-
1Academic Journal
Authors: Азиза Кувондыковна Курбанова
Source: Science and Education; Vol. 6 No. 7 (2025): Science and Education; 27-36 ; 2181-0842
Subject Terms: пародонтит, фибриноген, системное воспаление, острофазовые белки, сердечно-сосудистый риск
File Description: application/pdf
-
2Academic Journal
Source: World of Medicine : Journal of Biomedical Sciences; Vol. 2 No. 7 (2025): World of Medicine : Journal of Biomedical Sciences; 17-26 ; 2960-9356
Subject Terms: пародонтит, системное воспаление, ревматоидный артрит, С-реактивный белок, провоспалительные цитокины
File Description: application/pdf
-
3Academic Journal
Authors: N. N. Abramova, I. S. Avrusin, O. P. Kozlova, L. A. Firsova, A. G. Kuleshova, G. V. Kondratyev, Yu. S. Aleksandrovich, D. O. Ivanov, M. M. Kostik, Н. Н. Абрамова, И. С. Аврусин, О. П. Козлова, Л. А. Фирсова, А. Г. Кулешова, Г. В. Кондратьев, Ю. С. Александрович, Д. О. Иванов, М. М. Костик
Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 22, № 2 (2025); 76-87 ; Вестник анестезиологии и реаниматологии; Том 22, № 2 (2025); 76-87 ; 2541-8653 ; 2078-5658
Subject Terms: смертность, systemic inflammation, childhood rheumatic diseases, MIS-C, children, invasive mycosis, lethal outcomes, mortality, системное воспаление, детские ревматические заболевания, дети, инвазивный микоз, летальные исходы
File Description: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/1205/791; Абрамова Н. Н., Белозеров К. Е., Кондратьев Г. В. и др. Синдромы гематофагоцитоза у пациентов педиатрических отделений реанимации и интенсивной терапии (обзор литературы) // Вестник анестезиологии и реаниматологии. – 2023. – Т. 20, № 4. – С. 77–88. https://doi.org/10.24884/2078-5658-2022-20-4-77-88.; Козлова О. П., Костик М. М., Кузнецова М. Д. и др. Тяжелые грибковые инфекции у детей с ревматическими заболеваниями // Журнал инфектологии. – 2020. – Т. 12, № 5. – С. 48–55. https://doi.org/10.22625/2072-6732-2020-12-5-48-55.; Реннебом Р. М. Анализ эпидемии COVID-19: еще одно мнение и альтернативные меры реагирования // Педиатр. – 2020. – Т. 11. – № 3. – С. 23–40. https://doi.org/10.17816/PED11323-40.; Костик М. М., Иванов Д. О., Дубко М. Ф. и др. Руководство по педиатрии. Т. 12. Ревматология детского возраста. – СПб.: СПбГПМУ, 2024. – 504 с.: ил.; Abrams J. Y., Oster M. E., Godfred-Cato S. E. et al. Factors linked to severe outcomes in multisystem inflammatory syndrome in children (MIS-C) in the USA: A retrospective surveillance study // Lancet Child Adolesc. Health. – 2021. – Vol. 5. – P. 323–331. https://doi.org/10.1016/S2352-4642(21)00050-X.; Adzic-Vukicevic T., Mladenovic M., Jovanovic S. et al. Invasive fungal disease in COVID-19 patients: a single-center prospective observational study // Front Med (Lausanne). – 2023. – Vol. 10. – 1084666. https://doi.org/10.3389/fmed.2023.1084666.; Ahmed M., Advani S., Moreira A. et al. Multisystem inflammatory syndrome in children: A systematic review // EClinicalMedicine. – 2020. – Vol. 26. – 100527. https://doi.org/10.1016/j.eclinm.2020.100527.; Al-Mayouf S. M., Fallatah R., Al-Twajery M. et al. Outcome of children with systemic rheumatic diseases admitted to pediatric intensive care unit: An experience of a tertiary hospital // Int J Pediatr Adolesc Med. – 2019. – Vol. 6, № 4. – P. 142–145. https://doi.org/10.1016/j.ijpam.2019.07.003.; Athanassiou P., Athanassiou L. Current treatment approach, emerging therapies and new horizons in systemic lupus erythematosus // Life (Basel). – 2023. – Vol. 13, № 7. – P. 1496. https://doi.org/10.3390/life13071496.; Avrusin I. S., Abramova N. N., Belozerov K. E. et al. Determination of risk factors for severe life-threatening course of multisystem inflammatory syndrome associated with COVID-19 in Children // Children. – 2023. – Vol. 10. – P. 1366. https://doi.org/10.3390/children10081366.; Bardi T., Pintado V., Gomez-Rojo M. et al. Nosocomial infections associated to COVID-19 in the intensive care unit: clinical characteristics and outcome // Eur J Clin Microbiol Infect Dis. – 2021. – Vol. 40, № 3. – P. 495–502. https://doi.org/10.1007/s10096-020-04142-w.; Beil M., Sviri S., de la Guardia V. et al. Prognosis of patients with rheumatic diseases admitted to intensive care // Anaesth Intensive Care. – 2017. – Vol. 45, № 1. – P. 67–72. https://doi.org/10.1177/0310057X1704500110.; Belot A., Cimaz R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis // Pediatr Rheumatol Online J. – 2012. – Vol. 10, № 1. – P. 21. https://doi.org/10.1186/1546-0096-10-21.; Bennett S. R. Sepsis in the intensive care unit // Surgery (Oxf). – 2015. – Vol. 33, № 11. – P. 565–571. https://doi.org/10.1016/j.mpsur.2015.08.002.; Berghen N., Vulsteke J. B., Westhovens R. et al. Rituximab in systemic autoimmune rheumatic diseases: indications and practical use // Acta Clin Belg. – 2019. – Vol. 74, № 4. – P. 272–279. https://doi.org/10.1080/17843286.2018.1521904.; Bernardes M., Hohl T. M. Fungal infections associated with the use of novel immunotherapeutic agents // Curr Clin Microbiol ReP. – 2020. – Vol. 7, № 4. – P. 142–149. https://doi.org/10.1007/s40588-020-00154-4.; Castillo R. D., De la Pena W., Marzan K. A. Diagnosis and management of infectious complications of childhood rheumatic diseases // Curr Rheumatol ReP. – 2013. – Vol. 15, № 4. – P. 322. https://doi.org/10.1007/s11926-013-0322-6.; Cattalini M., Taddio A., Bracaglia C. et al. Childhood multisystem inflammatory syndrome associated with COVID-19 (MIS-C): a diagnostic and treatment guidance from the Rheumatology Study Group of the Italian Society of Pediatrics // Ital J Pediatr. – 2021. – Vol. 47, № 1. – P. 24. https://doi.org/10.1186/s13052-021-00980-2.; Chang J. C., Liu J. P., Berbert L. M. et al. Racial and ethnic composition of populations served by freestanding children’s hospitals and disparities in outcomes of pediatric lupus // Arthritis Care Res (Hoboken). – 2024. – Vol. 76, № 7. – P. 926–935. https://doi.org/10.1002/acr.25314.; Charras A., Smith E., Hedrich C. M. Systemic lupus erythematosus in children and young people // Curr Rheumatol ReP. – 2021. – Vol. 23, № 3. – P. 20. https://doi.org/10.1007/s11926-021-00985-0.; Cron R. Q., Goyal G., Chatham W. W. Cytokine storm syndrome // Annu Rev Med. – 2023. – Vol. 74. – P. 321–337. https://doi.org/10.1146/annurev-med-042921-112837.; de Farias E. C. F., Pavão Junior M. J. C., de Sales S. C. D. et al. Factors associated to mortality in children with critical COVID-19 and multisystem inflammatory syndrome in a resource-poor setting // Sci ReP. – 2024. – Vol. 14, № 1. – P. 5539. https://doi.org/10.1038/s41598-024-55065-x.; Dinarello C. A. Blocking IL-1 in systemic inflammation // J Exp Med. – 2005. – Vol. 20. – P. 1355–1359. https://doi.org/10.1084/jem.20050640.; Donnelly J. P., Chen S. C., Kauffman C. A. et al. Revision and update of the consensus definitions of invasive fungal disease from the european organization for research and treatment of cancer and the mycoses study group education and research consortium // Clin Infect Dis. – 2020. – Vol. 71, № 6. – P. 1367–1376. https://doi.org/10.1093/cid/ciz1008.; Elmeazawy R., Ayoub D., Morad L. M. et al. Role of systemic immune-inflammatory index and systemic inflammatory response index in predicting the diagnosis of necrotizing pneumonia in children // BMC Pediatr. – 2024. – Vol. 24, № 1. – P. 496. https://doi.org/10.1186/s12887-024-04818-8.; Fanouriakis A., Kostopoulou M., Andersen J. et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update // Ann Rheum Dis. – 2024. – Vol. 83, № 1. – P. 15–29. https://doi.org/10.1136/ard-2023-224762.; Feldstein L. R., Rose E. B., Horwitz S. M. et al. Overcoming COVID-19 Investigators; CDC COVID-19 Response Team. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents // N. Engl. J. Med. – 2020. – Vol. 383. – P. 334–346. https://doi.org/10.1056/NEJMoa2021680.; Fisman D., Patrozou E., Carmeli Y. et al. Geographical Variability of Bacteremia Study GrouP. Geographical variability in the likelihood of bloodstream infections due to gram-negative bacteria: Correlation with proximity to the equator and health care expenditure // PLoS ONE. – 2014. – Vol. 9. – e114548. https://doi.org/10.1371/journal.pone.0114548.; Godfred-Cato S., Bryant B., Leung J. et al. California MIS-C Response Team. COVID-19-associated multisystem inflammatory syndrome in children – United States, March-July 2020 // MMWR Morb. Mortal. Wkly. ReP. – 2020. – Vol. 69. – P. 1074–1080 https://doi.org/10.15585/mmwr.mm6932e2.; Hoste L., Van Paemel R., Haerynck F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review // Eur. J. Pediatr. – 2021. – Vol. 180. – P. 2019–2034. https://doi.org/10.1007/s00431-021-03993-5.; Hung M. L., Liao H. T., Chen W. S. et al. Invasive aspergillosis in patients with systemic lupus erythematosus: a retrospective study on clinical characteristics and risk factors for mortality // Lupus. – 2018. – Vol. 27, № 12. – P. 1944–1952. https://doi.org/10.1177/0961203318796294.; Jeon C. Y., Neidell M., Jia H. et al. On the role of length of stay in healthcare-associated bloodstream infection // Infect Control Hosp Epidemiol. – 2012. – Vol. 33, № 12. – P. 1213–1218. https://doi.org/10.1086/668422.; Jia H., Li L., Li W. et al. Impact of healthcare-associated infections on length of stay: a study in 68 hospitals in China // Biomed Res Int. – 2019. – 2590563. https://doi.org/10.1155/2019/2590563.; Karakike E., Giamarellos-Bourboulis E. J. