Showing 1 - 20 results of 26 for search '"Теплоаккумулирующие материалы"', query time: 0.64s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 1 (2023); 77-105 ; Альтернативная энергетика и экология (ISJAEE); № 1 (2023); 77-105 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2186/1782; Economic value of heat storage systems. Compact Retrofit Advanced Thermal Energy storage. – 2016. – P. 47.; Barreneche, C. New database on phase change materials for thermal energy storage in buildings to help PCM selection / C. Barreneche [et al.] // Energy Procedia. – 2014. – Vol. 57. – P. 2408-2415.; Cabeza, L. F. Materials used as PCM in thermal energy storage in buildings: A review. / L. F. Cabeza [et al.] // Ren. and Sust. Energy Reviews. – 2011. – Vol. 15. – P. 1675-1695.; Пат. 2020621948 Российская Федерация. Базы данных свойств теплоаккумулирующих материалов для систем отопления и горячего водоснабжения (БД ТАМ). / Моржухина С.В., Моржухин А.М., Тестов Д.С.; заявитель и патентообладатель OOO “AV Technology”. – № 2020621867 заявл.15.10.2020, Бюл. №10 – 6,95 Мб; Ushak, S. Thermodynamic modeling and experimental verification of new eutectic salt mixtures as thermal energy storage materials. / S. Ushak [et al.] // Sol. Energy Mat. & Sol.Cells. – 2020. – Vol. 209. – P. 110475.; Energy storage roadmap. Technology and institution. Innovation for Cool Earth Forum. – November 2017. – P. 49.; Purohit, B. K. Inorganic salt hydrate for thermal energy storage application: A review / B. K. Purohit, V. S. Sistla // Energy Storage. – 2021. – Vol. 3. – P. e212.; Telkes, M. Solar house heating: problem of heat storage. / M. Telkes // Heat. Vent. – 1947. – Vol. 44.; Abhat, A. Low temperature latent heat thermal energy storage: heat storage materials. / A. Abhat // Solar energy. – 1983. – Vol. 30. – P. 313-332.; Мозговой, А.Г. Теплофизические свойства теплоаккумулирующих материалов. Кристаллогидраты: Обзоры по теплофизическим свойствам веществ. / А.Г. Мозговой - М.: ТФЦ ИВТАН. 1990. №2(82). 106 с.; Zalba, B. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. / B. Zalba [et al.] // App. Therm. Engin. – 2003. – Vol. 23. – P. 251–283.; Kenisarin, M. Review. Salt hydrates as latent heat storage materials: Thermophysical properties and costs. / M. Kenisarin, K. Mahkamov // Sol. Energy Mat. & Sol.Cells. – 2016. – Vol. 145. – P. 255-286.; Соболев, А.Ю. Исследование фазовых превращений трехводного ацетата натрия методами термического анализа. / А.Ю. Соболев // Наукові праці ДонНТУ. Серія: Хімія і хімічна технологія – 2014. – Випуск 1(22). – 30-37 с.; Green, W.F. The “melting-point” of hydrated sodium acetate: solubility curves. / W.F. Green // J. Phys. Chem. – 1908. – Vol. 12 (9). – P. 655–660.; Guion, J. Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. / J. Guion, J.D. Sauzade, M. Laügt // Thermochim. Acta. – 1983. – Vol. 67(2). – P. 167–179.; Zhang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. / Y. Zhang, Y. Jiang, Y. Jiang // Meas. Sci. Technol. – 1999. – Vol.10. – P. 201–205.; Meisingset, K.K. Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. III. CH3CO2Na∙3H2O, CH3CO2Li·2H2O and (CH3CO2)2Mg·4H2O. / K.K. Meisingset, F. Grønvild // J. Chem. Thermdyn. – 1984. – Vol. 16 (9). – P. 523–536.; Naumann, R. Thermoanalytical investigation of sodium acetate trihydrate for application as a latent heat thermal energy storage material. / R. Naumann, T. Fanghänel, H.H. Emons // J. Therm. Anal. – 1988. – Vol. 33 (3). – P. 685–690.; Wood D.G. Characterization of latent heatreleasing phase change materials for dermal therapies. / D.G. Wood [et al.] // J. Phys. Chem. – 2011. – Vol. 115 (16). – P. 8369–8375.; Inaba, H. A study on latent heat storage using a supercooling condition of hydrate (1st report, An estimation of physical properties of hydrate sodium acetate including a supercooling condition). / H. Inaba [et al.] // Trans. Jpn. Soc. Mech. Eng. – 1992. – Vol. 58 (553). – P. 2848–2856. (In Japanese).; Pebler. A. Dissociation vapor pressure of sodium acetate trihydrate. / Pebler. A. // Thermochim. Acta. 1975. – Vol. 13. – P.109–114.; Wada, T. Studies on salt hydrate for latent heat storage. I. Crystal nucleation of sodium acetate trihydrate catalysed by tetrasodium pyrophosphate decahydrate. / T. Wada, R. Yamamoto // Bul. Chem. Soc. Jpn. – 1982. – Vol. 55. – P. 3603–3606.; Naumann, R. