Showing 1 - 20 results of 306 for search '"Термостабильность"', query time: 0.84s Refine Results
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    Contributors: The research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst No. FGGN-2024-0013, theme No. 124020200029-4)., Работа выполнена при поддержке Минобрнауки России в рамках Государственного задания ФГБНУ «Федеральный исследовательский центр животноводства – ВИЖ имени академика Л. К. Эрнста» (№ FGGN-2024-0013, рег. № 124020200029-4).

    Source: Agricultural Science Euro-North-East; Том 26, № 5 (2025); 1112-1124 ; Аграрная наука Евро-Северо-Востока; Том 26, № 5 (2025); 1112-1124 ; 2500-1396 ; 2072-9081

    File Description: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/2232/950; Суровцев В. Н. Тенденции и перспективы развития молочного животноводства России: риски и возможности. Молочная промышленность. 2023;(2):12–16. DOI: https://doi.org/10.31515/1019-8946-2023-02-12-16 EDN: UQGWLO DOI: https://doi.org/10.31515/1019-8946-2023-02-12-16; Ларкина Т. А., Ширяев Г. В. GWAS как инструмент обнаружения SNPs у крупного рогатого скота для изучения их связи с воспроизводством, продуктивностью, ростом, поведением, болезнями. Аграрная наука. 2024;1(8):124–131. DOI: https://doi.org/10.32634/0869-8155-2024-385-8-124-131 EDN: FIMLEZ DOI: https://doi.org/10.32634/0869-8155-2024-385-8-124-131; Сермягин А. А., Быкова О. А., Лоретц О. Г., Костюнина А. В., Зиновьева Н. А. Оценка геномной вариабельности продуктивных признаков у животных голштинизированной черно-пестрой породы на основе GWAS-анализа и ROH паттернов. Сельскохозяйственная биология. 2020;55(2):257–274. DOI: https://doi.org/10.15389/agrobiology.2020.2.257rus EDN: DTVHLI DOI: https://doi.org/10.15389/agrobiology.2020.2.257rus; Dadousis C., Biffani S., Cipolat-Gotet C., Nicolazzi E. L., Rosa G. J. M., Gianola D. et al. Genome-wide association study for cheese yield and curd nutrient recovery in dairy cows. Journal of Dairy Science. 2017;100(2):1259–1271. DOI: https://doi.org/10.3168/jds.2016-11586; Lu X., Arbab A. A. I., Abdalla I. M., Liu D., Zhang Zh., Xu T. et al. Genetic parameter estimation and genome-wide association study-based loci identification of milk-related traits in Chinese Holstein. Frontiers in Genetics. 2022;12:799664. DOI: https://doi.org/10.3389/fgene.2021.799664; Korkuć P., Neumann G. B., Hesse D., Arends D., Reißmann M., Rahmatalla S. et al. Whole-genome sequencing data reveal new loci affecting milk production in German Black Pied Cattle (DSN). Genes. 2023;14(3):581. DOI: https://doi.org/10.3390/genes14030581; Liu L., Zhou J., Chen Ch. J., Zhang J., Wen W., Tian J. et al. GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle. Animals. 2020;10(11):2048. DOI: https://doi.org/10.3390/ani10112048; Shamsollahi M., Zhang Sh. Genome wide association study associated with milk protein composition. Animal Science Research. 2024;34(1):31–44. DOI: https://doi.org/10.22034/as.2023.54694.1690; Левченко М. В., Гладырь Е. А., Зарипов О. Г., Петрякова Г. К., Лашнева И. А., Карликова Г. Г., Сермягин А. А., Зиновьева Н. А. Полногеномный анализ ассоциаций с технологическими свойствами молока коров голштинской породы. Молочное и мясное скотоводство. 