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis // Front Immunol. – 2019. – Vol. 10. – P. 55. https://doi.org/10.3389/fimmu.2019.00055.; Kızılsoy Ö. F., Korkmaz M. F., Şenkan G. E. et al. Relationship between the systemic immune-inflammatory index and the severity of acute bronchiolitis in children // Lab Med. – 2024. – Vol. 55, № 2. – P. 169–173. https://doi.org/10.1093/labmed/lmad055.; Komori A., Abe T., Yamakawa K. et al. Characteristics and outcomes of frail patients with suspected infection in intensive care units: a descriptive analysis from a multicenter cohort study // BMC Geriatr. – 2020. – Vol. 20, № 1. – P. 485. https://doi.org/10.1186/s12877-020-01893-1.; Lee J., Levy M. M. Treatment of patients with severe sepsis and septic shock: current evidence-based practices // R I Med J. 2013. – 2019. – Vol. 102, № 10. – P. 18–21. PMID: 31795528.; Li Z., Denning D. W. The impact of corticosteroids on the outcome of fungal disease: a systematic review and meta-analysis // Curr Fungal Infect ReP. – 2023. – Vol. 17, № 1. – P. 54–70. https://doi.org/10.1007/s12281-023-00456-2.; Liu D., Ahmet A., Ward L. et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy // Allergy Asthma Clin Immunol. – 2013. – Vol. 9, № 1. – P. 30. https://doi.org/10.1186/1710-1492-9-30.; Martin C. M., Priestap F., Fisher H. et al. STAR Registry Investigators. A prospective, observational registry of patients with severe sepsis: the Canadian Sepsis Treatment and Response Registry // Crit Care Med. – 2009. – Vol. 37, № 1. – P. 81–88. https://doi.org/10.1097/CCM.0b013e31819285f0.; Mustafa M., Gladston Chelliah E., Hughes M. Patients with systemic rheumatic diseases admitted to the intensive care unit: what the rheumatologist needs to know // Rheumatol Int. – 2018. – Vol. 38, № 7. – P. 1163–1168. https://doi.org/10.1007/s00296-018-4008-2.; Otar Yener G., Paç Kısaarslan A., Ulu K. et al. Differences and similarities of multisystem inflammatory syndrome in children, Kawasaki disease and macrophage activating syndrome due to systemic juvenile idiopathic arthritis: A comparative study // Rheumatol. Int. – 2022. – Vol. 42. – P. 879–889. https://doi.org/10.1007/s00296-021-04980-7.; Parperis K., Al-Charakh M., Nzuonkwelle S. et al. Characteristics and outcomes among patients with autoimmune rheumatic diseases requiring a higher level of care // J Clin Rheumatol. 2021. – Vol. 27, № 7. – P. 286–291. https://doi.org/10.1097/RHU.0000000000001321.; Radhakrishna S. M., Reiff A. O., Marzan K. A. et al. Pediatric rheumatic disease in the intensive care unit: lessons learned from 15 years of experience in a tertiary care pediatric hospital // Pediatr Crit Care Med. – 2012. – Vol. 13, № 3. – P. e181–6. https://doi.org/10.1097/PCC.0b013e318238955c.; Radia T., Williams N., Agrawal P. et al. Multi-system inflammatory syndrome in children & adolescents (MIS-C): A systematic review of clinical features and presentation // Paediatr. Respir. Rev. – 2021. – Vol. 38. – P. 51–57. https://doi.org/10.1016/j.prrv.2020.08.001.; Sakr Y., Moreira C. L., Rhodes A. et al. Extended prevalence of infection in intensive care study investigators. The impact of hospital and ICU organizational factors on outcome in critically ill patients: Results from the Extended Prevalence of Infection in Intensive Care study // Crit. Care Med. – 2015. – Vol. 43. – P. 519–526. https://doi.org/10.1097/CCM.0000000000000754.; Schneeweiss-Gleixner M., Hillebrand C., Jaksits S. et al. Characteristics and outcome of critically ill patients with systemic rheumatic diseases referred to the intensive care unit // RMD Open. – 2023. – Vol. 9, № 4. – e003287. https://doi.org/10.1136/rmdopen-2023-003287.; Son M. B., Johnson V. M., Hersh A. O. et al. Outcomes in hospitalized pediatric patients with systemic lupus erythematosus // Pediatrics. – 2014. – Vol. 133, № 1. – e106–13. https://doi.org/10.1542/peds.2013-1640.; Vincent J. L., Sakr Y., Singer M. et al. Prevalence and outcomes of infection among patients in Intensive Care Units in 2017 // JAMA. – 2020. – Vol. 323. – P. 1478–1487. https://doi.org/10.1001/jama.2020.2717.; Wang S., Wan Y., Zhang W. The clinical value of systemic immune inflammation index (sii) in predicting the severity of hospitalized children with mycoplasma pneumoniae pneumonia: a retrospective study // Int J Gen Med. – 2024. – Vol. 17. – P. 935–942. https://doi.org/10.2147/IJGM.S451466.; Whittaker E., Bamford A., Kenny J. et al. PIMS-TS Study Group and EUCLIDS and PERFORM Consortia. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 // JAMA. – 2020. – Vol. 324. – P. 259–269. https://doi.org/10.1001/jama.2020.10369.; Yildirim-Toruner C., Diamond B. Current and novel therapeutics in the treatment of systemic lupus erythematosus // J Allergy Clin Immunol. – 2011. – Vol. 127, № 2. – P. 303–312. https://doi.org/10.1016/j.jaci.2010.12.1087.; Yuan Y., Jiao B., Qu L. et al. The development of COVID-19 treatment // Front Immunol. – 2023. – Vol. 14. – P. 1125246. https://doi.org/10.3389/fimmu.2023.1125246.; Zhou Q., Fan L., Lai X. et al. Estimating extra length of stay and risk factors of mortality attributable to healthcare-associated infection at a Chinese university hospital: a multi-state model // BMC Infect Dis. – 2019. – Vol. 19, № 1. – P. 975. https://doi.org/10.1186/s12879-019-4474-5.
-
4Academic Journal
Authors: E. A. Brovkina, Е. А. Бровкина
Source: Russian Journal of Pediatric Hematology and Oncology; Том 12, № 1 (2025); 55-61 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 12, № 1 (2025); 55-61 ; 2413-5496 ; 2311-1267
Subject Terms: детская гематология, thrombotic complications, splenectomy, nitric oxide, oxidative stress, systemic inflammation, diagnosis, thrombocytosis, pediatric hematology, тромботические осложнения, спленэктомия, оксид азота, оксидативный стресс, системное воспаление, диагностика, тромбоцитоз
File Description: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/1131/989; Шилов А.В., Мнихович М.В., Калинин Р.Е., Сучков И.А., Кактурский Л.В., Рудницкий С.В., Нечаев Л.В. Морфологические изменения стенки сосудов при эндотелиальной дисфункции. Журнал анатомии и гистопатологии. 2017;6(2):115–21. doi:10.18499/22257357-2017-6-2-115-121.; Раваева М.Ю., Чуян Е.Н., Древетняк Н.А. Роль оксида азота в развитии эндотелиальной дисфункции. Ученые записки Крымского федерального университета им. В.И. Вернадского. Биология. Химия. 2013;26(4(65)):147–57.; Радайкина О.Г., Власов А.П., Мышкина Н.А. Роль эндотелиальной дисфункции в патологии сердечно-сосудистой системы. Ульяновский медико-биологический журнал. 2018;(4):8–17.; Theofi lis P., Sagris M., Oikonomou E., Antonopoulos A.S., Siasos G., Tsioufi s C., Tousoulis D. Infl ammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines. 2021;9(7):781. doi:10.3390/biomedicines9070781.; Wybranska I. Genetic Markers of Endothelial Dysfunction. Endothelial Dysfunction – A Novel Paradigm. Published online. doi:10.5772/intechopen.109272. [Electronic resource]: https://www.intechopen.com/chapters/85824.; Çiftel M., Ataş N., Yılmaz O. Investigation of endothelial dysfunction and arterial stiff ness in multisystem infl ammatory syndrome in children. Eur J Pediatr. 2022;181(1):91–7. doi:10.1007/s00431-021-04136-6.; Lee W.F., Wu C.Y., Yang H.Y., Lee W.I., Chen L.C., Ou L.S., Huang J.L. Biomarkers associating endothelial dysregulation in pediatric-onset systemic lupus erythematous. Pediatr Rheumatol Online J. 2019;17(1):69. doi:10.1186/s12969-019-0369-7.; Chia Y.C., Siti Asmaa M.J., Ramli M., Woon P.Y., Johan M.F., Hassan R., Islam M.A. Molecular Genetics of Thrombotic Myeloproliferative Neoplasms: Implications in Precision Oncology. Diagnostics (Basel). 2023;13(1):163. doi:10.3390/diagnostics13010163.; Genovesi S., Giussani M., Orlando A., Lieti G., Viazzi F., Parati G. Relationship between endothelin and nitric oxide pathways in the onset and maintenance of hypertension in children and adolescents. Pediatr Nephrol. 2022;37(3):537–45. doi:10.1007/s00467-021-05144-2.; Степанова Т.В., Иванов А.Н., Терешкина Н.Е., Попыхова Э.Б., Лагутина Д.Д. Маркеры эндотелиальной дисфункции: патогенетическая роль и диагностическое значение (обзор литературы). Клиническая лабораторная диагностика. 2019;64(1):34–41. doi:10.18821/0869-2084-2019-64-34-41.; Cersosimo E., DeFronzo R.A. