Showing 1 - 13 results of 13 for search '"СУММАРНОЕ СОДЕРЖАНИЕ АНТИОКСИДАНТОВ"', query time: 0.58s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Vegetable crops of Russia; № 2 (2024); 58-64 ; Овощи России; № 2 (2024); 58-64 ; 2618-7132 ; 2072-9146

    File Description: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2369/1543; The Tomato Genome Consortium. The tomato genome sequences provides insights into fleshy fruit evolution. Nature. 2012;(485):635-641. doi:10.1038/nature11119.; Tieman D., Zhu G., Resende M.F.R. Jr., Lin T., Nguyen C., Bies D., Rambla J.L., Beltran K., Taylor M., Zhang B., Ikeda H., Liu Z., Fisher J., Zemach I., Monforte A., Zamir D., Granell A., Kirst M., Huang S., Klee H. A chemical genetic roadmap to improved tomato flavor. Science. 2017;(355):391–394. doi:10.1126/science.aal1556.; Mata-Nicolas E., Montero-Pau J., Gimeno-Paez E., Garsia-Carpinero V., Ziarsolo P., Menda N., Mueller L.K., Blanca J., Caňizares J., van der Knaap E., Diez M.J. Exploiting the diversity of tomato: the development of a phenotypicalyy and genetically detailed germplasm collection. Horticulture Research. 2020;7:66. doi:10.1038/s41438-020-0291-7.; Rosa-Martínez E., Bovy A., Plazas M., Tikunov Y., Prohens J., Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. Front Plant Sciences. 2023;14:1135237. doi:10.3389/fpls.2023.1135237.; Alonge M., Wang X., Benoit M., Soyk S., Pereira L., Zhang L., Suresh H., Ramakrishnan S., Maumus F., Ciren D., Levy Y., Hai Harel T., Shalev-Schlosser G., Amsellem Z., Razifard H., Caicedo A.L., Tieman D.M., Klee H., Kirsche M., Aganezov S., Ranallo-Benavidez T.R., Lemmon Z.H., Kim J., Robitaille G., Kramer M., Goodwin S., McCombie W.R., Hutton S., Van Eck J., Gillis J., Eshed Y., Sedlazeck F.J., van der Knaap E., Schatz M.C., Lippman Z.B. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell. 2020;182:145-161. doi:10.1016/j.cell.2020.05.021.; Petrović I., Marjanović M., Pećinar I., Savić S., Jovanović Z., Stikić R. Chemical Characterization of Different Colored Tomatoes: Application of Biochemical and Spectroscopic Tools. Biol. Life Sci. Forum. 2022;16(1):32. doi:10.3390/IECHo2022-12482.; Fernandez-Moreno J.-P., Tzfadia O., Forment J., Presa S., Rogachev I., Meir S., Orzaez D., Aharoni A., Granell A. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor. Plant Physiology. 2016;171(3):1821-1836. doi:10.1104/pp.16.00282.; Kang S.-I., Hwang I., Goswami G., Jung H.-J., Kumar N. U., Yoo H.-J., Lee J. M., Nou I. S. Molecular Insights Reveal Psy1, SGR, and SlMYB12 Genes are Associated with Diverse Fruit Color Pigments in Tomato (Solanum lycopersicum L.). Molecules. 2017;22(12):2180. doi:10.3390/molecules22122180.; Chattopadhyay T., Hazra P., Akhtar S., Maurya D., Mukherjee A., Roy S. Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. Plant Cell Rep. 2021May;40(5):767-782. doi:10.1007/s00299-020-02650-9.; Ballester A.-R., Molthoff J., de Vos R., Hekkert B.T., Orzaez D., Fernández-Moreno J.-P., Tripodi P., Grandillo S., Martin C., Heldens J., Ykema M., Granell A., Bovy A. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol. 2010Jan;152(1):71-84. doi:10.1104/pp.109.147322.; Szuvandzsiev P., Helyes L., Lugasi A., Szanto C., Baranowski P., Pek Z. Estimation of antioxidant components of tomato using VIS-NIP reflectance data by handheld portable spectrometer. International Agrophysics. 2014;28:521-527. doi:10.2478/intag-2014-0042.; Shan S., Wang Z., Pu H., Duan W., Song H., Li J., Zhang Z., Xu X. DNA methylation mediated by melatonin was involved in ethylene signal transmission and ripening of tomato fruit. Scientia Horticulturae. 2022;(291):110566. doi:10.21203/rs.3.rs-180786/v1.; Zhu F., Wen W., Cheng Y., Fernie A. R. The metabolic changes that effect fruit quality during tomato fruit ripening. Molecular Horticulture. 