2024;(6):3–9. DOI: https://doi.org/10.33943/MMS.2024.42.72.001 EDN: FQONYJ DOI: https://doi.org/10.33943/MMS.2024.42.72.001; Citek J., Brzakova M., Hanusova L., Hanuš O., Večerek L., Samková E. et al. Technological properties of cow’s milk: correlations with milk composition, effect of interactions of genes and other factors. Czech Journal of Animal Science. 2020;65(1):13–22. DOI: https://doi.org/10.17221/150/2019-CJAS; Dadousis C., Pegolo S., Rosa G. J. M., Gianola D., Bittante G., Cecchinato A. Pathway-based genomewide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science. 2017;100(2):1223–1231. DOI: https://doi.org/10.3168/jds.2016-11587; Marina H., Pelayo R., Suárez-Vega A., Gutiérrez-Gil B., Esteban-Blanco C., Arranz J. J. Genome-wide association studies (GWAS) and post-GWAS analyses for technological traits in Assaf and Churra dairy breeds. Journal of Dairy Science. 2021;104(11):11850–11866. DOI: https://doi.org/10.3168/jds.2021-20510; Pegolo S., Bergamaschi M., Gasperi F., Biasioli F., Cecchinato A., Bittante G. Integrated PTR-ToF-MS, GWAS and biological pathway analyses reveal the contribution of cow’s genome to cheese volatilome. Scientific Reports. 2018;8:17002. DOI: https://doi.org/10.1038/s41598-018-35323-5; Sanchez M. P., Ramayo Caldas Yu., Wolf V., Laithier C., El Jabri M., Michenet A. et al. Sequence based GWAS, network and pathway analyses reveal genes co associated with milk cheese making properties and milk composition in Montbéliarde cows. Genetics Selection Evolution. 2019;51:34. DOI: https://doi.org/10.1186/s12711-019-0473-7; Lagresle-Peyrou Ch., Six E. M., Picard C., Rieux-Laucat F., Michel V., Ditadi A. et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nature Genetics. 2009;41:106–111. DOI: https://doi.org/10.1038/ng.278; Riley D. G., Miller R. K., Nicholson K. L., Gill C. A., Herring A. D., Riggs P. K. et al. Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament. Livestock Science. 2019;229:150–158. DOI: https://doi.org/10.1016/j.livsci.2019.09.021; Yan X., Kuang B., Ma Sh., Wang R., Lin J., Zeng Y. et al. NOP14-mediated ribosome biogenesis is required for mTORC2 activation and predicts rapamycin sensitivity. Journal of Biological Chemistry. 2024;300(3):105681. DOI: https://doi.org/10.1016/j.jbc.2024.105681; Zhang L., Ning Y., Li P., Guo H., Zan L. Tissue expression analysis and characterization of SMAD3 promoter in bovine myoblasts and preadipocytes. DNA and Cell Biology. 2018;37(6):551–559. DOI: https://pmc.ncbi.nlm.nih.gov/articles/PMC5985903/; Abo-Ismail M. K., Voort G. V., Squires J. J., Swanson K. C., Mandell I. B., Liao X. et al. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genetics. 2014;15:14. DOI: http://www.biomedcentral.com/1471-2156/15/14; Chaiprasert T., Armartmuntree N., Techasen A., Sakonsinsiri Ch., Pinlaor S., Ungarreevittaya P. et al. Roles of Zinc Finger Protein 423 in Proliferation and Invasion of Cholangiocarcinoma through Oxidative Stress. Biomolecules. 2019;9(7):263. DOI: https://doi.org/10.3390/biom9070263; Pagani F., Tratta E., Dell’Era P., Cominelli M., Poliani P. L. EBF1 is expressed in pericytes and contributes to pericyte cell commitment. Histochemistry and Cell Biology. 2021;156:333–347. DOI: https://doi.org/10.1007/s00418-021-02015-7