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22(6):423–36. doi:10.1002/dmrr.634. PMID: 16506274.; Krenning G., Barauna V.G., Krieger J.E., Harmsen M.C., Moonen J.R. Endothelial Plasticity: Shifting Phenotypes through Force Feedback. Stem Cells Int. 2016;2016:9762959. doi:10.1155/2016/9762959.; Csiszar A., Tarantini S., Yabluchanskiy A., Balasubramanian P., Kiss T., Farkas E., Baur J.A., Ungvari Z. Role of endothelial NAD+ defi ciency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol. 2019;316(6):H1253–66. doi:10.1152/ajpheart.00039.2019.; Inostroza-Nieves Y., Rivera A., Romero J.R. Blockade of endothelin-1 receptor B regulates molecules of the major histocompatibility complex in sickle cell disease. Front Immunol. 2023;14:1124269. doi:10.3389/fimmu.2023.1124269.; Victor V.M., Rocha M., Solá E., Bañuls C., Garcia-Malpartida K., Hernández-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des. 2009;15(26):2988–3002. doi:10.2174/138161209789058093.; Zhang G., Yu H., Su J., Chi C., Su L., Wang F., Zheng Y., Xie B., Kang K. Identifi cation of Key Genes Associated with Endothelial Cell Dysfunction in Atherosclerosis Using Multiple Bioinformatics Tools. Biomed Res Int. 2022;2022:5544276. doi:10.1155/2022/5544276.; Aoyama R., Kubota Y., Tara S., Wakita S., Yamaguchi H., Shimizu W., Takano H. Vascular Endothelial Dysfunction in Myeloproliferative Neoplasms and Gene Mutations. Int Heart J. 2022;63(4):661–8. doi:10.1536/ihj.22-003.; Chirkov Y.Y., Nguyen T.H., Horowitz J.D. Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease. Int J Mol Sci. 2022;23(3):1042. doi:10.3390/ijms23031042.; Kohli S., Shahzad K., Jouppila A., Holthöfer H., Isermann B., Lassila R. Thrombosis and Infl ammation-A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C. Front Cardiovasc Med. 2022;9:866751. doi:10.3389/fcvm.2022.866751.; Castiglione M., Jiang Y.-P., Mazzeo C., Lee S., Chen J.-S., Kaushansky K., Yin W., Lin R.Z., Zheng H., Zhan H. Endothelial JAK2V617F mutation leads to thrombosis, vasculopathy, and cardiomyopathy in a murine model of myeloproliferative neoplasm. J Thromb Haemost. 2020;18(12):3359–70. doi:10.1111/jth.15095.; Mahmood I., Hamdan F., Al-Tameemi W. Role of endothelial dysfunction in relation to prothrombogenesis in polycythemia vera. Iraqi J Hematol. 2018;7:8. doi:10.4103/IJH.IJH_32_17.; Baldauf C.K., Charakopoulos E., Böttcher M., Zeremski V., Mougiakakos D., Schraven B., Fischer T. JAK2-V617F Promotes up-Regulation of Pro-Infl ammatory Cytokines Including IL-1 upon Adhesion-Induced Activation of β1/β2 Integrins. Blood 2023;142(Suppl 1):2749. doi:10.1182/blood-2023-174058.; Rajendran P., Rengarajan T., Thangavel J. The Vascular Endothelium and Human Diseases. Int J Biol Sci. 2013;9:1057. doi:10.7150/IJBS.7502.; Saghazadeh A., Rezaei N. Infl ammation as a cause of venous thromboembolism. Crit Rev Oncol Hematol. 2016;99:272–85. doi:10.1016/J.CRITREVONC.2016.01.007.; Ejikeme C., Elkattawy S., Kayode-Ajala F. Reactive thrombocytosis after splenectomy in hereditary spherocytosis: Case report and literature review. Eur J Case Rep Intern Med. 2021;8. doi:10.12890/2021_002673.; Stringer M.D., Lucas N. Thrombocytosis and portal vein thrombosis after splenectomy for paediatric haemolytic disorders: How should they be managed? J Paediatr Child Health. 2018;54:1184–8. doi:10.1111/jpc.14227.; Zulkafl i Z., Janaveloo T., Rahman W.S.W.A. Extreme thrombocytosis in a child: Laboratory approaches and diagnostic challenges. Oman Med J. 2019;34:336–40. doi:10.5001/omj.2019.65.; Rodeghiero F., Ruggeri M. Short- and long-term risks of splenectomy for benign haematological disorders: should we revisit the indications? Br J Haematol. 2012;158(1):16–29. doi:10.1111/J.1365-2141.2012.09146.X.; Ferrara M., Bertocco F., Ferrara D., Capozzi L. Postsplenectomy Thromboembolic Risk in Children with Hematologic Disorders: Case Report. J Blood Disord Transfus. 2014;5(8). doi:10.4172/2155-9864.1000225.; Troendle S.B., Adix L., Crary S.E., Buchanan G.R. Laboratory markers of thrombosis risk in children with hereditary spherocytosis. Pediatr Blood Cancer. 2007;49(6):781–5. doi:10.1002/pbc.21319.; Autoimmune Thrombocytopenia. Y. Ishida, Y. Tomiyama (eds.) Springer Nature Singapore Pte Ltd., 2017. Pp. 159–64. doi:10.1007/978-981-10-4142-6_15.; Guo B., Pan J., Shen Y., Zhang Q., Wang Z., Huang L., Yu Q. Plateletʼs Rule of Change and Clinical Signifi cance before and after Splenectomy. Am J Surg. 2019;1;85(11):1288–93. PMID: 31775973.; Zvizdic Z., Kovacevic A., Milisic E., Jonuzi A., Vranic S. Clinical course and short-term outcome of postsplenectomy reactive thrombocytosis in children without myeloproliferative disorders: A single institutional experience from a developing country. PLoS One. 2020;15(8):e0237016. doi:10.1371/journal.pone.0237016.; Gelas T., Scalabre A., Hameury F., Dubois R., Grosos C., Mouriquand P.D., Mure P.-Y. Portal vein thrombosis after laparoscopic splenectomy during childhood. J Thromb Thrombolysis. 2014;38:218–22. doi:10.1007/s11239-013-1037-2.; Krauth M., Lechner K., Neugebauer E.A.M., Pabinger I. The postoperative splenic/portal vein thrombosis after splenectomy and its prevention – an unresolved issue. Haematologica. 2008;93(8):1227–32. doi:10.3324/haematol.12682.; Leite A.R., Borges-Canha M., Cardoso R., Neves J.S., Castro-Ferreira R., Leite-Moreira A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology. 2020;71(5):397–410. doi:10.3324/haematol.12682.; Gragnano F., Sperlongano S., Golia E., Natale F., Bianchi R., Crisci M., Fimiani F., Pariggiano I., Diana V., Carbone A., Cesaro A., Concilio C., Limongelli G., Russo M., Calabrò P. The Role of von Willebrand Factor in Vascular Infl ammation: From Pathogenesis to Targeted Therapy. Mediators Infl amm. 2017;2017:5620314. doi:10.1155/2017/5620314.; Rodriguez-Miguelez P., Seigler N., Harris R.A. Ultrasound Assessment of Endothelial Function: A Technical Guideline of the Flow-mediated Dilation Test. J Vis Exp. 2016;(110):54011. doi:10.3791/54011.; Hopkins N.D., Dengel D.R., Stratton G., Kelly A.S., Steinberger J., Zavala H., Marlatt K., Perry D., Naylor L.H., Green D.J. Age and sex relationship with fl ow-mediated dilation in healthy children and adolescents. J Appl Physiol. 2015;119(8):926–33. doi:10.1152/japplphysiol.01113.2014.; Evanoff N.G., Kelly A.S., Steinberger J., Dengel D.R. Peak Shear and Peak Flow Mediated Dilation: A Time Course Relationship. J Clin Ultrasound. 2016;44(3):182. doi:10.1002/JCU.22324.; Jakubowski M., Turek-Jakubowska A., Szahidewicz-Krupska E., Gawrys K., Gawrys J., Doroszko A. Profi ling the endothelial function using both peripheral artery tonometry (EndoPAT) and Laser Doppler Flowmetry (LD) – Complementary studies or waste of time? Microvasc Res. 2020;130:104008. doi:10.1016/J.MVR.2020.104008.; Dri E., Lampas E., Lazaros G., Lazarou E., Theofi lis P., Tsioufi s C., Tousoulis D. Infl ammatory Mediators of Endothelial Dysfunction. Life. 2023;13(6):1420. doi:10.3390/life13061420.; Kutikhin A., Shishkova D., Velikanova E., Sinitsky M.Yu., Sinitskaya A.V., Markova V.E. Endothelial Dysfunction in the Context of Blood–Brain Barrier Modeling. J Evol Biochem Phys. 2022;58:781–806. doi:10.1134/S0022093022030139.; Hafsari A., Ridha N.R. Reactive trhombocytosis in children. Int J Health Sci Med Res. 2022;1(2):111–32. doi:10.37905/ijhsmr.v1i2.14134.; Deshpande D., Janero D., Amiji M. Therapeutic strategies for endothelial dysfunction. Expert Opin Biol Ther. 2011;11(12):1637–54. doi:10.1517/14712598.2011.625007.; De Jongh S., Lilien M.R., Op’T Roodt J., Stroes E.S.G., Bakker H.D., Kastelein J.J.P. Early statin therapy restores endothelial function in children with familial hypercholesterolemia. J Am Coll Cardiol. 2002;40(12):2117–21. doi:10.1016/S0735-1097(02)02593-7.; Kavey R.W., Manlhiot C., Runeckles K., Collins T., Gidding S.S., Demczko M., Clauss S., Harahsheh A.S., Mietus-Syder M., Khoury M., Madsen N., McCrindle B.W. Eff ectiveness and Safety of Statin Therapy in Children: A Real-World Clinical Practice Experience. CJC Open. 2020;2(6):473–82. doi:10.1016/j.cjco.2020.06.002.; Răzvan-Valentin S., Güler S., Utkan T., Şahin T.D., Gacar G., Yazir Y., Rencber S.F., Mircea L., Cristian B., Bogdan P., Utkan N.Z. Etanercept Prevents Endothelial Dysfunction in Cafeteria Diet-Fed Rats. Int J Environ Res Public Health. 2022;19(4):2138. doi:10.3390/ijerph19042138.; Cazeau R.M., Huang H., Bauer J.A., Hoff man R.P. Eff ect of Vitamins C and E on Endothelial Function in Type 1 Diabetes Mellitus. J Diabetes Res. 2016;2016:3271293. doi:10.1155/2016/3271293.; Bayat M., Daei S., Ziamajidi N., Abbasalipourkabir R., Nourian A. The protective eff ects of vitamins A, C, and E on zinc oxide nanoparticles (ZnO NPs)-induced liver oxidative stress in male Wistar rats. Drug Chem Toxicol. 2023;46(2):209–18. doi:10.1080/01480545.2021.2016809.; Jeremias A., Soodini G., Gelfand E., Xu Y., Stanton R.C., Horton E.S., Cohen D.J. Eff ects of N-acetyl-cysteine on endothelial function and infl ammation in patients with type 2 diabetes mellitus. Heart Int. 2009;4(1):e7. doi:10.4081/hi.2009.e7.; https://journal.nodgo.org/jour/article/view/1131
-
5Academic Journal
Source: University Therapeutic Journal, Vol 6, Iss 3 (2024)
Subject Terms: пожилой возраст, системное воспаление, Medicine, остеоартрит коленного сустава
-
6
-
7
-
8Academic Journal
Authors: Kuriata, O.V., Cherkasova, A.V.