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. / R. Naumann, H.H. Emons // J Therm Anal Calorim – 1989. – Vol. 35. – P. 1009-1031.; Hong, H. Accuracy improvement of T-history method for measuring heat of fusion of various materials. / H . H ong, S .K. K im, Y -S. Kim // Int J Refrig. – 2004. – Vol. 27. – P. 360-366.; Lane, G.A. Low temperature heat storage with phase change materials. Int. J. Ambient Energy. / G.A. Lane // 1980. – Vol. 1. – P. 155–168.; Aboul-Enein S. Storage of low temperature heat in salt- hydrate melts for heating applications. / S. Aboul-Enein, M.R.I Ramadan. //Sol. Wind Technol. – 1988. – Vol. 5. – P. 441–444.; Abhat, A. Latent heat thermal energy storage - Determination of properties of storage media and development of a new heat transfer system (in German). / A. Abhat, S. Aboul-Enein, N.A. Malatidis // Report N BMFT-FB-T 82-016, German Ministry for Science and Technology, Bonn, FRG. – 1982.; Magin, R.L. Transition temperatures of the hydrates of Na2SO4, Na2HPO4 and K F a s f ixed p oints i n biomedical thermometry. / R.L. Magin [et al.] // J. Res. Nat. Bur. Stand. – 1981. – Vol. 86. – P. 181-192.; Lorsch, H.G. Thermal energy storage for solar heating and off-peak conditioning. / H.G. Lorsch, K.W. Kauffmann, I.C. Denton // Z/Energy Convers. – 1975. – Vol.15. – P. 1-8.; Ewing, W.W. The temperature- composition relations of the binary system zink nitrate-water. / W.W. Ewing, I.I. Mc.Govern, G.E. Matheus // J. Am. Chem. Soc. – 1933. – Vol. 55. – P. 4827—4830.; Jain, S.K. Density, viscosity, and surface tension of some single molten hydrated salts. / S.K. Jain // J. Chem. Eng. Data. – 1978. – Vol. 23 (2). – P. 170–173.; Jain, S.K. Solution properties of the molten hydrates of zinc nitrate. / S.K. Jain, R. Tamamuski // Can. J. Chem. – 1980. – Vol. 58. – P.1697-1703.; Xiao, Q. Fabrication and characteristics of composite phase change material based on Ba(OH)2∙8H2O for thermal energy storage. / Q. Xiao [et al.] // Sol. Energy Mat. & Sol.Cells. – 2018. – Vol. 179. – P. 339-345.9.; Kumar, R.S. Differential Scanning Calorimetry (DSC) analysis of latent heat storage materials for low temperature (40-80 °C) solar heating applications. / R.S. Kumar, D.J. Krishna // Int. J. Eng. Res. Technol. – 2013. – Vol. 2. – P. 429-455.; Telkes, M. Thermal storage in salt-hydrates. / M. Telkes // Solar Materials Science. – 1980. – Vol. 1. – P. 377-404.; Beaupere, N. Nucleation triggering methods in supercooled phase change materials (PCM), a review. / N. Beaupere, U. Soupremanien, L. Zalewski // Thermochimica Acta. – 2018. – Vol. 670. – P. 184-201.; Kumar, N. Exploring additives for improving the reliability of zinc nitrate hexahydrate as a phase change material (PCM). / N. Kumar, D. Banerjee, R. Jr. Chaves // Journal of Energy Storage. – 2018. – Vol. 20. – P. 153-162.; Моржухин, А.М. Критерии выбора и теплофизические свойства низкотемпературных теплоаккумулирующих материалов для систем хранения тепловой энергии (обзор). / А.