое развитие, 01 natural sciences, 7. Clean energy, 12. Responsible consumption, сталий розвиток, Environmental sciences, 03 medical and health sciences, устойчивая энергетика, стійка енергетика, 13. Climate action, 11. Sustainability, sustainable energy, GE1-350, energy policy, 0105 earth and related environmental sciences
File Description: application/pdf
Linked Full TextAccess URL: https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/83/e3sconf_dsdm2021_09002.pdf
https://doaj.org/article/112f4f5dae574165b302cee63b96b2d2
https://www.e3s-conferences.org/articles/e3sconf/abs/2021/83/e3sconf_dsdm2021_09002/e3sconf_dsdm2021_09002.html
http://ui.adsabs.harvard.edu/abs/2021E3SWC.30709002Z/abstract
https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/83/e3sconf_dsdm2021_09002.pdf
https://essuir.sumdu.edu.ua/handle/123456789/86458 -
7Academic Journal
Authors: V. I. Loktionov
Source: Вестник Российского экономического университета имени Г. В. Плеханова, Vol 0, Iss 5, Pp 64-77 (2021)
Subject Terms: инвестиции, устойчивая энергетика, зеленые финансы, ipo, Economics as a science, HB71-74, eco, demo
Availability: https://doi.org/10.21686/2413-2829-2021-5-64-77
-
8Academic Journal
Authors: Benedik, I., Бенедик, Я.
Source: Jurnalul juridic national: teorie şi practică 9 (5) 205-209
Subject Terms: мягкое право, устойчивое развитие, устойчивая энергетика, возобновляемые источники энергии
File Description: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/35211; urn:issn:23451130
Availability: https://ibn.idsi.md/vizualizare_articol/35211
-
9Academic Journal
Authors: Евдокимова, Екатерина
Subject Terms: МЕЖДУНАРОДНЫЕ ФИНАНСОВЫЕ ОРГАНИЗАЦИИ, БАНКИ РАЗВИТИЯ, ЕБРР, УСТОЙЧИВОЕ РАЗВИТИЕ, УСТОЙЧИВАЯ ЭНЕРГЕТИКА, ЭНЕРГОЭФФЕКТИВНОСТЬ, ПРОЕКТНОЕ ФИНАНСИРОВАНИЕ
File Description: text/html
-
10Academic Journal
Authors: Inshekov, E. N., Plotnyck, L. A.
Contributors: ELAKPI
Subject Terms: energy management, уловлювання та зберігання вуглецю, устойчивое развитие, возобновляемые источники энергии, інновації, сталий розвиток, устойчивая энергетика, викопне паливо, sustainable energy, fossil fuels, энергоменеджмент, клімат, climate, стала енергетика, ефективність, sustainable development, відновлювальні джерела енергії, инновации, эффективность, carbon capture and storage, климат, renewable energy, innovation, ископаемое топливо, улавливание и хранения углерода, efficiency, енергоменеджмент
File Description: application/pdf
Access URL: https://ela.kpi.ua/handle/123456789/10120
-
11Conference
Subject Terms: ENERGY ENGINEERING EDCATION, PROJECT-BASED LEARNING, PROBLEM-BASED LEARNING, STUDENT-CENTERED PEDAGOGY, CARBON-FREE ENERGY, SUSTAINABLE ENERGY, UNIVERSITAT POLITECNICA DE CATALUNYA, UNIVERSITAT DE BARCELONA, ВЫСШЕЕ ЭНЕРГЕТИЧЕСКОЕ ОБРАЗОВАНИЕ, ПРОЕКТНО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕ, ПРОБЛЕМНО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕ, СТУДЕНТНО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕ, БЕЗУГЛЕРОДНАЯ ЭНЕРГЕТИКА, УСТОЙЧИВАЯ ЭНЕРГЕТИКА, ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАТАЛОНИИ, УНИВЕРСИТЕТ БАРСЕЛОНЫ
File Description: application/pdf
Relation: Энерго- и ресурсосбережение. Энергообеспечение. Нетрадиционные и возобновляемые источники энергии. Атомная энергетика. — Екатеринбург, 2018; http://elar.urfu.ru/handle/10995/74906
Availability: http://elar.urfu.ru/handle/10995/74906
-
12Academic Journal
Source: Вестник МГИМО Университета.
Subject Terms: 13. Climate action, 9. Industry and infrastructure, 11. Sustainability, 8. Economic growth, 05 social sciences, 0211 other engineering and technologies, 02 engineering and technology, 7. Clean energy, 12. Responsible consumption, 0506 political science, МЕЖДУНАРОДНЫЕ ФИНАНСОВЫЕ ОРГАНИЗАЦИИ, БАНКИ РАЗВИТИЯ, ЕБРР, УСТОЙЧИВОЕ РАЗВИТИЕ, УСТОЙЧИВАЯ ЭНЕРГЕТИКА, ЭНЕРГОЭФФЕКТИВНОСТЬ, ПРОЕКТНОЕ ФИНАНСИРОВАНИЕ
File Description: text/html
-
13Academic Journal
Authors: Shekarchian, M., Moghavvemi, Mahmoud, Motasemi, F., Mahlia, T.M.I.