Source: TRAUMA; Том 17, № 1 (2016); 47-54
ТРАВМА; Том 17, № 1 (2016); 47-54Subject Terms: остеоартроз, системное воспаление, инсулинорезистентность, Пиаскледин, системне запалення, інсулінорезистентність, Піаскледин, 2. Zero hunger, 03 medical and health sciences, osteoarthrosis, systemic inflammation, insulin resistance, Piascledine, 0302 clinical medicine, 3. Good health
File Description: application/pdf
-
9Academic Journal
Authors: Daria A. Emelina, Ilya V. Kravchenko, Igor V. Makarov, Rauf F. Gasanov, Ekaterina S. Prokhorenko, Д. А. Емелина, И. В. Кравченко, И. В. Макаров, Р. Ф. Гасанов, Е. С. Прохоренко
Contributors: The study was carried out within the national assignment of National Medical Research Center for Psychiatry and Neurology named after V.M. Bekhterev of the Ministry of Health of Russian Federation for 2024-2026 (XSOZ 2024 0012)., Исследование выполнено в рамках государственного задания ФГБУ «НМИЦ ПН им. В.М. Бехтерева» Минздрава России 2024–2026 гг. (XSOZ 2024 0012).
Source: Current Pediatrics; Том 23, № 4 (2024); 204-212 ; Вопросы современной педиатрии; Том 23, № 4 (2024); 204-212 ; 1682-5535 ; 1682-5527
Subject Terms: шизофрения, systemic inflammation, cytokines, hematological indices, autism, mental retardation, attention deficit and hyperactivity disorder, schizophrenia, системное воспаление, цитокины, гематологические индексы, аутизм, умственная отсталость, синдром дефицита внимания и гиперактивности
File Description: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3563/1383; Jiang NM, Cowan M, Moonah SN, et al. The Impact of Systemic Inflammation on Neurodevelopment. Trends Mol Med. 2018;24(9): 794–804. doi: https://doi.org/10.1016/j.molmed.2018.06.008; Устинова Н.В., Каркашадзе Г.А., Намазова-Баранова Л.С. Когнитивные, эмоциональные и поведенческие нарушения у детей с респираторными аллергическими заболеваниями: причины и пути решения // Педиатрическая фармакология. — 2024. — Т. 21. — № 3. — С. 226–239. — https://doi.org/10.15690/pf.v21i3.2757; Черешнев В.А., Гусев Е.Ю. Иммунологические и патофизиологические механизмы системного воспаления // Медицинская иммунология. — 2012. — Т. 14. — № 1-2. — С. 9–20.; Гусев Е.Ю., Юрченко Л.Н., Черешнев В.А. и др. Хроническое системное воспаление как типовой патологический процесс // Цитокины и воспаление. — 2008. — Т. 7. — № 4. — С. 3–10.; Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585. doi: https://doi.org/10.1136/bmj.i1585; Zotova N, Zhuravleva Y, Chereshnev V, Gusev E. Acute and Chronic Systemic Inflammation: Features and Differences in the Pathogenesis, and Integral Criteria for Verification and Differentiation. Int J Mol Sci. 2023;24(2):1144. doi: https://doi.org/10.3390/ijms24021144; Tioleco N, Silberman AE, Stratigos K, et al. Prenatal maternal infection and risk for autism in offspring: A meta-analysis. Autism Res. 2021;14(6):1296–1316. doi: https://doi.org/10.1002/aur.2499; Knuesel I, Chicha L, Britschgi M, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10(11):643–660. doi: https://doi.org/10.1038/nrneurol.2014.187; Estes ML, McAllister AK. Maternal immune activation: Implications for neuropsychiatric disorders. Science. 2016;353(6301):772–777. doi: https://doi.org/10.1126/science.aag3194; Canetta S, Sourander A, Surcel HM, et al. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am J Psychiatry. 2014;171(9):960–968. doi: https://doi.org/10.1176/appi.ajp.2014.13121579; Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276):933–939. doi: https://doi.org/10.1126/science.aad0314; Woods RM, Lorusso JM, Fletcher J, et al. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal. 2023;7(2):NS20220064. doi: https://doi.org/10.1042/NS20220064; Zhao H, Zhang H, Liu S, et al. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front Psychiatry. 2021;12:670200. doi: https://doi.org/10.3389/fpsyt.2021.670200; Brown AS, Sourander A, Hinkka-Yli-Salomäki S, et al. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–264. doi: https://doi.org/10.1038/mp.2012.197; Jones KL, Croen LA, Yoshida CK, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry. 2017;22(2): 273–279. doi: https://doi.org/10.1038/mp.2016.77; Spann MN, Monk C, Scheinost D, Peterson BS. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior. J Neurosci. 2018;38(11):2877–2886. doi: https://doi.org/10.1523/JNEUROSCI.2272-17.2018; Nour-Eldine W, Ltaief SM, Abdul Manaph NP, et al. In search of immune cellular sources of abnormal cytokines in the blood in autism spectrum disorder: A systematic review of case-control studies. Front Immunol. 2022;13:950275. doi: https://doi.org/10.3389/fimmu.2022.950275; Saghazadeh A, Ataeinia B, Keynejad K, et al. Anti-inflammatory cytokines in autism spectrum disorders: A systematic review and meta-analysis. Cytokine. 2019;123:154740. doi: https://doi.org/10.1016/j.cyto.2019.154740; Masi A, Quintana DS, Glozier N, et al. Cytokine aberrations in autism spectrum disorder: a systematic review and metaanalysis. Mol Psychiatry. 2015;20(4):440–446. doi: https://doi.org/10.1038/mp.2014.59; Худякова М.И., Черевко Н.А., Новиков П.С., Березовская К.В. Особенности цитокинового профиля у детей с расстройством аутистического спектра // Бюллетень сибирской медицины. — 2020. — Т. 19. — № 4. — С. 174–178. — doi: https://doi.org/10.20538/1682-0363-2020-4-174-178; Филиппова Ю.Ю., Бурмистрова А.Л. Уровни IL-6 и IFN-γ у детей с шизофренией и расстройствами аутистического спектра с различными фенотипами социального поведения // Российский иммунологический журнал. — 2019. — Т. 22. — № (2-1). — С. 599–601. — doi: https://doi.org/10.31857/S102872210007012-8; Ferencova N, Visnovcova Z, Ondrejka I, et al. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int J Mol Sci. 2023;24(14):11710. doi: https://doi.org/10.3390/ijms241411710; Chang JP, Su KP, Mondelli V, et al. Cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder (ADHD): evidence from a systematic review with meta-analysis. Transl Psychiatry. 2021;11(1):430. doi: https://doi.org/10.1038/s41398-021-01550-0; Misiak B, Wójta-Kempa M, Samochowiec J, et al. Peripheral blood inflammatory markers in patients with attention deficit/ hyperactivity disorder (ADHD): A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2022;118:110581. doi: https://doi.org/10.1016/j.pnpbp.2022.110581; Khandaker GM, Pearson RM, Zammit S, et al. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry. 2014;71(10):1121–1128. doi: https://doi.org/10.1001/jamapsychiatry.2014.1332; Kappelmann N, Khandaker GM, Dal H, et al. Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study. Psychol Med. 2019;49(2):295–302. doi: https://doi.org/10.1017/S0033291718000831; Metcalf SA, Jones PB, Nordstrom T, et al. Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: A prospective birth cohort study. Brain Behav Immun. 2017;59: 253–259. doi: https://doi.org/10.1016/j.bbi.2016.09.008; Lesh TA, Careaga M, Rose DR, et al. Cytokine alterations in firstepisode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflammation. 2018;15(1):165. doi: https://doi.org/10.1186/s12974-018-1197-2; Li Y, Jinxiang T, Shu Y, et al. Childhood trauma and the plasma levels of IL-6, TNF-α are risk factors for major depressive disorder and schizophrenia in adolescents: A cross-sectional and casecontrol study. J Affect Disord. 2022;305:227–232. doi: https://doi.org/10.1016/j.jad.2022.02.020; Tural Hesapcioglu S, Kasak M, Cıtak Kurt AN, et al. High monocyte level and low lymphocyte to monocyte ratio in autism spectrum disorders. Int J Dev Disabil. 2017;65(2):73–81. doi: https://doi.org/10.1080/20473869.2017.1371369; Arteaga-Henríquez G, Lugo-Marín J, Gisbert L, et al. Activation of the Monocyte/Macrophage System and Abnormal Blood Levels of Lymphocyte Subpopulations in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2022;23(22):14329. doi: https://doi.org/10.3390/ijms232214329; Esnafoglu E, Subaşı B. Association of low 25-OH-vitamin D levels and peripheral inflammatory markers in patients with autism spectrum disorder: Vitamin D and inflammation in Autism. Psychiatry Res. 2022;316:114735. doi: https://doi.org/10.1016/j.psychres.2022.114735; Ellul P, Maruani A, Peyre H, et al. Abnormal neutrophil-tolymphocyte ratio in children with autism spectrum disorder and history of maternal immune activation. Sci Rep. 2023;13(1):22424. doi: https://doi.org/10.1038/s41598-023-49789-5; Topal Z, Tufan AE, Karadag M, et al. Evaluation of peripheral inflammatory markers, serum B12, folate, ferritin levels and clinical correlations in children with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Nord J Psychiatry.2022;76(2):150–157. doi: https://doi.org/10.1080/08039488.2021.1946712; Gędek A, Modrzejewski S, Gędek M, et al. Neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and monocyte to lymphocyte ratio in ADHD: a systematic review and meta-analysis. Front Psychiatry. 2023;14:1258868. doi: https://doi.org/10.3389/fpsyt.2023.1258868; Frota IJ, de Oliveira ALB, De Lima DN Jr, et al. Decrease in cognitive performance and increase of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios with higher doses of antipsychotics in women with schizophrenia: a cross-sectional study. BMC Psychiatry. 