М. Моржухин [и др.] // ISJAEE. – 2019. – № 22-27. – с. 92-106.; Sharma, A. Review on thermal energy storage with phase change materials and applications. / A. Sharma [et al.] // Ren. and Sust. Energy Reviews. – 2009. – Vol. 13. – P. 318-345.; Nazir, H. Recent developments in phase change materials for energy storage applications: A review. / H. Nazir [et al.] // Int. J. Heat Mass Trans. – 2019. – Vol. 129. – P. 491-523.; Morzhukhin, A.M. Selection principles and investigation of substances for synthesis of composite medium- temperature phase change materials for space heating and domestic hot water. / A.M. Morzhukhin, D.S. Testov, S.V. Morzhukhina // Materials Science Forum ISSN: 1662-9752. – 2020. – Vol. 989. – P. 165-171.; Pielichowska, K. Phase change materials for thermal energy storage. / K. Pielichowska, K. Pielichowski // Prog. Mat. Sci. – 2014. – Vol. 65. – P. 67- 123.; Risti, A. IEA SHC Task 42 / ECES Annex 29 WG A1: Engineering and processing of PCMs, TCMs and sorption materials. / A. Risti [et al.] // Energ. Proc. – 2016. – Vol. 91. – P. 207 – 217.; Yang, K. A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. / K. Yang [et al.] // Energy. – 2018. – Vol. 165. – P. 1085-1096.; He, M. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. / M. He [et al.] // Journal of Energy Storage. – 2019. – Vol. 25. – P. 100874.; Rathod, M.K. A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment. / M.K. Rathod, H.V. Kanzaria // Materials & Design. – 2011. – Vol. 32. – P. 3578-3585.; Choudhury, H. Barium and barium compounds. / H. Choudhury [et al.] // World Health Organization & International Programme on Chemical Safety. – 2001. – 57 p.; Карапетьянц, М.Х. Методы сравнительного расчёта физико-химических свойств / М.Х. Карапетьянц – М.: Наука.,1965. – 404 с.; Амер, А.Э. Выбор материалов с фазовым переходом с использованием метода анализа иерархий (МАИ). / А.Э. Амер, К. Рахмани, В.А. Лебедев // Международный научно-исследовательский журнал. – 2020. – № 6-1 (96). – С. 35-48.; Тестов, Д.С. Концепция выбора теплоаккумулирующих материалов с использованием нового алгоритма многокритериальной оптимизации, включающей модифицированный метод анализа иерархии (мМАИ). / Д.С. Тестов, С.В. Моржухина, А.М. Моржухин // Физическая и аналитическая химия природных и техногенных систем: сборник трудов Всероссийской конференции с международным участием Дубна: Гос. ун-т «Дубна». – 2021. – 160-167 с.; Srikar, V.T. Materials selection in micromechanical design: An application of the Ashby approach. / V.T. Srikar, S.M. Spearing // J. Microelectromechanical Syst. – 2003. – Vol. 12. – P. 3–10.; Tebaldi, M.L. Polymers with nano-encapsulated functional polymers: encapsulated phase change materials. Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. / M.L. Tebaldi, R.M. Belardi, S.R. Montoro // William Andrew Publishing. – 2016. – С. 155-169.; Yinping, Z. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. / Z. Yinping, J. Yi // Meas. Sci. Technol. – 1999. – Vol. 10. – P. 201-205.; Lorsch, H.G. Thermal energy storage for solar heating. / H.G. Lorsch // ASHRAE J. – 1975. – Vol. 17. – P. 47-52.; Александров, В. Д. Тепловые эффекты при плавлении и кристаллизации в системе карбонат натрия десятиводный–сульфат натрия десятиводный методом ДТА. / В.Д. Александров, А.Ю. Соболев // Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія. – 2012. – №. 19. – С. 45-48.; Александров, В.Д. Использование теплоаккумулирующих материалов на основе кристаллогидратов солей натрия в транспортных средствах. / В.Д. Александров [и др.] // Вісник Донецької академії автомобільного транспорту. – 2015. – № 1. – 34-41 c.; Wei, G. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. / G. Wei [et al.] // Ren. and Sust. Energy Reviews. – 2018. – Vol. 81. – P. 1771-1786.; Voigt, W. Solid–liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials. / W. Voigt, D. Zeng // Pure and applied chemistry. – 2002. – Vol. 74. – P. 1909-1920.; Tao, Y .B. A r eview o f p hase change material and performance enhancement method for latent heat storage s ystem. / Y .B. T ao, Y .L. H e / / Ren. and Sust. Energy Reviews. – 2018. – Vol. 93. – P. 245-259.; Kibria, M.A. A review on thermophysical properties of nanoparticle dispersed phase change materials. M.A. Kibria [et al.] // Energy conversion and management. – 2015. – Vol. 95. – P. 69-89.; Zhou, D. Thermal characterisation of binary sodium/ lithium nitrate salts for latent heat storage at medium t emperatures. / D . Z hou, P . E ames / / Sol. Energy Mat. & Sol.Cells. – 2016. – Vol. 157. – P. 1019-1025.; Qureshi, Z.A. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. / Z.A. Qureshi, H.M Ali., S. Khushnood // International Journal of Heat and Mass Transfer. – 2018. – Vol. 127. – P. 838-856.; Kośny, J. PCM-Enhanced Building Components. An Application of Phase Change Materials in Building Envelopes and Internal Structures. (Engineering Materials and Processes) / J. Kośny – Springer. Boston, MA, 2015. – P. 280.; Pouillen, P. Les transformations polymorphiques des cristaux de nitrates de metaux bivalents hexahydrates (NO3)2 -·6H2O o u M= Z n, M g, M n, C u. / P . Pouillen // Comptes rendus hebdomadaires des seances de l academie des sciences. – 1960. – Vol. 250. – P. 3318-3319.; Zahir, M.H. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. / M.H. Zahir [et al.] // App. Energ. – 2019. – Vol. 240. – P. 793–817.; Safari, A. A review on supercooling of Phase Change Materials in thermal energy storage systems. / A. Safari [et al.] // Ren. and Sust. Energy Reviews. – 2017. – Vol. 17. – P. 905-919.; Taylor, R.A. Experimental characterisation of sub-cooling in hydrated salt phase change materials. / R.A. Taylor, N. Tsafnat, A. Washer // App. Therm. Engin. – 2016. – Vol. 93. – P. 935–938.; Александров, В.Д. Термический гистерезис при плавлении и кристаллизации макрообъектов. / В.Д. Александров, Е.А. Покинтелица, А.Ю. Соболев // Журнал технической физики. – 2017. – Т. 87. – №. 5. – С. 722-725.; Eastman, J.A. Enhanced thermal conductivity through the development of nanofluids. / J.A. Eastman [et al.] // MRS Proc. Cambridge Univ Press. – 1996. – P. 3.; Wu, Y. Hydrated salts/expanded graphite composite with high thermal conductivity as a shapestabilized phase change material for thermal energy storage. / Y. Wu, T. Wang // Energy conversion and management. – 2015. – Vol. 101. – P. 164-171.; Элсайед, А.А. Влияние термоциклирования на выбор рабочего тела с фазовым переходом для теплоаккумуляторов систем солнечного теплоснабжения. / А.А. Элсайед, В.А. Лебедев // Вестник Иркутского государственного технического университета. – 2020. – Т. 24. – №. 3 (152). – 570-581 с.; Gomez, J.C. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications. / J.C. Gomez // National Renewable Energy Laboratory. September 2011. P. 36.; Gabriela, L. Thermal Energy Storage with Phase Change Material. / L. Gabriela // Leon. El. J. of Pract. and Tech. – 2012. – P. 75-98.; Sarbu, I. A Comprehensive Review of Thermal Energy Storage. / I. Sarbu, C. Sebarchievici // Sustainability. – 2018. – Vol. 10. – P. 32.; Снежкин, Ю.Ф. Удельная теплоемкость и теплопроводность теплоаккумулирующих материалов на основе парафина, буроугольного и полиэтиленового восков. / Ю.Ф. Снежкин [и др.] // Problemele energeticii regionale. Termoenergetică. – 2014. – № 2(25). – 38-46 с.; Nkwetta, D. Nch. Thermal energy storage with phase change material - A state-of-the a rt r eview. / D . Nch. N kwetta, F . H aghighat / / S ust. C it. a nd S oc. – 2014. – Vol. 10. – P. 87-100.; https://www.isjaee.com/jour/article/view/2186

  6. 6
    Academic Journal

    Source: Eastern-European Journal of Enterprise Technologies; Том 1, № 6 (91) (2018): Technology organic and inorganic substances; 52-58
    Восточно-Европейский журнал передовых технологий; Том 1, № 6 (91) (2018): Технологии органических и неорганических веществ; 52-58
    Східно-Європейський журнал передових технологій; Том 1, № 6 (91) (2018): Технології органічних та неорганічних речовин; 52-58

    File Description: application/pdf

