-
1
-
2Academic Journal
-
3Dissertation/ Thesis
Authors: Panyavin, I. A.
Contributors: Вохминцев, А. С., Vokhmintsev, A. S., УрФУ. Физико-технологический институт, Кафедра физических методов и приборов контроля качества
Subject Terms: МЕМРИСТИВНАЯ СТРУКТУРА, TITANIUM DIOXIDE, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, MASTER'S THESIS, ZIRCONIUM DIOXIDE, IMPEDANCE SPECTROSCOPY, ИМПЕДАНСНАЯ СПЕКТРОСКОПИЯ, RESISTIVE SWITCHING, РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, ЭКВИВАЛЕНТНАЯ СХЕМА, ДИОКСИД ЦИРКОНИЯ, MEMRISTIVE STRUCTURE, EQUIVALENT CIRCUIT, ДИОКСИД ТИТАНА
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/140684
-
4Dissertation/ Thesis
Authors: Fedorov, D. D.
Contributors: Вохминцев, А. С., Vokhmintsev, A. S., УрФУ. Физико-технологический институт, Кафедра физических методов и приборов контроля качества
Subject Terms: СИНАПТИЧЕСКАЯ ПЛАСТИЧНОСТЬ, CONDUCTION MECHANISM, MEMRISTORS, TITANIUM DIOXIDE, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, MASTER'S THESIS, МДМ-СТРУКТУРА, МЕХАНИЗМ ПРОВОДИМОСТИ, RESISTIVE SWITCHING, РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, SYNAPTIC PLASTICITY, АНОДИРОВАНИЕ, ANODIZING, МЕМРИСТОРЫ, MIM-STRUCTURE, ДИОКСИД ТИТАНА
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/140685
-
5Academic Journal
Authors: A. M. Kislyuk, I. V. Kubasov, A. V. Turutin, A. A. Temirov, A. S. Shportenko, V. V. Kuts, M. D. Malinkovich, А. М. Кислюк, И. В. Кубасов, А. В. Турутин, А. А. Темиров, А. С. Шпортенко, В. В. Куц, М. Д. Малинкович
Contributors: The study was carried out with financial support from the Russian Science Foundation (grant No. https://rscf.ru/project/21-19-00872/)., Исследование выполнено за счет гранта Российского научного фонда № 21-19-00872, https://rscf.ru/project/21-19-00872/
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 1 (2024); 35-55 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 1 (2024); 35-55 ; 2413-6387 ; 1609-3577
Subject Terms: сегнетоэлектрические домены, charged domain wall, memristive effect, resistive switching, ferroelectric domains, заряженная доменная стенка, мемристивный эффект, резистивное переключение
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/565/477; Vul B.M., Guro G.M., Ivanchik I.I. Encountering domains in ferroelectrics. Ferroelectrics. 1973; 6(1): 29—31. https://doi.org/10.1080/00150197308237691; Meier D., Selbach S.M. Ferroelectric domain walls for nanotechnology. Nature Reviews Materials. 2021; 7(3): 157—173. https://doi.org/10.1038/s41578-021-00375-z; Aristov V.V., Kokhanchik L.S., Voronovskii Y.I. Voltage contrast of ferroelectric domains of lithium niobate in SEM. Physica Status Solidi (a). 1984; 86(1): 133—141. https://doi.org/10.1002/pssa.2210860113; Werner C.S., Herr S.J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate. Scientific Reports. 2017; 7(1): 9862. https://doi.org/10.1038/s41598-017-09703-2; Vasudevan R.K., Wu W., Guest J.R., Baddorf A.P., Morozovska A.N., Eliseev E.A., Balke N., Nagarajan V., Maksymovych P., Kalinin S.V. Domain wall conduction and polarization-mediated transport in ferroelectrics. Advanced Functional Materials. 2013; 23(20): 2592—2616. https://doi.org/10.1002/adfm.201300085; Gureev M.Y., Tagantsev A.K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B. Condensed matter. 