2023;23(1):558. doi: https://doi.org/10.1186/s12888-023-05050-x; Yang C, Tian Y, Yang X, et al. Hematological and inflammatory markers in Han Chinese patients with drug-free schizophrenia: relationship with symptom severity. Front Immunol. 2024;15:1337103. doi: https://doi.org/10.3389/fimmu.2024.1337103; Dadouli K, Janho MB, Hatziefthimiou A, et al. Neutrophilto-Lymphocyte, Monocyte-to-Lymphocyte, Platelet-to-Lymphocyte Ratio and Systemic Immune-Inflammatory Index in Different States of Bipolar Disorder. Brain Sci. 2022;12(8):1034. doi: https://doi.org/10.3390/brainsci12081034; Fusar-Poli L, Natale A, Amerio A, et al. Neutrophil-to-Lymphocyte, Platelet-to-Lymphocyte and Monocyte-to-Lymphocyte Ratio in Bipolar Disorder. Brain Sci. 2021;11(1):58. doi: https://doi.org/10.3390/brainsci11010058; Velasco A, Lengvenyte A, Rodriguez-Revuelta J, et al. Neutrophilto-lymphocyte ratio, platelet-to-lymphocyte ratio, and monocyteto-lymphocyte ratio in depressed patients with suicidal behavior: A systematic review. Eur Psychiatry. Published online 2023:1–25. doi: https://doi.org/10.1192/j.eurpsy.2023.18; Pethő B, Kovács MÁ, Simon D, et al. Investigation of peripheral inflammatory biomarkers in association with suicide risk in major depressive disorder. Front Psychiatry. 2024;15:1321354. doi: https://doi.org/10.3389/fpsyt.2024.1321354; Berkol TD, Özönder Ünal I. Exploring the clinical characteristics and etiological factors of comorbid major depressive disorder and social anxiety disorder. Biomol Biomed. 2023;23(6):1136–1145. doi: https://doi.org/10.17305/bb.2023.9690; Dionisie V, Filip GA, Manea MC, et al. Neutrophil-to-Lymphocyte Ratio, a Novel Inflammatory Marker, as a Predictor of Bipolar Type in Depressed Patients: A Quest for Biological Markers. J Clin Med. 2021;10(9):1924. doi: https://doi.org/10.3390/jcm10091924; Cheng Y, Wang Y, Wang X, et al. Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio in Depression: An Updated Systematic Review and Meta-Analysis. Front Psychiatry. 2022;13:893097. doi: https://doi.org/10.3389/fpsyt.2022.893097; Гоголева В.С., Друцкая М.С., Атретханы К.С.Н. Микроглия в гомеостазе центральной нервной системы и нейровоспалении // Молекулярная биология. — 2019. — Т. 53. — № 5. — С. 790– 798. — doi: https://doi.org/10.1134/S0026898419050057; Cornell J, Salinas S, Huang HY, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res. 2022;17(4):705–716. doi: https://doi.org/10.4103/1673-5374.322423; Paolicelli RC, Sierra A, Stevens B, et al. Microglia states and nomenclature: A field at its crossroads. Neuron. 2022;110(21):3458–3483. doi: https://doi.org/10.1016/j.neuron.2022.10.020; Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18(1):258. doi: https://doi.org/10.1186/s12974-021-02309-6; Горбачева Л.Р., Помыткин И.А., Сурин А.М. и др. Астроциты и их роль в патологии центральной нервной системы // Российский педиатрический журнал. — 2018. — Т. 21. — № 1. — С. 46–53. — doi: https://doi.org/10.18821/1560-9561-2018-21-1-46-53; Leonard EM, Nurse CA. The Carotid Body “Tripartite Synapse”: Role of Gliotransmission. Adv Exp Med Biol. 2023;1427:185–194. doi: https://doi.org/10.1007/978-3-031-32371-3_20; Jiao M, Li X, Chen L, et al. Neuroprotective effect of astrocyte-derived IL-33 in neonatal hypoxic-ischemic brain injury. J Neuroinflammation. 2020;17(1):251. doi: https://doi.org/10.1186/s12974-020-01932-z; Dyatlova AS, Novikova NS, Yushkov BG, et al. The Blood-Brain Barrier in Neuroimmune Interactions and Pathological Processes. Her Russ Acad Sci. 2022;92(5):590–599. doi: https://doi.org/10.1134/S1019331622050100; Erickson MA, Wilson ML, Banks WA. In vitro modeling of blood-brain barrier and interface functions in neuroimmune communication. Fluids Barriers CNS. 2020;17(1):26. doi: https://doi.org/10.1186/s12987-020-00187-3; Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8):469–486. doi: https://doi.org/10.1038/nrn3978; Monet MC, Quan N. Complex Neuroimmune Involvement in Neurodevelopment: A Mini-Review. J Inflamm Res. 2023;16: 2979–2991. doi: https://doi.org/10.2147/JIR.S410562; Tsukada T, Shimada H, Sakata-Haga H, et al. Molecular mechanisms underlying the models of neurodevelopmental disorders in maternal immune activation relevant to the placenta. Congenit Anom (Kyoto). 2019;59(3):81–87. doi: https://doi.org/10.1111/cga.12323; Wu WL, Hsiao EY, Yan Z, et al. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav Immun. 2017;62:11–23. doi: https://doi.org/10.1016/j.bbi.2016.11.007; Zaretsky MV, Alexander JM, Byrd W, et al. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103(3):546–550. doi: https://doi.org/10.1097/01.AOG.0000114980.40445.83; Abrahams VM, Schaefer TM, Fahey JV, et al. Expression and secretion of antiviral factors by trophoblast cells following stimulation by the TLR-3 agonist, Poly(I : C). Hum Reprod. 2006;21(9): 2432–2439. doi: https://doi.org/10.1093/humrep/del178; Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):57–67. doi: https://doi.org/10.1111/nyas.13712; Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–183. doi: https://doi.org/10.1038/nature16549; Zahorec R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5–14.; Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi: https://doi.org/10.1038/nri.2017.105; Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1):e1170. doi: https://doi.org/10.1002/ctm2.1170; Салмаси Ж.М., Порядин Г.В., Панина М.И. и др. Нейтрофильные и моноцитарные экстраклеточные ловушки в диагностике постковидного синдрома // Вестник РГМУ. — 2022. — № 6. — С. 84–88. — doi: https://doi.org/10.24075/vrgmu.2022.057; Lee KH, Kronbichler A, Park DD, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16(11):1160–1173. doi: https://doi.org/10.1016/j.autrev.2017.09.012
-
10Academic Journal
Authors: Davyd A. Yakhontov, Yuliya O. Ostanina, Vitaliy L. Lukinov, Давыд Александрович Яхонтов, Юлия Олеговна Останина, Виталий Леонидович Лукинов
Contributors: Авторы заявляют об отсутствии финансирования исследования.
Source: Complex Issues of Cardiovascular Diseases; Том 13, № 1 (2024); 6-15 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 1 (2024); 6-15 ; 2587-9537 ; 2306-1278
Subject Terms: Системное воспаление, Borderline coronary artery stenoses, Epicardial adipose tissue, Systemic inflammation, Пограничные стенозы коронарных артерий, Эпикардиальная жировая ткань
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1429/873; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1429/1563; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1429/1568; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1429/1569; Losik DV, Nikitin NA, Minin SM, Fisher EV, Mikheenko IL, Chernyavskiy AM, Romanov AB. Relationship between epicardial adipose tissue and prognosis of cardiovascular events. Kardiologiya i Serdechno-Sosudistaya Khirurgiya. 2021;14(4):253 258. doi:10.17116/kardio202114041253 (In Russian); Villasante Fricke A.C., Iacobellis G. Epicardial Adipose Tissue: Clinical Biomarker of Cardio-Metabolic Risk. International Journal of Molecular Sciences. 2019;20(23):5989. doi:10.3390/ijms20235989.; Rashidova M.A. , Darenskaya M.A., Kolesnikova L.I. The role of some cytokines (IL-1, IL-6, IL-18, IL-22, TNF-Α) in the genesis of obesity. Modern problems of science and education. 2022; 6(2):42. doi:10.17513/spno.32339 (In Russian); Li Y., Liu B., Li Y., Jing X., Deng S., Yan Y., She Q. Epicardial fat tissue in patients with diabetes mellitus: a systematic review and meta-analysis. Cardiovasc Diabetology. 2019; 18(1):3. doi:10.1186/s12933-019-0807-3.; Ott A.V., Chumakova G.A. Epicardial obesity as one of the basic criteria for metabolically unhealthy obesity phenotype and the predictor of subclinical atherosclerosis. Complex Issues of Cardiovascular Diseases. 2018;7(1):21-28. doi:10.17802/2306- 1278-2018-7-1-21-28 (In Russ.); Chumakova G.A., Kuznetsova T.Yu., Druzhilov M.A., Veselovskaya N.G. Visceral adiposity as a global factor of cardiovascular risk. Russian Journal of Cardiology. 2018;(5):7-14. doi:10.15829/1560-4071-2018-5-7-14 (In Russian); Mustafina I.A., Ionin V.A., Dolganov A.A., Ishmetov V.Sh., Pushkareva A.E., Yagudin T.A., Danilko K.V., Zagidullin N.Sh. Role of epicardial adipose tissue in the development of cardiovascular diseases. Russian Journal of Cardiology. 2022;27(1S):4872. doi:10.15829/1560-4071-2022-4872 (In Russian); Chen Q., Wu Y., Gao Y., Zhang Z., Shi T., Yan B. Effect of visceral adipose tissue mass on coronary artery disease and heart failure: A Mendelian randomization study. Int J Obes (Lond). 2022;46(12):2102-2106. doi:10.1038/s41366-022-01216-x.; Lawton J.S., Tamis-Holland J.E., Bangalore S., Bates E.R., Beckie T.M., Bischoff J.M., Bittl J.A., Cohen M.G., DiMaio J.M., Don C.W., Fremes S.E., Gaudino M.F., Goldberger Z.D., Grant M.C., Jaswal J.B., Kurlansky P.A., Mehran R., Metkus T.S. Jr., Nnacheta L.C., Rao S.V., Sellke F.W., Sharma G., Yong C.M., Zwischenberger B.A. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology. 