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 22-27 (2019); 92-106 ; Альтернативная энергетика и экология (ISJAEE); № 22-27 (2019); 92-106 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1806/1548; Lin, Y. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage / Y. Lin [et al.] // Renewable and Sustainable Energy Reviews. – 2018. – Vol. 82. – P. 2730–2742.; Le Pierres, B.S.N. Storage of thermal solar energy / B.S.N. Le Pierres [et al.] // C. R. Physique. – 2017. – Vol. 18. – P. 401–414.; Barreneche, C. New database to select phase change materials: Chemical nature, properties, and applications / C. Barreneche [et al.] // Journal of Energy Storage. – 2015. – Vol. 3. – P. 18–24.; Pielichowska, K. Phase change materials for thermal energy storage / K. Pielichowska [et al.] // Progress Mater. Sci. – 2014. – Vol. 65. – P. 67–123.; Li, T.X. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage / T.X. Li [et al.] // International Journal of Heat and Mass Transfer. – 2017. – Vol. 115. – P. 148–157.; Белименко, С.С. Разработка критериев эффективности заряда и разряда твердотельного теплового аккумулятора / С.С. Белименко [и др.] // Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту. – 2014. – Т. 53. – № 5. – C. 7–17.; Hammou, Z.A. A new PCM storage system for managing simultaneously solar and electric energy / Z.A. Hammou [et al.] // Energy Build. – 2006. – Vol. 38. – P. 258–65.; Гаматаева, Г.Ю. Технико-эксплуатационные свойства теплоаккумулирующих материалов / Г.Ю. Гаматаева [и др.] // Материалы X Всероссийской научной конференции. Издательство: Северо-Осетинский государственный университет им. К.Л. Хетагурова (Владикавказ). – 2016. – C. 187–190.; Nkwetta, D.N. Thermal energy storage with phase change material—A state-of-the art review / D.N. Nkwetta, F. Haghighat // Sustainable Cities and Society. – 2014. – Vol. 10. – P. 87–100.; Sögütoglu, L.C. In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S / L.C. Sögütoglu [et al.] // Applied Energy. – 2018. – Vol. 215. – P. 159–173.; Jaguemont, J. Phase-change materials (PCM) for automotive applications: A review / J. Jaguemont [et al.] // Applied Thermal Engineering. – 2018. – Vol. 132. – P. 308–320.; Du, K. A review of the applications of phase change materials in cooling, heating and power generation in different temperature range / K. Du [et al.] // Applied Energy. – 2018. – Vol. 220. – P. 242–273.; Nazir, H. Recent developments in phase change materials for energy storage applications: A review / H. Nazir [et al.] // International Journal of Heat and Mass Transfer. – 2019. – Vol. 129. – P. 491–523.; Bouhal, T. Numerical modeling and optimization of thermal stratification in solar hot water storage tanks for domestic applications: CFD study / T. Bouhal [et al.] // Sol. Energy. – 2017. –Vol. 157. – P. 441–455.; Huang, H. An experimental investigation on thermal stratification characteristics with PCMs in solar water tank / H. Huang [et al.] // Solar Energy. – 2019. – Vol. 177. – P. 8–21.; Burak, K. Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement / K. Burak [et al.] // Renew. Energy. – 2018. – Vol. 16. – P. 639–646.; Аблаев, Р.Р. Аккумулимрование тепла в системах солнечного теплоснабже6ния домов индивидуального пользования (обзор) / Р.Р. Аблаев [и др.] // Вісник СевНТУ: зб. наук. пр. Вип. 153. Серія: Механіка, енергетика, екологія. – Севастополь, 2014.; Yoram, L. Compact hot water storage systems combining copper tube with high conductivity graphite and phase change materials / L. Yoram [et al.] // Energy Procedia. – 2014. – Vol. 48. – P. 423 – 430.; Александров, В.Д. Использование теплоаккумулирующих материалов на основе кристаллогидратов солей натрия в транспортных средствах / В.Д. Александров [и др.] // Вісник Донецької академії автомобільного транспорту. – 2015. – № 1. – С. 34–41.; Venkateswara, V. PCM-mortar based construction materials for energy efficient buildings: A review on research trends / V. Venkateswara [et al.] // Energy and Buildings. – 2018. – Vol. 158. – P. 95–122.; Xiao, Q. Fabrication and characteristics of composite phase change material based on Ba(OH)2•8H2O for thermal energy storage / Q. Xiao [et al.] // Solar Energy Materials and Solar Cells. – 2018. – Vol. 179. – P. 339–345.; Kee, S.Y. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage / S.Y. Kee [et al.] // Applied Thermal Engineering. – 2018. – Vol. 131. – P. 455–471.; Mumtaz, M. A review for phase change materials (PCMs) in solar absorption refrigeration systems / M. Mumtaz [et al.] // Renewable and Sustainable Energy Reviews. – 2017. – Vol. 76. – P. 105–137.; Liu, Y.S. Use of nano-alpha-Al2O3 to improve binary eutectic hydrated salt as phase change material / Y.S. Liu, Y.Z. Yang // Sol. Energy Mater. Sol. – 2017. – Vol. 160. – P. 18–25.; Быстров, В.П. Теплоаккумуляторы с использованием фазового перехода / В.П. Быстров, А.В. Ливчак // Вопросы экономии теплоэнергетических ресурсов в системах вентиляции и теплоснабжения: сб. науч. трудов. – М.: Изд-во ЦНИИЭПИО, 1984. – С. 75–90.; Bal, L.M. Solar dryer with thermal energy storage systems for drying agricultural food products: a review / L.M. Bal [et al.] // Renew. Sustain. Energy Rev. – 2014. – Vol. – 14. – P. 2298–2314.; Risti, A. Engineering and processing of PCMs, TCMs and sorption materials / A. Risti [et al.] // Energy Procedia. – 2016. – Vol. 91. – P. 207 – 217.; Zhou, D. Thermal characterisation of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures / D. Zhou [et al.] // Solar Energy Materials and Solar Cells. – 2016. – Vol. 157. – P. 1019–1025.; Morofsky, E. History of thermal energy storage / E. Morofsky // Thermal Energy Storage for Sustainable Energy Consumption. – 2007. – P. 377–391.; Crespo, A. Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review / A. Crespo [et al.] // Solar Energy. – 2018. – DOI:10.1016/j.solener.2018.06.101; Putra, N. Preparation of beeswax/multi-walled carbon nanotubes as novel shapestable nanocomposite phase-change material for thermal energy storage / N. Putra [et al.] // Journal of Energy Storage. – 2019. – Vol. 21. – P. 32–39.; Parameshwaran, R. Applications of Thermal Analysis to the Study of Phase-Change Materials / R. Parameshwaran [et al.] // Chapter 13 Handbook of Thermal Analysis and Calorimetry. – 2018. – Vol. 6. – P. 519.; Leong, K.Y. Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges / K.Y. Leong [and al.] // Journal of Energy Storage. – 2019. – Vol. 21. – P. 18–31.; Гасаналиев, A.M. Теплоаккумулирующие свойства расплавов / A.M. Гасаналиев, Б.Ю. Гаматаева. // Успехи химии. – 2000. – Т. 69. – № 2. – C. 192–200.; Vitorino, N. Quality criteria for phase change materials selection / N. Vitorino [et al.] // Energy Conversion and Management. – 2016. – Vol. 124. – P. 598–606; 10.1016/j.enconman.2016.07.063.; Lin, Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials / Y. Lin [et al.] // Energy. – 2018. – Vol. 165. – P. 685–708.; Liu, L. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review / L. Liu [et al.] // Renewable Sustainable Energy Rev. – 2016. – Vol. – 62. – P. 305–317.; Conroy, T. Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers / T. Conroy [et al.] // Renewable Energy. – 2018. – Vol. 129. – P. 150–167.; Боровская, Л.В. Исследование термодинамических свойств карбоновых кислот методом ДСК / Л.В. Боровская // Фундаментальные исследования. Химические науки. – 2013. – № 6. – C. 1120–1123.; Alva, G. Thermal energy storage materials and systems for solar energy applications / G. Alva [et al.] // Renewable and Sustainable Energy Reviews. – 2017. – Vol. 68. – P. 693–706.; Мозговой, А.Г. Теплофизические свойства теплоаккумулирующих материалов. Кристаллогидраты: Обзоры по теплофизическим свойствам веществ / А.Г. Мозговой [и др.] // ТФЦ. – М.: ИВТАН. – 1990. – Т. 82. – № 2. – С. 3–105.; Wei, G. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review / G. Wei [et al.] // Renewable and Sustainable Energy Reviews. – 2018. – Vol. 81. – P. 1771–1786.; Ibrahim, N.I. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review / N.I. Ibrahim [et al.] // Renew. Sustain. Energy Rev. – 2017. – Vol. 74. – P. 26–50.; Qureshi, Z.A. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review / Z.A. Qureshi [et al.] // International Journal of Heat and Mass Transfer. – 2018. – Vol. 127. – P. 838–856.; Vadhera, J. Study of Phase Change materials and its domestic application / J. Vadhera [et al.] // Materials Today Proceedings. – 2018. – Vol. 5. – P. 3411–3417.; Dannemand, M. Laboratory test of a cylindrical heat storage module with water and sodium acetate trihydrate / M. Dannemand [et al.] // Energy Procedia. – 2016. – Vol. 91. – P. 122–127.; Dong, O. A novel eutectic phase-change material: CaCl2•6H2O +NH4Cl +KCl / O. Dong [et al.] // Calphad. – 2018. – Vol. 63. – P. 92–99.; Wang, W.W. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate / W.W. Wang [et al.] // Applied Thermal Engineering. – 2016. – Vol. 93. – P. 50–60.; Chaudhary, F.G.G. Modelling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components / F.G.G. Chaudhary, S. Fantucci // Energy & Buildings. – 2018. – Vol. 174. – P. 54–67.; Koukou, M.K. Experimental and computational investigation of a latent heat energy storage system with a staggered heat exchanger for various phase change materials / M.K. Koukou [et al.] // Thermal Science and Engineering Progress. – 2018. – Vol. 7. – P. 87–98.; Bhatt, V.D. Thermal Energy Storage Capacity of some Phase changing Materials and Ionic Liquids / V.D. Bhatt [et al.] // International Journal of ChemTech Research. – 2010. – Vol. 2. – No. 3. – P. 1771–1779.; Browne, C. Investigation of the corrosive properties of phase change materials in contact with metals and plastic / C. Browne [et al.] // Renewable Energy. – 2017. – Vol. 108. – P. 555–568.; Judith, C.G. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) // Applications. – 2011; doi: doi:10.2172/1024524.; Liu, M. Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for csp applications technologies / M. Liu [et al.] // Sol. Energy Mat. Sol. Cells. – 2015. – Vol. 139. – P. 81–87.; Taylor, R.A. Experimental characterisation of sub-cooling in hydrated salt phase change materials / R.A. Taylor [et al.] // Applied Thermal Engineering. – 2016. – Vol. 93. – P. 935–938.; Souayfane, F. Phase change materials (PCM) for cooling applications in buildings: a review / F. Souayfane [et al.] // Energy Build. – 2016. – Vol. 129. – P. 396–431.; Zhang, S. Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications / S. Zhang, Z. Wang // Renewable and Sustainable Energy Reviews. – 2018. – Vol. 82. – P. 2319–2331.; Khan, Z. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility / Z. Khan [et al.] // Energy Convers Manag. – 2016. – Vol. 115. – P. 132–158.; Meng, Z.N. Experimental and numerical investigation of a tube–in–tank latent thermal energy storage unit using composite PCM / Z.N. Meng, P. Zhang // Appl. Energy. – 2017. – Vol. 190. – P. 524–539; Giro–Paloma, J. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review / J. Giro–Paloma [et al.] // Renew. Sustain. Energy Rev. – 2016. – Vol. 53. – P. 1059–1075.; Jamekhorshid, A. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium / A. Jamekhorshid [et al.] // Renew. Sustain. Energy Rev. – 2014. – Vol. 31. – P. 531–542.; Hsua, T. Thermal hysteresis in phase-change materials: Encapsulated metal alloy core-shell microparticles / T. Hsua [et al.] // Nano Energy. – 2018. – Vol. 51. – P. 563–570.; Trunin, A. S. Computer Modeling of the Eutectic Parameters for the Li,Na,Ca%7C%7CF and K,Li,Sr%7C%7CF Three-Component Systems / A. S. Trunin [et al.] // Russian Journal of Inorganic Chemistry. – 2006. – Vol. 51. – No. 2. – P. 337–341.; Игнатьева, Е.О. Прогнозирование и экспериментальное подтверждение характеристик эвтектик рядов двухкомпонентных систем K2NО4 – KГ (Г – F, Cl, Br, I; Э – Cr, Mo, W) / Е.О. Игнатьева [и др.] // Вектор науки ТГУ. – 2011. – Т. 16 – № 2. – C. 31–35.; Моргунова, О.Е. Метод моделирования эвтектических характеристик многокомпонентных сплавов / О.Е. Моргунова [и др.] // Материаловедение. – 2014. – T. 202. – № 1. С. 50–56.; Бабаев, Б.Д. Принципы теплового аккумулирования и используемые теплоаккумулирующие материалы / Б.