-
1Academic Journal
Authors: Ибрагимов, А., Пулатов, О., Тухтамуродов, С.
Source: Science and Education; Vol. 5 No. 5 (2024): Science and Education; 9-14 ; 2181-0842
Subject Terms: иррациональное неравенство, уравнение, среднее арифметическое и среднее геометрическое
File Description: application/pdf
-
2Academic Journal
Authors: L. F. Stovba, O. V. Chukhralya, N. K. Chernikova, A. L. Khmelev, S. V. Borisevich, Л. Ф. Стовба, О. В. Чухраля, Н. К. Черникова, А. Л. Хмелев, С. В. Борисевич
Contributors: The study was performed without external funding., Работа выполнялась без спонсорской поддержки.
Source: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 26-41 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 26-41 ; 2619-1156 ; 2221-996X
Subject Terms: вирус вакцины, priming/boosting, seroconversion rate, geometric mean antibody titers, orthopoxviruses, vaccination, monkeypox, vaccinia virus, праймирование/бустирование, уровень сероконверсии, среднее геометрическое значение титров антител, ортопоксвирусы, вакцинация, оспа обезьян
File Description: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/447/625; https://www.biopreparations.ru/jour/article/view/447/629; https://www.biopreparations.ru/jour/article/view/447/643; https://www.biopreparations.ru/jour/article/view/447/651; https://www.biopreparations.ru/jour/article/downloadSuppFile/447/471; https://www.biopreparations.ru/jour/article/downloadSuppFile/447/632; Silva NIO, de Oliveira JS, Kroon EG, Trindade GS, Drumond BP. Here, there, and everywhere: the wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses. 2020;13(1):43. https://doi.org/10.3390/v13010043; Gao J, Gigante C, Khmaladze E, Liu P, Tang S, Wilkins K, et al. Genome sequences of Akhmeta virus, an early divergent Old World Orthopoxvirus. Viruses. 2018;10(5):252. https://doi.org/10.3390/v10050252; Gruber CEM, Giombini E, Selleri M, Tausch SH, Andrusch A, Tyshaieva A, et al. Whole genome characterization of Orthopoxvirus (OPV) Abatino, a zoo notic virus representing a putative novel clade of Old World Orthopoxviruses. Viruses. 2018;10:546. https://doi.org/10.3390/v10100546; Gigante CM, Gao J, Tang S, McCollum A, Wilkins K, Reynolds MG, et al. Genome of Alaskapox virus, a novel orthopoxvirus isolated from Alaska. Viruses. 2019;11(8):708. https://doi.org/10.3390/v11080708; Lanave G, Dowgier G, Decaro N, Albanese F, Brogi E, Parisi A, et al. Novel оrthopoxvirus and lethal disease in cat, Italy. Emerg. Infect. Dis. 2018;24(9):1665–73. https://doi.org/10.3201/eid2409.171283; Fenner F, Henderson DA, Arita L, Ježek Z, Ladnyi ID. Smallpox and its eradication. World Health Organization: Geneva, Switzerland, 1988. https://apps.who.int/iris/handle/10665/39485; Rehm KE, Roper RL. Deletion of the A35 gene from Modified Vaccinia Virus Ankara increases immunogenicity and isotype switching. Vaccine. 2011; 29(17):3276–83. https://doi.org/10.1016/j.vaccine.2011.02.023; Nalca A, Zumbrum EE. ACAM2000 TM : the new smallpox vaccine for United States Strategic National Stockpile. Drug Des Devel Ther. 2010;4:71–9. https://doi.org/10.2147/dddt.s3687; Wollenberg A, Engler R. Smallpox, vaccination and adverse reactions to smallpox vaccine. Curr Opin Allergy Clin Immunol. 2004;4(4):271–5. https://doi.org/10.1097/01.all.0000136758.66442.28; Meseda CA, Atukorale V, Kuhn J, Schmeisser F, Weir JP. Percutaneous vaccination as an effective method of delivery оf MVA and MVA-vectored vaccines. PLoS One. 2016;11(2):e0149364. https://doi.org/10.1371/journal.pone.0149364; Melamed S, Israely T, Paran N. Challenges and achievements in prevention and treatment of smallpox. Vaccines. 2018;6(1):8. https://doi.org/10.3390/vaccines6010008; Hermanson G, Chun S, Felgner J, Tan X, Pablo J, Nakajima-Sasaki R, et al. Measurement of antibody responses to Modified Vaccinia Virus Ankara (MVA) and Dryvax® using proteome microarrays and development of recombinant protein ELISAs. Vaccine. 2012;30(3):614–25. https://doi.org/10.1016/j.vaccine.2011.11.021; Guerra S, Gonsáles JM, Climent N, Reuburn H, López-Fernández LA, Nájera JL, et al. Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS. J Virol. 2010;84(16):8141–52. https://doi.org/10.1128/JVI.00749-10; Mayr A, Stickl H, Müller HK, Danner K, Singer H. Der Pockenimpfstamm MVA: Marker, genetische Struktur, Erfahrungen mit der parenteralen Schutzimpfung und Verhalten im abwehrgeschwächten Organismus. Zentralbl Bakteriol B. 1978;167:375–90.; Garsía AD, Meseda СА, Mayer AE, Kumar A, Merchlinsky M, Weir JP. Characterization and use of mammalian-expressed vaccinia virus extracellular membrane proteins for quantification of the humoral immune response to smallpox vaccines. Clin Vaccine Immunol. 