2022;79(2):e21-e129. doi:10.1016/j.jacc.2021.09.006.; Boytsov S.A., Pogosova N.V., Ansheles A.A., Badtieva V.A., Balakhonova T.V., Barbarash O.L., Vasyuk Yu.A., Gambaryan N.G., Gendlin G.E., Golitsyn S.P., Drapkina O.M., Drozdova L.Yu., Yezhov M.V., Ershova A.I., Zhirov I.V., Karpov Yu.A., Kobalava Zh.D., Kontsevaya A.V., Litvin A.Yu., Lukyanov M.M., Martsevich S.Yu., Matskeplishvili S.T., Metelskaya V.A., Meshkov A.N., Mishina I.E., Panchenko E.P., Popova A.B., Sergienko I.V., Smirnova M.D., Smirnova M.I., Sokolova O.Yu., Starodubova A.V., Sukhareva O.Yu., Ternovoy S.K., Tkacheva O.N., Shalnova S.A., Shestakova M.V. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023;28(5):5452. doi:10.15829/1560-4071-2023-5452. (In Russian); Walldius G., Jungner I. Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. Journal of Internal Medicine. 2004; 255: 188–205. doi:10.1046/j.1365-2796.2003.01276.x.; Carnevale Schianca G.P., Pedrazzoli R., Onolfo S., Colli E., Cornetti E., Bergamasco L., Fra G.P., Bartoli E. ApoB/apoA-I ratio is better than LDL-C in detecting cardiovascular risk.; Nutrition Metabolism and Cardiovascular Diseases. 2011; 21: 406–11. doi:10.1016/j.numecd.2009.11.002.; Iacobellis G., Assael F., Ribaudo M.C. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obesity Research. 2003; 11: 304-10. doi:10.1038/oby.2003.45.; Iacobellis G., H.J. Willens H.J. Echocardiographic epicardial fat: a review of research and clinical applications. Journal of the American Society of Echocardiography. 2009; 22: 1311-9. doi:10.1016/j.echo.2009.10.013.; Schejbal V. Epicardial fatty tissue of the right ventricle-morphology, morphometry and functional significance. Pneumologie. 1989; 43(9): 490-9.; Kuznetsova T.Yu., Chumakova G.A., Druzhilov M.A., Veselovskaya N.G. Clinical application of quantitative echocardiographic assessment of epicardial fat tissue in obesity. Russian Journal of Cardiology. 2017;(4):81-87. doi:10.15829/1560-4071-2017-4-81-87 (In Russian); Barbu E., Popescu M.R., Popescu A.C., Balanescu S.M. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J Mol Sci. 2022;23(2):963. doi:10.3390/ijms23020963.; Koshelskaya O.A., Suslova T.E., Kologrivova I.V., Margolis N.Yu., Zhuravleva O.A., Kharitonova O.A., Kravchenko E.S., Vinnitskaya I.V., Karpov R.S. Epicardial fat thickness and biomarkers of inflammation in patients with stable coronary artery disease: correlation with the severity of coronary atherosclerosis. Russian Journal of Cardiology. 2019;(4):20-26. doi:10.15829/1560-4071-2019-4-20-26 (In Russian); Evstifeeva S.E., Shalnova S.A., Kutsenko V.A., Yarovaya E.B., Balanova Yu. A., Imaeva A. E., Kapustina A. V., Muromtseva G. A., Maksimov S. A., Karamnova N.S., Samokhina Yu. Yu., Drapkina O. M., Kulakova N. V., Trubacheva I.A., Efanov A. Yu., Shabunova A.A., Belova O.A., Rotar O.P. on behalf of the ESSE-RF researchers. Association of high-sensitivity C-reactive protein with fatal and non-fatal cardiovascular events in working-age people: data from the ESSE-RF study. Russian Journal of Cardiology. 2021;26(5):4399. doi:10.15829/1560-4071-2021-4399 (In Russian); Verma S.K., Garikipati V.N.S., Krishnamurthy P., Schumacher S.M., Grisanti L.A., Cimini M., heng Z., Khan M., Yue Y., Benedict C., Truongcao M.M., Rabinowitz J.E., Goukassian D.A., Tilley D., Koch W.J., Kishore R. Interleukin-10 Inhibits Bone Marrow Fibroblast Progenitor Cell-Mediated Cardiac Fibrosis in Pressure-Overloaded Myocardium. Circulation. 2017;136(10):940–53. doi:10.1161/CIRCULATIONAHA.117.027889.; Kologrivova I.V., Suslova T.E., Koshelskaya O.A., Rebenkova M.S., Kharitonova O.A., Dymbrylova O.N., Andreev S.L. Macrophages in epicardial adipose tissue and serum NT-proBNP in patients with stable coronary artery disease. Medical Immunology (Russia). 2022;24(2):389-394. doi:10.15789/0000-0003-4049-8715 (In Russ.).; Nyawo T.A., Dludla P.V., Mazibuko-Mbeje S.E., Mthembu S.X.H., Nyambuya T.M., Nkambule B.B., Sadie-Van Gijsen H., Strijdom H., Pheiffer C. A systematic review exploring the significance of measuring epicardial fat thickness in correlation to B-type natriuretic peptide levels as prognostic and diagnostic markers in patients with or at risk of heart failure. Heart Fail Rev. 2022;27(2):665-675. doi:10.1007/s10741-021-10160-3.; Mishra R.K., Beatty A.L., Jaganath R., Regan M., Wu A.H., Whooley M.A. B-type natriuretic peptides for the prediction of cardiovascular events in patients with stable coronary heart disease: the Heart and Soul Study.; Journal of the American Heart Association. 2014;3(4):e000907. doi:10.1161/JAHA.114.000907.; Chaulin A.M., Duplyakov D.V. Increased natriuretic peptides not associated with heart failure. Russian Journal of Cardiology. 2020;25(4S):4140. doi:10.15829/1560-4071-2020-4140 (In Russian); Gevorgyan M.M., Voronina N.P., Goncharova N.V., Kozaruk T.V., Russkikh G.S., Bogdanova L.A., Korolenko T.A. Cystatin C as a Marker of Progressing Cardiovascular Events during Coronary Heart Disease. Bulletin of Experimental Biology and Medicine. 2017;162(4):421-424. doi:10.1007/s10517-017-3630-4.
-
11Academic Journal
Authors: R. Yu. Abdullaev, O. G. Komissarova, V. A. Shorokhova, Р. Ю. Абдуллаев, О. Г. Комиссарова, В. А. Шорохова
Contributors: Исследование проведено при финансовой поддержке ФГБНУ «ЦНИИТ» и подготовлено в ходе выполнения научно-исследовательской работы по теме № 122041200023-9 «Лабораторные аспекты проявления системного воспалительного ответа у больных туберкулёзом и различными заболеваниями бронхолёгочной системы, перенёсших инфекцию, вызванную SARS-CоV-2»
Source: Acta Biomedica Scientifica; Том 9, № 3 (2024); 222-229 ; 2587-9596 ; 2541-9420
Subject Terms: системное воспаление, diabetes mellitus, COVID-19, hemostasis, fibrinolysis, systemic inflammation, сахарный диабет, гемостаз, фибринолиз
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/4834/2806; Global tuberculosis report 2022. Geneva: World Health Organization; 2022. URL: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 [date of access: 26.02.2024].; О состоянии санитарно-эпидемиологического благополучия населения Российской Федерации в 2022 году: Государственный доклад Роспотребнадзора. М.; 2023. URL: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=25076&ysclid=lt6r30hh ia904823086 [дата доступа: 29.02.2024].; Савинцева Е.В., Исаева П.В., Низамова Г.Ф. Туберкулез и COVID-19: медицинские и социальные аспекты. Туберкулёз и болезни лёгких. 2022; 100(3): 13-17. doi:10.21292/2075-1230-2022-100-3-13-17; Aggarwal AN, Agarwal R, Dhooria S, Prasad KT, Sehgal IS, Muthu V. Active pulmonary tuberculosis and coronavirus disease 2019: A systematic review and metaanalysis. PLoS One. 2021; 16(10): e0259006. doi:10.1371/journal.pone.0259006; Дедов И.И., Шестакова М.В., Майоров А.Ю. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. М.; 2023.; International Diabetes Federation. IDF Diabetes Atlas; 10th ed. Brussels, Belgium: International Diabetes Federation; 2021. URL: https://www.diabetesatlas.org [date of access: 12.07.2023].; Noubiap JJ, Nansseu JR, Nyaga UF, Nkeck JR, Endomba FT, Kaze AD, et al. Global prevalence of diabetes in active tuberculosis: A systematic review and meta-analysis of data from 2,3 million patients with tuberculosis. Lancet Glob Health. 2019; 7(4): e448-e460. doi:10.1016/S2214-109X(18)30487-X; Jeon CY, Harries AD, Baker MA, Hart JE, Kapur A, Lönnroth K, et al. Bi-directional screening for tuberculosis and diabetes: A systematic review. Trop Med Int Health. 2010; 15(11): 1300-1314. doi:10.1111/j.1365-3156.2010.02632.x; Workneh MH, Bjune GA, Yimer SA. Prevalence and associated factors of tuberculosis and diabetes mellitus comorbidity: A systematic review. PLoS One. 2017; 12(4): 1-25. doi:10.1371/journal.pone.0175925; World Health Organization. Weekly epidemiological update on COVID-19. 6 July 2023; Edition 150. URL: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---6-july-2023 [date of access: 12.07.2023].; Lippi G, Henry BM, Favresse J, Plebani M. Addressing standardized definitions of post-COVID and long-COVID. Clin Chem Lab Med. 2023; 61(8): 1361-1362. doi:10.1515/cclm-2023-0390; Комиссарова О.Г., Абдуллаев Р.Ю., Шорохова В.А. Особенности туберкулёза лёгких у больных, перенёсших инфекцию вызванную, SARS-CoV-2. Современные проблемы науки и образования. 2023; (4). URL: https://scienceeducation.ru/article/view?id=32737 [дата доступа: 27.02.2024].; Абдуллаев Р.Ю., Комиссарова О.Г, Красникова Е.В., Багиров М.А., Эргешов А.Э. Показатели систем гемостаза и фибринолиза у больных туберкулёзом лёгких, перенёсших COVID-19, в пред- и после операционном периодах. Вестник ЦНИИТ. 2022; (2): 18-24. doi:10.7868/S2587667822020029; Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844-847. doi:10.1111/jth.14768; Абдуллаев Р.Ю., Комиссарова О.Г., Рыбка М.М., Березовский Ю.С., Грецов Е.М., Семенова Л.А. Клинико-лабораторные проявления и патологоанатомическая картина тяжелого течения новой коронавирусной инфекции (COVID-19) с летальным исходом. Инфекционные болезни: новости, мнения, обучение. 2022; 11(4): 30-37. doi:10.33029/2305-3496-2022-11-4-30-37; Абдуллаев Р.Ю., Комиссарова О.Г., Коняева О.О., Романов В.В. Изменения показателей систем гемостаза и фибринолиза у больных туберкулёзом лёгких с сопутствующим сахарным диабетом. Туберкулёз и социально значимые заболевания. 2021; (1): 60.; Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции. 2022. URL: https://minzdrav.gov.ru/ministry/med_covid19 [дата доступа: 12.07.2023].; https://www.actabiomedica.ru/jour/article/view/4834