2022;(2):2. doi:10.1186/s43897-022-00024-1.; Kondratyeva I.Yu., Molchanova A.V. Effect of ripening on biochemical characteristics of tangerine tomatoes (Solanum lycopersicum L.). Vegetables crops of Russia. 2022;(6):72-78. doi:10.18619/2072-9146-2022-6-72-78. EDN: SASVDC.; Guidelines for the breeding of cultivars and hybrids of tomato for fields and greenhouse. Moscow. 1986. [in Russ.]; Maximova T.V., Nikulina I.N., Pakhomov V.P., Shkarina E.I., Chumakova Z.V., Arzamastsev A.P. Method for determination of antioxidant activity. Description of the invention for the patent of the Russian Federation. М. 2001. RU2170930 С1. [in Russ.].; Golubkina N.A., Kekina E.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Antioxidants of plants and methods for their determination. Moscow, 2020. Infra-M. [in Russ.].; Ermakov A.I., Arasimovich V.V., Yarosch N.P., Peruansky U.A., Lukovnikova G.A., Ikonnikova M.I. Methods of biochemical research. L., Agropromizdat. 1987; 430. [in Russ.].; Andryushchenko V.K. Methods of optimization of biochemical selection of vegetable crops. Kishinev, "Stiinza". 1981;30-34. [in Russ.].; Determination of sugars in vegetables, berries and fruits. Cyanide method of determination of sugars in plants. Practicum on agrochemistry, ed. by V.V. Kidin. Moscow, publishing house "Kolos". 2008;236-240. [in Russ.].; Navez B.; Letard M.; Graselly D.; Jost J. Tomatoes: criteria for quality. Infos CTIFL. 1999;(155):41–47.; Misin V.M., Klimenko I.V., Zhuravleva T.S. On the suitability of gallic acid as a standard for an antioxidant formulation. Competency (Russia). 2014;7(118):46-51. EDN: SNHHYF. [in Russ.].; Rodriguez-Amaya D.B. A guide to carotenoid analysis in foods. 2001, Washington, OMNI Research. 65.; Golubkina N.A., Mоlchanova A.V., Tareeva M.M., Baback O.G., Nekrashevich N.A., Kondratyeva I.Yu. Quantitative thing layer chromatography for evaluation of carotenoid composition of tomatoes Solanum lycopersicum. Vegetable crops of Russia. 2017;(5):96-99. (In Russ.) doi:10.18619/2072-9146-2017-5-96-99. EDN: ORXRVH.; Glen S. "Duncan’s Multiple Range Test (MRT)". StatisticsHowTo.com: Elementary Statistics for the rest of us! 2023. https://www.statisticshowto.com/duncans-multiple-range-test/.; Kurina A.B., Solovieva A.E., Khrapalova I.A., Artemyeva A.M. Biochemical composition of tomato fruits of various colors. Vavilov journal of genetics and breeding. 2021;25(5):514-527. doi:10.18699/VJ21.058. EDN: MQKXGF.; Ignatova S.I., Babak O.G., Bagirova S.F. Development of high-lycopene tomato hybrids using conventional breeding techniques and molecular markers. Vegetable crops of Russia. 2020;(5):22-28. (In Russ.) doi:10.18619/2072-9146-2020-5-22-28. EDN: AVQFUJ.; Marti R., Rosello S., Cebolla-Cornejo J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers. 2016;(8):58. doi:10.3390/cancers8060058.; Batziakas K.G., Singh S., Stanley H., Brecht J.K., Rivard C.L., Pliakoni E.D. An innovative approach for maintaining the quality of pink tomatoes stored at optimum and above-optimum temperatures using a microporous membrane patch. Food Packaging and Shelf Life. 2022;(34):100981. doi:10.1016/j.fpsl.2022.100981.; Anton D., Bender I., Kaart T., Roasto M., Heinon M., Luik A., Püssa T. Changes in polyphenols contents and antioxidant capacities of organically and conventionally cultivated tomato (Solanum lycopersicum L.) fruits during ripening. International Journal of Analytical Chemistry. 2017;(10):2367453. doi:10.1155/2017/2367453.; https://www.vegetables.su/jour/article/view/2369

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Vegetable crops of Russia; № 6 (2022); 72-77 ; Овощи России; № 6 (2022); 72-77 ; 2618-7132 ; 2072-9146