2007;14(8):1032–44. https://doi.org/10.1128/CVI.00050-07; Grandpre LE, Duke-Cohan JS, Ewald BA, Devoy C, Barouch DH, Letvin NL, et al. Immunogenicity of recombinant Modified Vaccinia Ankara following a single or multi-dose vaccine regimen in rhesus monkeys. Vaccine. 2009;27(10):1549–56. https://doi.org/10.1016/j.vaccine.2009.01.010; Meseda CA, Garcia AD, Kumar A, Mayer AE, Manischewitz J, King LR, et al. Enhanced immunogenicity and protective effect conferred by vaccination with combinations of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse model. Virology. 2005;339(2):164–75. https://doi.org/10.1016/j.virol.2005.06.002; Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8 + T cell responses. J Exp Med. 2007;204(6):1405–16. https://doi.org/10.1084/jem.20062363; Volz A, Sutter G. Modified Vaccinia Virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv Virus Res. 2017;97:187–243. https://doi.org/10.1016/bs.aivir.2016.07.001; von Krempelhuber B, Vollmar J, Pokorny R, Rapp P, Wulff N, Petzold B, et al. A randomized, double-blind, dose-finding phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE®. Vaccine. 2010;28(5):1209–16. https://doi.org/10.1016/j.vaccine.2009.11.030; Paavonen J, Jenkins D, Bosch FX, Naud P, Salmerón J, Wheeler CM, et al. Efficacy of prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women an interim analysis of a phase III double-blind, randomized controlled trial. Lancet. 2007;369(9580):2161–70. https://doi.org/10.1016/S0140-6736(07)60946-5; Damon IK, Davidson WB, Hughes CM, Olson VA, Smith SK, Holman RC, et al. Evaluation of smallpox vaccines using variola neutralization. J Gen Virol. 2009;90(8):1962–66. https://doi.org/10.1099/vir.0.010553-0; Frey SE, Winokur PL, Salata RA, El-Kamary SS, Turley CB, Walter EB Jr, et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for post event scenario. Vaccine. 2013;31(29):3025–33. https://doi.org/10.1016/j.vaccine.2013.04.050; Frey SE, Winokur PL, Hill H, Goll JBN, Chaplin P, Belshe RB. Phase II randomized, double-blinded comparison of a single high dose (5×10 8 TCID 50 ) of modified vaccinia Ankara compared to a standard dose (1×10 8 TCID 50 ) in healthy vaccinia-naїve individuals. Vaccine. 2014;32(23):2732–9. https://doi.org/10.1016/j.vaccine.2014.02.043; Frey SE, Newman FK, Kennedy JS, Sobek V, Ennis FA, Hill H, et al. Clinical and immunologic responses to multiple doses of IMVAMUNE® (Modified Vaccinia Ankara) followed by Dryvax® challenge. Vaccine. 2007;25(51):8562–73. https://doi.org/10.1016/j.vaccine.2007.10.017; Seaman MS, Wilck MB, Baden LR, Walsh SR, Grandpre LE, Devoy C, et al. Effect of vaccination with modified vaccinia Ankara (ACAM3000) on subsequent challenge with Dryvax. J Infect Dis. 2010;201(9):1353–60. https://doi.org/10.1086/651560; Parrino J, McCurdy LH, Larkin BD, Gordon IJ, Rucker SE, Enama ME, et al. Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax challenge in vaccinia-naïve and vaccinia-immune individuals. Vaccine. 2007;25(8):1513–25. https://doi.org/10.1016/j.vaccine.2006.10.047; Pfister G, Savino W. Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective. Neuroimmunomodulation. 2008;15(4-6):351–64. https://doi.org/10.1159/000156477; Greenberg RN, Hay CM, Stapleton JT, Marbury TC, Wagner E, Kreitmeir E, et al. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of modified vaccinia Ankara smallpox vaccine (MVA-BN®) in 56–80-year-old subjects. PLoS One. 2016;11(6):e0157335. https://doi.org/10.1371/journal.pone.0157335; Greenberg RN, Overton ET, Haas DW, Frank I, Goldman M, von Krempelhuber A, et al. Safety, immunogenicity and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J Infect Dis. 2013;207(5):749–58. https://doi.org/10.1093/infdis/jis753; Overton ET, Stapleton J, Frank I, Hassler S, Goephert PA, Barker D, et al. Safety and immunogenicity of modified vaccinia Ankara-Bavarian Nordic smallpox vaccine in vaccinia-naïve and experienced human immunodeficiency virus-infected individuals: fn open-label, controlled clinical phase II trial. Open Forum Infect Dis. 2015;2(2):ofv040. https://doi.org/10.1093/ofid/ofv040; Zitzman-Roth E-M, von Sonnenburg F, de la Motte S, Arndtz-Wiedemann N, von Krempelhuber A, Uebler N, et al. Cardiac safety of modified vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS One. 2015;10(4):e0122653. https://doi.org/10.1371/journal.pone.0122653; Greenberg RN, Hurley MY, Dinh DV, Mraz S, Vera JG, von Bredow D, et al. A multicenter, open-label, controlled phase II study to evaluate safety and immunogenicity of MVA smallpox vaccine (IMVAMUNE) in 18–40 year old subjects with diagnosed atopic dermatitis. PLoS One. 2015;10(10): e0138348. https://doi.org/10.1371/journal.pone.0138348; Hraib M, Jouni S, Albitar M, Alaidi S, Alshehabi Z. The outbreak of monkeypox 2022: an overview. Ann Med Surg (Lond). 