2011; 83(18): 184104. https://doi.org/10.1103/PhysRevB.83.184104; Kubasov I.V., Kislyuk A.M., Ilina T.S., Shportenko A.S., Kiselev D.A., Turutin A.V., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Conductivity and memristive behavior of completely charged domain walls in reduced bidomain lithium niobate. Journal of Materials Chemistry C. 2021; 9(43): 15591—15607. https://doi.org/10.1039/d1tc04170c; Sluka T., Tagantsev A.K., Bednyakov P., Setter N. Free-electron gas at charged domain walls in insulating BaTiO3. Nature Communications. 2013; 4(1): 1808. https://doi.org/10.1038/ncomms2839; Liu S., Cohen R.E. Stable charged antiparallel domain walls in hyperferroelectrics. Journal of Physics: Condensed Matter. 2017; 29(24): 244003. https://doi.org/10.1088/1361-648X/aa6f95; Seidel J., Martin L.W., He Q., Zhan Q., Chu Y.-H., Rother A., Hawkridge M.E., Maksymovych P., Yu P., Gajek M., Balke N., Kalinin S.V., Gemming S., Wang F., Catalan G., Scott J.F., Spaldin N.A., Orenstein J., Ramesh R. Conduction at domain walls in oxide multiferroics. Nature Materials. 2009; 8(30): 229—234. https://doi.org/10.1038/nmat2373; Evans D.M., Garcia V., Meier D., Bibes M. Domains and domain walls in multiferroics. Physical Sciences Reviews. 2020; 5(9). https://doi.org/10.1515/psr-2019-0067; Eliseev E.A., Morozovska A.N., Svechnikov G.S., Gopalan V., Shur V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Physical Review B. Condensed Matter and Materials Physics. 2011; 83(23): 235313. https://doi.org/10.1103/PhysRevB.83.235313; Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571—616. https://doi.org/10.1134/S1063739721080035; Garrity K.F., Rabe K.M., Vanderbilt D. Hyperferroelectrics: Proper ferroelectrics with persistent polarization. Physical Review Letters. 2014; 112(12): 127601. https://doi.org/10.1103/PhysRevLett.112.127601; Cherifi-Hertel S., Voulot C., Acevedo-Salas U., Zhang Y., Crégut O., Dorkenoo K.D., Hertel R. Shedding light on non-Ising polar domain walls: Insight from second harmonic generation microscopy and polarimetry analysis. Journal of Applied Physics. 2021; 129(8): 81101. https://doi.org/10.1063/5.0037286; Lee D., Behera R.K., Wu P., Xu H., Li Y.L., Sinnott S.B., Phillpot S.R., Chen L.Q., Gopalan V. Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls. Physical Review B. 2009; 80(6): 060102. https://doi.org/10.1103/PhysRevB.80.060102; Gonnissen J., Batuk D., Nataf G.F., Jones L., Abakumov A.M., Van Aert S., Schryvers D., Salje E.K.H. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Advanced Functional Materials. 2016; 26(42): 7599—7604. https://doi.org/10.1002/adfm.201603489; Zhang Y., Qian Y., Jiao Y., Wang X., Gao F., Bo F., Xu J., Zhang G. Conductive domain walls in x-cut lithium niobate crystals. Journal of Applied Physics. 2022; 132(4): 0144102. https://doi.org/10.1063/5.0101067; Poberaj G., Hu H., Sohler W., Günter P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser & Photonics Reviews. 2012; 6(4): 488—503. https://doi.org/10.1002/lpor.201100035; Volk T.R., Gainutdinov R.V., Zhang H.H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Applied Physics Letters. 2017; 110(13): 132905. https://doi.org/10.1063/1.4978857; Lu H., Tan Y., McConville J.P.V., Ahmadi Z., Wang B., Conroy M., Moore K., Bangert U., Shield J.E., Chen L.