    File Description: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2074/1417; Surikhina T.N., Meshcheryakova R.A., Telegina G.A. Features of vegetable production in the context of the COVID-19 pandemic. Potatoes and vegetables. 2021;(9):22-26. doi.org/10/25630/PAV/2021/83/31/003 (in Russ.); GOST 8756.1-2017 Processed fruits, vegetables and mushrooms. Methods for determining organoleptic indicators, mass fraction of constituents, net weight or volume. M. Standartinform. 2019. 12 p. (in Russ.); The Tomato Genome Consortium. The tomato genome sequences provides insights into fleshy fruit evolution. Nature. 2012;(485):635-641. https://doi.org/10.1038/nature11119; Powell A.L.T., Nguyen C.V., Hill T., Cheng K.L.L., Figueroa-Balderas R., Aktas H., Ashrafi H., Pons C., Fernández-Muñoz R., Vicente A., LopezBaltazar J., Barry C.S., Liu Y., Chetelat R., Granell A., Van Deynze A., Giovannoni J.J., Bennett A.B. Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science. 2012;(336):1711–1715.; Tieman D., Zhu G., Resende M.F.R. Jr., Lin T., Nguyen C., Bies D., Rambla J.L., Beltran K., Taylor M., Zhang B., Ikeda H., Liu Z., Fisher J., Zemach I., Monforte A., Zamir D., Granell A., Kirst M., Huang S., Klee H. A chemical genetic roadmap to improved tomato flavor. Science. 2017;(355):391–394. https://doi.org/10.1126/science.aal1556.; Gulin A.V., Donskaya V.I., Katakaev N.H. Criterion for assessing the quality of tomato fruits by the content of sugars and acids. News of FSVC. 2019;(2):79-82. (in Russ.); Rodriguez-Amaya D.B. Update on natural food pigments – A mini-review on carotenoids, anthocyanins, and betalains. Food Research International. 2019;(124):200-205. https://doi.org/10.1016/j.foodres.2018.05.028; Hee Ju Yoo, Woo Jung Park, Gyu-Myung Lee, Chang-Sik Oh, Inhwa Yeam, Dong-Chan Won, Chang Kil Kim, Je Min Lee. Inferring the genetic determinates of fruit colors in tomato by carotenoid profiling. Molecules. 2017;(22):764. https://doi.org/10.3390/molecules22050764; Deineka V.I., Burzhinskaya T.G., Deineka L.A., Blinova I.P. Determination of carotenoids in tomato fruits of various colors. Journal of Analytical Chemistry. 2021;76(2):135-142. https://doi.org/10.31857/S0044450220120063 (in Russ.); DiMascio P., Raiser S., Sies H. Lycopene as the most effective biological capotenoid singlet oxygen. Arch Biochem Biophys. 1989;(274):532-538.; Nisar N., Li L., Lu S., Khin N.C., Pogson B.J. Carotenoid metabolism in plants. Mol. Plant. 2015; 8(1):68-82. https://doi.org/10.1016/j.molp.2014.12.007; Goderska K., Dombhare K., Radziejewska-Kubzdela E. Evaluation of probiotics in vegetable juices: tomato (Solanum lycopersicum), carrot (Daucus carota subsp. sativus) and beetroot juice (Beta vulgaris). Archives of Microbiology. 2022;204(6):300. https://doi.org/10.1007/s00203-022-02820-1; Jurić S., Vlahoviček-Kahlina K., Jurić O., Uher S.F., Jalšenjak N., Vinceković, M. Increasing the lycopene content and bioactive potential of tomato fruits by application of encapsulated biological and chemical agents. Food Chemistry. 2022;(393):133341. https://doi.org/10.1016/j.foodchem.2022.133341; Shen Nan, Wang Tongfei, Gan Quan, Liu Sian, Wang Li, Jin Biao. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry. 38330. 132531 July 2022. https://doi.org/10.1016/j.foodchem.2022.132531; Smith C.J.S., Watson C.F., Ray J., Bird C.R., Morris P.C., Schuch W., Grierson D. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature. 1988;(334):724–726.; Kondratyeva I.Yu. Private selection of tomato. Moscow. 2010. P. 266. (in Russ.); Kondratyeva I.Yu., Golubkina N.A. Tomato lycopene and β-carotene. Vegetable crops of Russia. 2016;(4):80-83. https://doi.org/10.18619/2072-9146-2016-4-80-83 (in Russ.); Guidelines for the selection of varieties and hybrids of tomato for open and protected ground. Moscow. 1986. (in Russ.); Maximova T.V., Nikulina I.N., Pakhomov V.P., Shkarina E.I., Chumakova Z.V., Arzamastsev A.P. Method for determination of antioxidant activity. Description of the invention for the patent of the Russian Federation. М. 2001. RU2170930 С1. (in Russ.); Sapozhnikova E.V., Dorofeeva L.S. Determination of ascorbic acid content in stained plant extracts by iodometric method. Canning and dry industry. 