2022;79:104069. https://doi.org/10.1016/j.amsu.2022.104069; Velavan TP, Meyer CG. Monkeypox 2022 outbreak: an update. Trop Med Int Health. 2022;27(7):604–5. https://doi.org/10.1111/tmi.13785; Rizk JG, Lippi G, Henry BN, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs. 2022;82(9):957–63. https://doi.org/10.1007/s40265-022-01742-y; Максютов РА, Якубицкий СН, Колосова ИВ, Трегубчак ТВ, Швалов АН, Гаврилова ЕВ, Щелкунов СН. Стабильность генома вакцинного штамма VAC∆6. Вавиловский журнал генетики и селекции. 2022;26(4):394–401. https://doi.org/10.18699/VJGB-22-48; Максютов РА, Якубицкий СН, Колосова ИВ, Щелкунов СН. Сравнение кандидатных вакцин нового поколения против ортопоксвирусных инфекций человека. Acta Naturae. 2017;9(2):93–99. https://doi.org/10.32607/20758251-2017-9-2-88-93; https://www.biopreparations.ru/jour/article/view/447
-
3Academic Journal
Authors: Y. I. Golub, F. V. Starovoitov, Ю. И. Голуб, Ф. В. Старовойтов
Source: «System analysis and applied information science»; № 2 (2021); 4-13 ; Системный анализ и прикладная информатика; № 2 (2021); 4-13 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2021-2
Subject Terms: среднее гармоническое, image contrast, measure of quality, human visual system, Weibull distribution, arithmetic mean, geometric mean, harmonic mean, контраст изображения, мера качества, зрительная система человека, распределение Вейбулла, среднее арифметическое, среднее геометрическое
File Description: application/pdf
Relation: https://sapi.bntu.by/jour/article/view/509/390; ГОСТ Р 58295–2018 (ИСО/МЭК 19794–6:2011) Информационные технологии (ИТ). Биометрия. Форматы обмена биометрическими данными. Часть 6. Данные изображения радужной оболочки глаза.; Голуб, Ю. И. Исследование локальных оценок контраста цифровых изображений при отсутствии эталона / Ю. И. Голуб, Ф. В. Старовойтов // Системный анализ и прикладная информатика. – 2019. – № 2 (22). – C. 4–11.; Голуб, Ю. И. Сравнительный анализ безэталонных оценок резкости цифровых изображений / Ю. И. Голуб, Ф. В. Старовойтов, В. В. Старовойтов // Доклады Белорусского государственного университета информатики и радиоэлектроники. – 2019. – № 7 (125). – С. 113–120.; Ponomarenko, N. Image database TID2013: Peculiarities, results and perspectives / N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, C.-C. Jay Kuo // Signal Processing: Image Communication. – 2015. – V. 30. – P. 57–77.; Larson, E. C. Most Apparent Distortion: Full-Reference Image Quality Assessment and the Role of Strategy / E. C. Larson and D. M. Chandler // Journal of Electronic Imaging. – March 2010. – 19 (1). – P. 21.; Pertuz S., Puig D., Garcia M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognition. – 2013. – 46(5). – P. 1415–1432. DOI:10.1016/j.patcog.2012.11.011.; Kodak Lossless True Color Image Suite. [Online]. Available: http://r0k.us/graphics/kodak/.; Gu, K. Subjective and objective quality assessment for images with contrast change / K. Gu, G. Zhai, X. Yang, W. Zhang, M. Liu // Proc. IEEE Int. Conf. on Image Processing. – Melbourne, VIC, Australia. – Sep. 2013. – P. 383–387.; Beghdadi, A. Contrast enhancement technique based on local detection of edges / A. Beghdadi, A. Le Negrate // Computer Vision, Graphics, and Image Processing. 1989. – 46(2). – P. 162–174. DOI:10.1016/0734-189X(89)90166-7.; Gvozden, G. Blind image sharpness assessment based on local contrast map statistics / G. Gvozden, S. Grgic, M. Grgic // Journal of Visual Communication and Image Representation. – 2018. – 50. – P. 145–158. DOI:10.1016/j.jvcir.2017.11.017.; Tian, J. Multi-focus image fusion using a bilateral gradient-base sharpness criterion / J. Tian, L. Chen, L. Ma, W. Yu // Optics communications. – 2011. – 284(1). – P. 80–87. DOI: doi.org/10.1016/j.optcom.2010.08.085.; Narvekar N. D., Karam L. J. A no-reference perceptual image sharpness metric based on a cumulative probability of blur detection. 2009 International Workshop on Quality of Multimedia Experience. – 2009. – P. 87–91. DOI:10.1109/QOMEX.2009.5246972.; https://sapi.bntu.by/jour/article/view/509
-
4Academic Journal
Authors: Лябах, Н., Булгакова, А.