-
12Academic Journal
-
13Academic Journal
Authors: T. V. Ryabtseva, A. D. Taganovich, D. A. Makarevich
Source: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 20, Iss 4, Pp 429-432 (2022)
Subject Terms: интерлейкин-8, олигопептид, системное воспаление, антицитокиновая терапия, Medicine
File Description: electronic resource
-
14Report
Subject Terms: systemic inflammation, chronic inflammatory periodontal diseases, hypoxia, провоспалительные цитокины, pro-inflammatory cytokines, chronic obstructive pulmonary disease, окислительный стресс, системное воспаление, микробная нагрузка, cognitive disorders, oxidative stress, гипоксия, infectious load, хронические воспалительные заболевания пародонта, хроническая обструктивная болезнь легких, когнитивные нарушения
-
15Report
Subject Terms: systemic inflammation, hypertension, pulmonary fibrosis, ишемическая болезнь сердца, polymorbidity, легочный фиброз, коморбидные заболевания, comorbid diseases, fibrogenesis, гипертоническая болезнь, системное воспаление, interstitial lung diseases, oxidative stress, интерстициальные заболевания легких, coronary heart disease, полиморбидность, оксидативный стресс, фиброгенез
-
16Academic Journal
Authors: V. G. Radchenko, V. B. Grinevich, E. S. Ivanyuk, L. B. Lazebnik, В. Г. Радченко, В. Б. Гриневич, Е. С. Иванюк, Л. Б. Лазебник
Source: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 3 (2023); 432-446 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 3 (2023); 432-446 ; 2070-4933 ; 2070-4909
Subject Terms: Лаеннек, NAFLD, ferritin, iron metabolism disorder, systemic inflammation, insulin resistance, human placenta hydrolysate peptides, Laennec, НАЖБП, ферритин, нарушение обмена железа, системное воспаление, инсулинорезистентность, пептиды гидролизата плаценты человека
File Description: application/pdf
Relation: https://www.pharmacoeconomics.ru/jour/article/view/895/499; Harrison P.M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996; 1275 (3): 161–203. https://doi.org/10.1016/0005-2728(96)00022-9.; MacKenzie E.L., Iwasaki K., Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008; 10 (6): 997–1030. https://doi.org/10.1089/ars.2007.1893. PMC 2932529.; Harrison P.M., Ford G.C., Rice D.W., et al. Production and characterization of recombinant heteropolymers of human ferritin H and L chains. Biochem Soc Transact. 1987; 15: 744–8.; Beaton M.D., Adams P.C. Treatment of hyperferritinemia. Ann Hepatol. 2012; 11 (3): 294–300.; Knovich M.A., Storey J.A., Coffman L.G., et al. Ferritin for the clinician. Blood Rev. 2009; 23 (3): 95–104. https://doi.org/10.1016/j.blre.2008.08.001.; Khosravi M.J., Chan M.A., Bellem A.C., Diamandis Е.Р. A sensitive time-resolved immunofluorometric assay of ferritin in serum with monoclonal antibodies. Clin Chim Acta. 1988; 175 (3): 267–75. https://doi.org/10.1016/0009-8981(88)90102-7.; Matzner Y., Konijn A.M., Schlomai Z., Ben-Bassat H. Differential effect of isolated placental isoferritins on in vitro T-lymphocyte function. Brit J Haematol. 1985; 59 (3): 443–8. https://doi.org/10.1111/j.1365-2141.1985.tb07331.x.; Diamandis E.P. Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem. 1988; 21 (3): 139–50. https://doi.org/10.1016/0009-9120(88)90001-x.; Chang T.Y., Liu K.L., Chang C.S., et al. Ferric citrate supplementation reduces red-blood-cell aggregation and improves CD163+ macrophagemediated hemoglobin metabolism in a rat model of high-fat-dietinduced obesity. Mol Nutr Food Res. 2018; 62 (2). https://doi.org/10.1002/mnfr.201700442.; Sandnes M., Ulvik R.J., Vorland M., Reikvam H. Hyperferritinemia – a clinical overview. J Clin Med. 2021; 10 (9): 2008. https://doi.org/10.3390/jcm10092008.; Torti F.M., Torti S.V. Regulation of ferritin genes and protein. Blood. 2002; 99 (10): 3505–16. https://doi.org/10.1182/blood.v99.10.35054.; George D.K., Goldwurm S., MacDonald G.A., et al. Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology. 1998; 114 (2): 311–8. https://doi.org/10.1016/s0016-5085(98)70482-2.; Piperno A. Classification and diagnosis of iron overload. Haematologica. 1998; 83 (5): 447–55.; Deugnier Y., Turlin B., le Quilleuc D., et al. A reappraisal of hepatic siderosis in patients with end-stage cirrhosis: practical implications for the diagnosis of hemochromatosis. Am J Surg Pathol. 1997; 21 (6): 669–75. https://doi.org/10.1097/00000478-199706000-00007.; Громова О.А., Торшин И.Ю., Шаповалова Ю.О. и др. COVID-19 и железодефицитная анемия: взаимосвязи патогенеза и терапии. Акушерство, гинекология и репродукция. 2020; 14 (5): 644–55. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.179.; Громова О.А., Торшин И.Ю., Минушкин О.Н. и др. Об эффективности и молекулярных механизмах действия препарата «Лаеннек» в лечении патологических состояний печени, связанных с отложением железа в печени. Дело жизни. 2015; 1: 44–51.; Минушкин О.Н. Максимов В.А., Пальцев А.И. и др. Рекомендации по применению гидролизата человеческой плаценты при заболеваниях печени. Экспериментальная и клиническая гастроэнтерология. 2016; 12: 75–7.; Радченко В.Г., Селиверстов П.В., Иванова В.Ф., Ситкин С.И. Алгоритм лечения неалкогольной жировой болезни печени и роль митохондриальной дисфункции в ее развитии. Фарматека. 2017; 6: 12–9.; Маянский А.Н., Маянский Д.Н. Очерки о нейтрофиле и макрофаге. 2-е изд. Новосибирск: Наука; 1989: 340 с.; Щербинина С.П., Романова Е.А., Левина А.А. и др. Диагностическое значение комплексного исследования показателей метаболизма железа в клинической практике. Гематология и трансфузиология. 2005; 50 (5): 23–8.; Громова О.А., Торшин И.Ю., Максимов В.А. и др. Пептиды в составе препарата Лаеннек, способствующие устранению гиперферритинемии и перегрузки железом. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 413–25. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.070.; Радченко В.Г., Лазебник Л.Б., Гриневич В.Б., Радченко Д.В. Препарат плаценты Лаеннек как универсальный регулятор. М.: Тинкомаркетинг; 2022: 260 с.; Токарев Ю.Н., Сеттарова Д.А., Сметанина Н.С. и др. Болезни перегрузки железом (гемохроматозы): руководство для врачей. М.: Медпрактика-М; 2004: 328 с.; Ramm G.A., Ruddell R.G. Iron homeostasis, hepatocellular injury, and fibrogenesis in hemochromatosis; the role of inflammation in a noninflammatory liver disease. Semin Liver Dis. 2010; 30 (3): 271–87. https://doi.org/10.1055/s-0030-1255356.; Смирнов О.А., Радченко В.Г., Кальм Е.И. Клинико-морфологические особенности хронического гепатита при гемосидерозе печени. Российский медицинский журнал. 2003; 1: 20–2.; Houstis N., Rosen E.D., Lander E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006; 440 (7086): 944–8. https://doi.org/10.1038/nature04634.; Sumida Y., Kanemasa K., Fukumoto K., et al. Effect of iron reduction by phlebotomy in Japanese patients with non-alcoholic steatohepatitis: a pilot study. Hepatol Res. 2006; 36 (4): 315–21. https://doi.org/10.1016/j.hepres.2006.08.003.; Bottomley S. Secondary iron overload disorders. Sem Hematol. 1998; 35 (1): 77–86.; Tilg H., Hotamisligil G.S. Nonalcoholic fatty liver disease: cytokineadipokine interplay and regulation of insulin resistance. Gastroenterology. 2006; 131 (3): 934–45. https://doi.org/10.1053/j.gastro.2006.05.054.; Tacke F., Nuraldeen R., Koch A., et al. Iron parameters determine the prognosis of critically ill patients. Crit Care Med. 2016; 44 (6): 1049–58. https://doi.org/10.1097/CCM.0000000000001607.; Ruscitti P., Di Benedetto P., Berardicurti O., et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020; 10 (1): 12232. https://doi.org/10.1038/s41598-020-69031-w.; Veas F. (Ed.) Acute phase proteins – regulation and functions of acute phase proteins. InTech; 2011: 380 pp. https://doi.org/10.5772/756.; Moirand R., Mortaji A.M., Loréal O., et al. A new syndrome of liver iron overload with normal transferrin saturation. Lancet. 1997; 349 (9045): 95–7. https://doi.org/10.1016/S0140-6736(96)06034-5.; Cohen L.A., Gutierrez L., Weiss A., et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010; 116 (9): 1574–84. https://doi.org/10.1182/blood-2009-11-253815.; Orino K., Lehman L., Tsuji Y., et al. Ferritin and the response to oxidative stress. Biochem J. 2001; 357 (Pt. 1): 241–7. https://doi.org/10.1042/0264-6021:3570241.; Wood J. Guidelines for quantifying iron overload. Hematology Am Soc Hematol Educ Program. 2014; 2014 (1): 210–5. https://doi.org/10.1182/asheducation-2014.1.210.; Торшин И.Ю., Громова О.А. Мировой опыт использования гидролизатов плаценты человека в терапии. Экспериментальная и клиническая гастроэнтерология. 2019; 1 (10): 79–89. https://doi.org/10.31146/1682-8658-ecg-170-10-79-89.; Faber H.R., Bland T., Day C.L., et al. Altered domain closure and iron binding in transferrins: the crystal structure of the Asp60Ser mutant of the amino-terminal half-molecule of human lactoferrin. J Mol Biol. 1996; 256 (2): 352–63. https://doi.org/10.1006/jmbi.1996.0091.; Громова О.А., Торшин И.Ю., Волков А.Ю. и др. Препарат «Лаеннек»: элементный состав и фармакологическое действие. Пластическая хирургия и косметология. 