1966;(5):29-31. (in Russ.); Ermakov A.I., Arasimovich V.V., Yarosch N.P., Peruansky U.A., Lukovnikova G.A., Ikonnikova M.I. Methods of biochemical research. L., Agropromizdat. 1987. 430 р. (in Russ.); Andryushchenko V.K. Methods of optimization of biochemical selection of vegetable crops. Kishinev, "Stiinza", 1981. Р.30-34. (in Russ.); Determination of sugars in vegetables, berries and fruits. Cyanide method of determination of sugars in plants. Practicum on agrochemistry, ed. by V.V. Kidin. Moscow, publishing house "Kolos". 2008. Р.236-240. (in Russ.); Navez B., Letard M., Graselly D., Jost J. Tomatoes: criteria for quality. Infos CTIFL. 1999;(155):41–47.; Golubkina N.A., Kekina E.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Plants Antioxidants and methods for their determination. 2020. 181 р. (in Russ.); Misin V.M., Klimenko I.V., Zhuravleva T.S. On the suitability of gallic acid as a standard for an antioxidant formulation. Competence. 2014;7(118):46- 51(in Russ.); Rodriguez-Amaya D.B. A guide to carotenoid analysis in foods. 2001. Washington. OMNI Research. 65 p.; Golubkina N.A., Molchanova A.V., Tareeva M.M., Babak O.G., Nekrashevich N.A., Kondratieva I.Y. Quantitative thin-layer chromatography in the assessment of carotenoid composition of tomato Solanum lycopersicum. Vegetable crops of Russia. 2017;(5):96-99. DOI:10.18619/2072-9146-2017-5-96-99 (in Russ.); Dospekhov B.A. Method of field experiment. M., Agropromizdat. 1985. (in Russ.); Kondratieva I.Yu. Early-ripening cold-resistant tomato varieties for open field. Sowing, planting, care, harvesting, storage, processing. M., VNIISSOK. 2016. 112 р. (in Russ.); Apak R., Gorinstein S., Böhm V., Schaich K. M., Özyürek M., Güçlü K. Methods of measurement and evaluation of natural antioxidant capacity / activity (IUPAC Technical Report). Pure Appl. Chem. 2013;85(5):957-998.; Kołton A., Długosz-Grochowska O., Wojciechowska R., Czaja M. Biosynthesis regulation of folates and phenols in plants. Scientia Horticulturae. 2022;(291):110561. https://doi.org/10.1016/j.scienta.2021.110561; Croft R.D. The chemistry and biological effects of flavonoids and phenolic acids. Annual NY Academic Science. 1998;(854):435-442.; Helmja K., Vaher M., Gorbatšova J., Kaljurand M. Characterization of bioactive compounds contained in vegetables of the Solanaceae family by capillary electrophoresis. Proc. Estonian Acad. Sci. Chem. 2007;56(4):172- 186.; Khandaker L., Ali Md.B., Oba S. Total polyphenol and antioxidant activity of red amaranth (Amaranthus tricolor L.) as affected by different sunlight level. J. Japan. Soc. Hort. Sci. 2008;7(4):395-401.; Mondal K., Sharma N.S., Malhotra S.P., Dhawan K., Singh R. Antioxidant systems in ripening tomato fruits. Biologia Plantarum. 2004;48(1):49-53. DOI:10.1023/B:BIOP.0000024274.43874.5b; Zhu F., Wen W., Cheng J., Fernie A.R. The metabolic changes that effect fruit quality during tomato fruit ripening. Molecular Horticulture. 2002;(2):2. DOI:10.1186/s43897-022-00024-1; Brashlyanova B., Pevicharova G. Effects of cold storage and ripening on antioxidant components in tomatoes. Book in Acta Horticulturae. 2009;(830):349-353. DOI:10.17660/ActaHortic.2009.830.49; Wrzodak A., Gajewski M. Effect of 1-MCP treatment on storage potential of tomato fruit. Journal of Horticultural Research. 2015;23(2):121-126. DOI10.2478/johr-2015-0023; Wrzodak A., Adamicki F., Gajewski M. Effect of 1-methylcyclopropene on postharvest quality of Tomato fruit (Lycopersicon esculentum Mill.) during storage. Acta Hortic. 2015;(1071):211-218 DOI:10.17660/ActaHortic.2015.1071.23; https://www.vegetables.su/jour/article/view/2074

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13