Contributors: Moghavvemi, Mahmoud
Subject Terms: تغير المناخ, análisis coste-beneficio, تقاضای برق, sustainable Energy, تحليل التكلفة والعائد, спрос на электроэнергию, الطلب على الكهرباء, Energieeffizienz, ممیزی انرژی, устойчивая энергетика, تجزیه و تحلیل هزینه و فایده, nachhaltige Energie, گرمایش جهانی, تدقيق الطاقة, الطاقة المستدامة, Klimawandel, changement climatique, Eficiencia energética, Auditoría energética, Energieaudit, Global warming, анализ затрат и выгод, demande d'électricité, абсорбционные охладители, efficacité énergétique, انرژی پایدار, энергоаудит, globale Erwärmung, climate change, Ahorro energético, глобальное потепление, enfriadores de absorción, économies d'énergie, Kosten-Nutzen-Analyse, Energy auditing, refroidisseurs à absorption, cambio climático, Absorptionskältemaschinen, [SPI] Engineering Sciences [physics], Strombedarf, absorption chillers, Energy savings, Energía sostenible, énergie durable, энергосбережение, analyse coûts-avantages, réchauffement climatique, audit énergétique, توفير الطاقة, مبردات الامتصاص, electricity demand, بهره وری انرژی, Energieeinsparungen, ظاهرة الاحتباس الحراري, تغییرات آب و هوا, изменение климата, demanda eléctrica, صرفه جویی در انرژی, энергоэффективность, Energy efficiency, چیلرهای جذبی, Calentamiento global, cost–benefit analysis, كفاءة الطاقة
Access URL: https://hal.science/hal-04347837v1
-
14Academic Journal
Authors: Привалова, Х. К.
Subject Terms: устойчивое развитие, цели устойчивого развития, энергоэффективность, устойчивая энергетика, энергоснабжение
File Description: application/pdf
Availability: https://openrepository.ru/article?id=412116
-
15
Contributors: Леви Дмитрий Андреевич, Levi Dmitrij Andreevic, Ярыгин Григорий Олегович, Arygin Grigorij Olegovic
Subject Terms: Энергетический переход, энергетическая политика, Цель устойчивого развития 7, ЦУР 7, Парижское соглашение, возобновляемые источники энергии, углеродная нейтральность, низкоэмиссионная энергетика, устойчивая энергетика, «переходные виды топлива», изменение климата, климатическая повестка, Energy transition, energy policy, Sustainable Development Goal 7, SDG 7, The Paris Agreement, renewable energy, carbon neutrality, low-emission energy, sustainable energy, «transitioning fuels», climate change, climate agenda
Relation: 090181; http://hdl.handle.net/11701/47394
Availability: http://hdl.handle.net/11701/47394
-
16Book
Subject Terms: Устойчивая энергетика
File Description: 112 с.
Availability: http://www.nplg.gov.ge/dspace/handle/1234/144883
-
17Academic Journal
Source: Енергетика: економіка, технології, екологія: науковий журнал
Subject Terms: стала енергетика, сталий розвиток, інновації, ефективність, енергоменеджмент, клімат, відновлювальні джерела енергії, викопне паливо, уловлювання та зберігання вуглецю, sustainable energy, sustainable development, innovation, efficiency, energy management, climate, renewable energy, fossil fuels, carbon capture and storage, устойчивая энергетика, устойчивое развитие, инновации, эффективность, энергоменеджмент, климат, возобновляемые источники энергии, ископаемое топливо, улавливание и хранения углерода, 621.311:658.26:35.08
File Description: С. 38-43; application/pdf
Relation: Іншеков, Є. М. Аналіз світових тенденцій створення сталої енергетики з практикою енергоменеджменту / Є. М. Іншеков, Л. А. Плотник // Енергетика: економіка, технології, екологія : науковий журнал. – 2014. – № 2(36). – С. 38–43. – Бібліогр.: 13 назв.; https://ela.kpi.ua/handle/123456789/10120
Availability: https://ela.kpi.ua/handle/123456789/10120
-
18Dissertation/ Thesis
Authors: Зябіна, Євгенія Анатоліївна, Зябина, Евгения Анатольевна, Ziabina, Yevheniia Anatoliivna, Пімоненко, Тетяна Володимирівна, Пимоненко, Татьяна Владимировна, Pimonenko, Tetiana Volodymyrivna, Люльов, Олексій Валентинович, Люлев, Алексей Валентинович, Liulov, Oleksii Valentynovych, Ус, Яна Олександрівна, Ус, Яна Александровна, Us, Yana Oleksandrivna, Proshkin, D.
Subject Terms: енергетична політика, энергетическая политика, energy policy, сталий розвиток, устойчивое развитие, sustainable development, стійка енергетика, устойчивая энергетика, sustainable energy
File Description: application/pdf
Availability: https://essuir.sumdu.edu.ua/handle/123456789/86458
-
19Dissertation/ Thesis
Authors: Yudina, A.
Subject Terms: устойчивая энергетика, 13. Climate action, стійка енергетика, 8. Economic growth, 11. Sustainability, sustainable energy, 7. Clean energy, 12. Responsible consumption
File Description: application/pdf
-
20Book
Authors: Grigoreva E.M., Kreidenko T.F., Chernyaev M.V., Paleev D.L., Bondarchuk N.V., Belskaya E.V.
Subject Terms: sustainable energy, tools for supporting the fuel and energy complex, energy efficiency and energy independence of the region, устойчивая энергетика, инструменты поддержки ТЭК, энергоэффективность и энергонезависимость региона
Relation: https://doi.org/10.18334/9785912922541; https://repository.rudn.ru/records/monograph/record/52878/
Availability: https://repository.rudn.ru/records/monograph/record/52878/