Д. Бабаев // Теплофизика высоких температур. – 2014. – T. 52. – № 5. – C. 760–776.; Jiang, Y. Eutectic Na2Co3-NaCl salt: A new phase change material for high temperature thermal storage / Y. Jiang [et al.]. – 2016. – Vol. 152. – P. 155–60.; Raud, R. A critical review of eutectic salt property prediction for latent heat energy storage systems / R. Raud [et al.] // Renewable and Sustainable Energy Reviews. – 2017. – Vol. 70. – P. 936–944.; Kenisarin, M. Salt hydrates as latent heat storage materials: Thermophysical properties and costs / M. Kenisarin, K. Mahkamov // Solar Energy Materials Solar Cells. – 2016. – Vol. 145. – P. 255–286.; Trausel, F. A review on the properties of salt hydrates for thermochemical storage / F. Trausel [et al.] // Energy Procedia. – 2014. – Vol. 48. – P. 447–452.; Fopah-Lelea, A. A review on the use of SrBr2•6H2O as a potential material for low temperature energy storage systems and building applications / A. Fopah-Lelea, J. Tamba // Solar Energy Materials Solar Cells. – 2017. – Vol. 164. – P. 175–187.; Kenfack, F. Innovative Phase Change Material (PCM) for heat storage for industrial applications / F. Kenfack, M. Bauer // Energy Procedia. – 2014. – Vol. 46. – P. 310 – 316.; Veerakumar, C. Phase change material based cold thermal energy storage: Materials, techniques and applications – A review / C. Veerakumar, A. Sreekumar // International Journal of Refrigeration. – 2016. – Vol. 67. – P. 271–289.; Safari, A. A review on supercooling of Phase Change Materials in thermal energy storage systems / A. Safari [et al.] // Renewable and Sustainable Energy Reviews. – 2017. – Vol. 70. – P. 905–91.; Zhou, S. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs / S. Zhou [et al.] // Applied Thermal Engineering. – 2018. – Vol. 133. – P. 446–451.; Sandnes, B. Supercooling salt hydrates: stored enthalpy as a function of temperature / B. Sandnes, J. Rekstad // Sol. Energy. – 2006. – Vol. 80. – No. 5. – P. 616–625.; Karaipekli, A. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes / A. Karaipekli [et al.] // Energy Convers Manag. – 2017. – Vol. 134. – P. 373–381.; Tao, Y.B. A review of phase change material and performance enhancement method for latent heat storage system / Y.B. Tao, Ya-Ling He // Renewable and Sustainale Energy Reviews. – 2018. – Vol. 93. – P. 245–259.; Shah, K.W. A review on enhancement of phase change materials – A nanomaterials perspective / K.W. Shah // Energy & Buildings. – 2018. – Vol. 175. – P. 57–68.; Castelloe, J.M. Sample Size Computations and Power Analysis with the SAS System / J.M. Castelloe // Statistics and Data Analysis. – 2000. – Vol. 25. – P. 8.; https://www.isjaee.com/jour/article/view/1806

  11. 11
  12. 12
    Academic Journal

    Source: Aerospace Scientific Journal; Том 1, № 03 (2015); 17-25 ; Аэрокосмический научный журнал; Том 1, № 03 (2015); 17-25 ; 2413-0982

    File Description: application/pdf

    Relation: https://aerospace.elpub.ru/jour/article/view/17/9; Хромов Е.С., Матвеева О.П. Анализ характеристик неорганических материалов для тепловых аккумуляторов в составе наземного технологического оборудования // Актуальные проблемы развития отечественной космонавтики: Труды XXX VIII академических чтений по космонавтике. М.: Комиссия РАН по разработке научного наследия пионеров освоения космического пространства, 2014. С. 366-367; Алексеев В.А., Малоземов В.В. Проектирование тепловых аккумуляторов: учеб. пособие. М.: МАИ, 2008. 86 с; Хромов Е.С. Анализ возможности использования пакетов прикладных программ для решения задачи теплопереноса в аккумуляторах холода // Молодежный научно-технический вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2013. № 9. Режим доступа: http://sntbul.bmstu.ru/doc/619173.html (дата обращения 01.04.2015); Волков Е.А. Численные методы: учеб. пособие для вузов. 5-е изд., испр. СПб.: Лань , 2008. 256 с; https://aerospace.elpub.ru/jour/article/view/17

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20