  4. 4
    Academic Journal

    Source: Eurasian Journal of Academic Research; Vol. 5 No. 10 (2025): Eurasian Journal of Academic Research; 142-147 ; Евразийский журнал академических исследований; Том 5 № 10 (2025): Евразийский журнал академических исследований; 142-147 ; Yevrosiyo ilmiy tadqiqotlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал академических исследований; 142-147 ; 2181-2020

    File Description: application/pdf

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022200103-5), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР № 124022200103-5)

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 3 (2024); 335-347 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 3 (2024); 335-347 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-3

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/613/918; https://www.biopreparations.ru/jour/article/downloadSuppFile/613/1039; Berkowitz S, Rathore AS, Krull IS. Challenges in the determination of protein aggregates. Part II. LCGC North Am. 2015;33(7):478–89.; Rathore AS, Krull IS. Challenges in the determina tion of protein aggregates. Part I. LCGC North Am. 2015;33(1):42–9.; Noel JC, Lagassé D, Golding B, Sauna ZE. Emerging approaches to induce immune tolerance to therapeutic proteins. Trends Pharmacol Sci. 2023;44(12):1028–42. https://doi.org/10.1016/j.tips.2023.10.002; Wearne SJ, Creighton TE. Effect of protein conformation on rate of deamidation: ribonuclease A. Proteins. 1989;5(1):8–12. https://doi.org/10.1002/prot.340050103; Grigolato F, Arosio P. Synergistic effects of flow and interfaces on antibody aggregation. Biotechnol Bioeng. 2020;117(2):417–28. https://doi.org/10.1002/bit.27212; Shah M. Commentary: New perspectives on protein aggregation during biopharmaceutical development. Int J Pharm. 2018;552(1–2):1–6. https://doi.org/10.1016/j.ijpharm.2018.09.049; Chi EY, Krishnam S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20(9):1325–36. https://doi.org/10.1023/a:1025771421906; Jacob S, Shirwaikar AA, Srinivasan KK, Alex J, Prabu SL, Mahalaxmi R, Kumar R. Stability of proteins in aqueous solution and solid state. Indian J Pharm Sci. 2006;68(2):154–63. https://doi.org/10.4103/0250-474X.25708; Larson NR, Wei Y, Prajapati I, Chakraborty A, Peters B, Kalonia C, et al. Comparison of polysorbate 80 hydrolysis and oxidation on the aggregation of a monoclonal antibody. J Pharm Sci. 2020;109(1):633–9. https://doi.org/10.1016/j.xphs.2019.10.069; Xie M, Schowen R. Secondary structure and protein deamidation. J Pharm Sci. 1999;88(1):8–13. https://doi.org/10.1021/js9802493; Cohen S, Price C, Vlasak J. β-Elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J Am Chem Soc. 2007;129(22):6976–7. https://doi.org/10.1021/ja0705994; Cordoba AJ, Shyong B, Breen D, Harris RJ. Non-enzy matic hinge region fragmentation of antibodies in solution. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;818(2):115–21. https://doi.org/10.1016/j.jchromb.2004.12.033; Werner R, Kopp K, Schlueter M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatr. 2007;96(455):17–22. https://doi.org/10.1111/j.1651-2227.2007.00199.x; Luo D, Smith SW, Anderson BD. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pham Sci. 2005;94(2):304–16. https://doi.org/10.1002/jps.20253; Cleland JL, Lam X, Kendrick B, Yang J, Yang T, Overca shier D, et al. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001;90(3):310–21. https://doi.org/10.1002/1520-6017(200103)90:3%3C310::aid-jps6%3E3.0.co;2-r; Constantino HR, Carrasquillo KG, Cordero RA, Mumenthaler M, Hsu CC, Gribenow K. Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J Pharm Sci. 1998;87(11):1412–20. https://doi.org/10.1021/js980069t; Lai MC, Topp EM. Solid-state chemical stability of proteins and peptides. J Pharm Sci. 1999;88(5):489–500. https://doi.org/10.1021/js980374e; Li S, Patapoff TW, Overcashier, D, Hsu C, Nguyen TH, Borchardt RT. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state. J Pharm Sci. 1996;85(8):873–7. https://doi.org/10.1021/js950456s; Narhi LO, Chou DK, Christian TR, Gibson S, Jaganna than B, Jiskoot W, et al. Stress factors in primary packaging, transportation and handling of protein drug prod ucts and their impact on product quality. J Pharm Sci. 2022;111(4):887–902. https://doi.org/10.1016/j.xphs.2022.01.011; Besheer A, Burton L, Galas RJ Jr, Gokhale K, Goldbach P, Hu Q, et al. An industry perspective on compatibility assessment of closed system drug-transfer devices for bio logics. J Pharm Sci. 2021;110(2):610–4. https://doi.org/10.1016/j.xphs.2020.10.047; Campa C, Pronce T, Paludi M, Weusten J, Conway L, Savery J, et al. Use of stability modeling to support acceler ated vaccine development and supply. Vaccines (Basel). 2021;9(10):1114. https://doi.org/10.3390/vaccines9101114; Bunc M, Hadži S, Graf C, Bončina M, Lah J. Aggregation time machine: a platform for the prediction and optimization of long-term antibody stability using short-term kinetic analysis. J Med Chem. 2022;65(3):2623–32. https://doi.org/10.1021/acs.jmedchem.1c02010; https://www.biopreparations.ru/jour/article/view/613

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20