2011; 2: 327–33.; Chen L.Y., Chang S.D., Sreenivasan G.M. Dysmetabolic hyperferritinemia is assiciated with normal transferrin saturation, mild hepatic iron overload, and elevated hepsidin. Ann Hematol. 2011; 90 (2): 139– 43. https://doi.org/10.1007/s00277-010-1050-x.; Zhao Q., Garreau I., Sannier F., Piot J.M. Opioid peptides derived from hemoglobin: hemorphins. Biopolymers. 1997; 43 (2): 75–98. https://doi.org/10.1002/(SICI)1097-0282(1997)43:23.0.CO;2-X.; Громова О.А., Торшин И.Ю., Гришина Т.Р., Томилова И.К. Значение использования препаратов железа и его молекулярных синергистов для профилактики и лечения железодефицитной анемии у беременных. Российский вестник акушера-гинеколога. 2015; 15 (4): 85–94. https://doi.org/10.17116/rosakush201515485-94.; Colucci S., Pagani A., Pettinato M., et al. The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Blood. 2017; 130 (19): 2111–20. https://doi.org/10.1182/blood-2017-04-780692.; Jiang S., Wang C.X., Lan L., Zhao D. Vitamin A deficiency aggravates iron deficiency by upregulating the expression of iron regulatory protein-2. Nutrition. 2012; 28 (3): 281–7. https://doi.org/10.1016Zj.nut.2011.08.015.; Лазебник Л.Б., Радченко В.Г., Селиверстов П.В. и др. Современное представление о фиброзе печени и подходах к его лечению у больных неалкогольным стеатогепатитом. Экспериментальная и клиническая гастроэнтерология. 2017; 12: 98–109.; Chen Z., Xu W., Ma W., et al.Clinical laboratory evaluation of COVID-19. Clin Chim Acta. 2021; 519: 172–82. https://doi.org/10.1016/j.cca.2021.04.022.; Dufrusine B., Di Francesco A., Oddi S., et al. Iron-dependent trafficking of 5-lipoxygenase and impact on human macrophage activation. Front Immunol. 2019; 10: 1347. https://doi.org/10.3389/fimmu.2019.0134.; Davis R.J., Faucher M., Racaniello L.K., et al. Insulin-like growth factor I and epidermal growth factor regulate the expression of transferrin receptors at the cell surface by distinct mechanisms. J Biol Chem. 1987; 262 (27): 13126–34. https://doi.org/10.1016/S00219258(18)45177-0.; Vera M., Sobrevals L., Zaratiegui M., et al. Liver transduction with a simian virus 40 vector encoding insulin-like growth factor I reduces hepatic damage and the development of liver cirrhosis. Gene Ther. 2007; 14 (3): 203–10. https://doi.org/10.1038/sj.gt.3302858.; Villareal D.T., Holloszy J.O., Kohrt W.M. Effects of DHEA replacement on bone mineral density and body composition in elderly women and men. Clin Endocrinol (Oxf). 2000; 53 (5): 561–8. https://doi.org/10.1046/j.1365-2265.2000.01131.x.; https://www.pharmacoeconomics.ru/jour/article/view/895
-
17Academic Journal
Authors: E. M. Yunusova, T. R. Mukhamadeev, B. A. Bakirov, G. M. Idrisova, Э. М. Юнусова, Т. Р. Мухамадеев, Б. А. Бакиров, Г. М. Идрисова
Source: Ophthalmology in Russia; Том 20, № 4 (2023); 737-742 ; Офтальмология; Том 20, № 4 (2023); 737-742 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2023-4
Subject Terms: системное воспаление, vascular density, foveolar avascular zone, blood rheology, systemic inflammation, плотность сосудов, фовеолярная аваскулярная зона, реология крови
File Description: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/2245/1171; Керимов А.А. Хронические миелопролиферативные заболевания: современное состояние вопроса. Биомедицина. 2014;3:3–8.; Мошетова Л.К., Егорян Л.Б., Виноградова О.Ю., Туркина К.И., Шихбабаева Д.И. Современные представления об офтальмологических проявлениях хронических миелопролиферативных новообразований. Вестник Российской академии медицинских наук. 2023;78(3):208–212. doi:10.15690/vramn2277.; Чухланцева Е.А. Геморрагический синдром и состояние системы гемостаза при остром лейкозе. Материалы X Междунар. студ. науч. конф. «Студенческий научный форум» URL: https://scienceforum.ru/2018/article/2018003096 (дата обращения: 16.08.2023).; Румянцева, Ю.В., Карачунский А.И. Оптимизация терапии острого лимфобластного лейкоза у детей в России и Белоруссии: стратегия Москва — Берлин. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2007;6(4):13.; Dhasmana R, Prakash A, Gupta N, Verma SK. Ocular manifestations in leukemia and myeloproliferative disorders and their association with hematological parameters. Ann Afr Med. 2016;15(3):97–103. doi:10.4103/1596-3519.188887.; Soman S, Kasturi N, Srinivasan R, Vinod KV. Ocular manifestations in leukemias and their correlation with hematologic parameters at a tertiary care setting in South India. Ophthalmol. Retina. 2018;2(1):17–23. doi:10.1016/j.oret.2017.05.009.; Mohamed SF, Qatami A, Nashwan A, Abdulla MA, Yassin MA. Ophthalmologic Manifestations as Initial Presentation of Patients with Chronic Myeloid Leukemia: Report of Two Cases. Case Rep Oncol. 2020;13(1):7–11. doi:10.1159/000504928.; Руднева Л.Ф., Василькова Т.Н., Петров И.М., Пономарева М.Н. Гемобластозы. Особенности поражения глаз. Тюмень: Коновалов И.С., 2020. 90 с.; Ghanbarnia M, Sedaghat S, Rasoulinejad SA. Leukemic retinopathy presenting as concurrent bilateral subhyaloid hemorrhage and subarachnoid hemorrhage in a patient with acute monocytic leukemia: a case report. J Med Case Rep. 2022;16(1):466. doi:10.1186/s13256-022-03700-4.; Shah SB, Reichstein DA, Lally SE, Shields CL. Persistent bloody tears as the initial manifestation of conjunctival chloroma associated with chronic myelogenous leukemia. Graefes Arch Clin Exp Ophthalmol. 2013 Mar;251(3):991–992. doi:10.1007/s00417-011-1924-1.; Гришина Е.Е., Мамонтов А.О. Офтальмологические проявления лейкоза. Альманах клинической медицины. 2016;44(5):587–591. doi:10.18786/20720505-2016-44-5-587-591.; Чистякова Н.В. Офтальмологические проявления лейкозов. Офтальмологические ведомости. 2016;9(2):81–99. doi:10.17816/OV9281-99.; Abe S, Shiono T. Retinochoroidal circulatory disturbances and blood component abnormalities. Nippon Ganka Gakkai Zasshi. 1995 Mar.;99(3):255–261.; Азнабаев Б.М., Мухамадеев Т.Р., Дибаев Т.И. Оптическая когерентная томография + ангиография в диагностике, терапии и хирургии глазных болезней. М.: Август Борг, 2019. 352 с.; Bhanushali D, Anegondi N, Gadde SG, Srinivasan P. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):519–525. doi:10.1167/iovs.15-18901.; Chen L, Yuan M, Sun L, Wang Y, Chen Y. Evaluation of microvascular network with optical coherence tomography angiography (OCTA) in branch retinal vein occlusion (BRVO). BMC Ophthalmol. 2020 Apr 19;20(1):154. doi:10.1186/s12886-02001405-0.; Kal M, Platkowska-Adamska B, Zarębska-Michaluk D, Rzymski P. Reduced vessel density and enlarged foveal avascular zone in the macula as a result of systemic hypoxia caused by SARS-CoV-2 infection. J Pers Med. 2023 May 31;13(6):926. doi:10.3390/jpm13060926.; Michiels JJ, Berneman Z, Schroyens W, Koudstaal PJ, Lindemans J, Neumann HA, van Vliet HH. Platelet-mediated erythromelalgic, cerebral, ocular and coronary microvascular ischemic and thrombotic manifestations in patients with essential thrombocythemia and polycythemia vera: a distinct aspirin-responsive and coumadin-resistant arterial thrombophilia. Platelets. 2006 Dec;17(8):528–544. doi:10.1080/09537100600758677.; Азнабаева Л.Ф., Плотникова С.В., Сафуанова Г.Ш. Предикторы воспаления (sICAM-1 и провоспалительные цитокины) у больных острым лейкозом. Цитокины и воспаление. 2015;14(1):38–42.; Nobacht S, Vandoninck KF, Deutman AF, Klevering BJ. Peripheral retinal nonperfusion associated with chronic myeloid leukemia. Am J Ophthalm. 2003 Mar;135(3):404–406. doi:10.1016/s0002-9394(02)01956-6.; Yang L, Chen Y, Zhang Y, Shen T, Shen X. Changes in retinal circulation and choroidal thickness in patients with acute myeloid leukemia detected by optical coherence tomography angiography. Front Med 2023. Mar 13;10:1117204. doi:10.3389/fmed.2023.1117204.; https://www.ophthalmojournal.com/opht/article/view/2245
-
18Academic Journal
Authors: Suvorova N.A., Gordeev I.G., Luchinkina E.E.
Contributors: 1
Source: Almanac of Clinical Medicine; Vol 51, No 1 (2023); 53-58 ; Альманах клинической медицины; Vol 51, No 1 (2023); 53-58 ; 2587-9294 ; 2072-0505
Subject Terms: chronic obstructive pulmonary disease, osteopontin, systemic inflammation, predictor, coronary heart disease, хроническая обструктивная болезнь легких, остеопонтин, системное воспаление, предиктор, стабильная ишемическая болезнь сердца
File Description: application/pdf
Relation: https://almclinmed.ru/jour/article/view/1759/1547; https://almclinmed.ru/jour/article/view/1759/1557; https://almclinmed.ru/jour/article/downloadSuppFile/1759/55737; https://almclinmed.ru/jour/article/downloadSuppFile/1759/55738; https://almclinmed.ru/jour/article/downloadSuppFile/1759/55739; https://almclinmed.ru/jour/article/downloadSuppFile/1759/55740; https://almclinmed.ru/jour/article/downloadSuppFile/1759/55741; https://almclinmed.ru/jour/article/downloadSuppFile/1759/55742; https://almclinmed.ru/jour/article/view/1759
-
19Academic Journal
Authors: Осипова, О. А., Гостева, Е. В., Жернакова, Н. И., Шепель, Р. Н., Пономаренко, Т. Н., Иншакова , К. Ю.
Subject Terms: медицина, внутренние болезни, кардиология, болезни сердца, артериальная гипертензия, ишемическая болезнь сердца, обструктивное апноэ сна, системное воспаление
Availability: http://dspace.bsu.edu.ru/handle/123456789/63275
-
20Academic Journal