Subject Terms: ЭФФЕКТИВНОСТЬ, ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ, ФАКТОРЫ ПРОИЗВОДСТВА, СРЕДНЕЕ ГЕОМЕТРИЧЕСКОЕ
File Description: text/html
-
5Academic Journal
Authors: Панкратова, Лариса
Subject Terms: СРЕДНЕЕ АРИФМЕТИЧЕСКОЕ, СРЕДНЕЕ ГЕОМЕТРИЧЕСКОЕ, СРЕДНЕЕ ГАРМОНИЧЕСКОЕ, НЕРАВЕНСТВО КИ ФАНА, ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
File Description: text/html
-
6Academic Journal
Source: Terra Economicus.
Subject Terms: ЭФФЕКТИВНОСТЬ, ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ, ФАКТОРЫ ПРОИЗВОДСТВА, СРЕДНЕЕ ГЕОМЕТРИЧЕСКОЕ
File Description: text/html
-
7Academic Journal
Source: Вестник Тамбовского государственного технического университета.
Subject Terms: НЕРАВЕНСТВО КИ ФАНА, СРЕДНЕЕ АРИФМЕТИЧЕСКОЕ, СРЕДНЕЕ ГАРМОНИЧЕСКОЕ, СРЕДНЕЕ ГЕОМЕТРИЧЕСКОЕ, ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
File Description: text/html
-
8Academic Journal
Source: Вестник Тамбовского университета. Серия: Естественные и технические науки.
Subject Terms: СРЕДНЕЕ АРИФМЕТИЧЕСКОЕ, СРЕДНЕЕ ГЕОМЕТРИЧЕСКОЕ, СРЕДНЕЕ ГАРМОНИЧЕСКОЕ, НЕРАВЕНСТВО КИ ФАНА, ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, 0101 mathematics, 01 natural sciences
File Description: text/html
-
9Academic Journal
Authors: Сдвижкова, О. О., Щербаков, П. М., Тимченко, С. Є.
Subject Terms: числова послідовність, тетрада, середнє арифметичне, середнє гармонійне, середнє геометричне, границя, числовая последовательность, среднее арифметическое, среднее гармоническое, среднее геометрическое, предел, numerical sequence, tetrad, arithmetic average, average harmonic, geometric mean, limit, 378.147: 517
File Description: application/pdf
Availability: http://enpuir.npu.edu.ua/handle/123456789/20239
-
10Report
Subject Terms: HETEROGENEOUS SOLID, НЕОДНОРОДНОЕ ТЕЛО, UPPER AND LOWER BOUNDS OF COMPLIANCE, СРЕДНЕЕ ГЕОМЕТРИЧЕСКОЕ, ВЕРХНИЕ И НИЖНИЕ ОЦЕНКИ ПОДАТЛИВОСТИ, ITERATIVE TRANSFORMATIONS, ИТЕРАЦИОННЫЕ ПРЕОБРАЗОВАНИЯ, HASHIN-SHTRIKMAN MODULI, ПРИБЛИЖЕННЫЕ РАСЧЕТЫ, ЭФФЕКТИВНЫЕ МОДУЛИ, EFFECTIVE MODULI, COMPOSITE MATERIALS, ФОЙГТОВСКИЙ И РЕЙССОВСКИЙ ТИПЫ, APPROXIMATE CALCULATIONS, МОДУЛИ ХАШИНА-ШТРИКМАНА, GEOMETRIC AVERAGE, VOIGT AND REUSS TYPES, КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