-Q., Gregg J.M., Gruverman A. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Advanced Materials. 2019; 31(48): e1902890. https://doi.org/10.1002/adma.201902890; Kämpfe T., Wang B., Haußmann A., Chen L.-Q., Eng L.M. Tunable non-volatile memory by conductive ferroelectric domain walls in lithium niobate thin films. Crystals. 2020; 10(9): 804. https://doi.org/10.3390/cryst10090804; Gainutdinov R., Volk T. Effects of the domain wall conductivity on the domain formation under AFM-tip voltages in ion-sliced LiNbO3 films. Crystals. 2020; 10(12): 1160. https://doi.org/110.3390/cryst10121160; Boes A., Corcoran B., Chang L., Bowers J., Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser and Photonics Reviews. 2018; 12(4): 1700256. https://doi.org/10.1002/lpor.201700256; Alikin D.O., Ievlev A.V., Turygin A.P., Lobov A.I., Kalinin S.V., Shur V.Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters. 2015; 106(18): 182902. https://doi.org/10.1063/1.4919872; Shur V.Y., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters. 2000; 77(22): 3636—3638. https://doi.org/10.1063/1.1329327; Gopalan V., Dierolf V., Scrymgeour D.A. Defect-domain wall interactions in trigonal ferroelectrics. Annual Review of Materials Research. 2007; 37(1): 449—489. https://doi.org/10.1146/annurev.matsci.37.052506.084247; Shao G., Bai Y., Cui G., Li C., Qiu X., Geng D., Wu D., Lu Y. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Advances. 2016; 6(7): 075011. https://doi.org/10.1063/1.4959197; Bednyakov P.S., Sturman B.I., Sluka T., Tagantsev A.K., Yudin P.V. Physics and applications of charged domain walls. npj Computational Materials. 2018; 4(1): 65. https://doi.org/10.1038/s41524-018-0121-8; Müller M., Soergel E., Buse K. Influence of ultraviolet illumination on the poling characteristics of lithium niobate crystals. Applied Physics Letters. 2003; 83(9): 1824—1826. https://doi.org/10.1063/1.1606504; Shur V.Y., Akhmatkhanov A.R., Baturin I.S. Fatigue effect in ferroelectric crystals: Growth of the frozen domains. Journal of Applied Physics. 2012; 111(12): 124111. https://doi.org/10.1063/1.4729834; Esin A.A., Akhmatkhanov A.R., Shur V.Y. Tilt control of the charged domain walls in lithium niobate. Applied Physics Letters. 2019; 114(9): 092901. https://doi.org/10.1063/1.5079478; Ievlev A.V., Alikin D.O., Morozovska A.N., Varenyk O.V., Eliseev E.A., Kholkin A.L., Shur V.Y., Kalinin S.V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano. 2015; 9(1): 769—777. https://doi.org/10.1021/nn506268g; Turygin A.P., Alikin D.O., Kosobokov M.S., Ievlev A.V., Shur V.Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM Tip. ACS Applied Materials & Interfaces. 2018; 10(42): 36211—36217. https://doi.org/10.1021/acsami.8b10220; Ievlev A.V., Morozovska A.N., Shur V.Y., Kalinin S.V. Ferroelectric switching by the grounded scanning probe microscopy Tip. Physical Review B. Condensed Matter and Materials Physics. 2015; 91(21): 214109. https://doi.org/10.1103/PhysRevB.91.214109; Reitzig S., Rüsing M., Zhao J., Kirbus B., Mookherjea S., Eng L.M. “Seeing Is Believing” – In-depth analysis by co-imaging of periodically-poled x-cut lithium niobate thin films. Crystals. 2021; 11(3): 288. https://doi.org/10.3390/cryst11030288; Kubasov I.V., Kislyuk A.M., Turutin A.V., Bykov A.S., Kiselev D.A., Temirov A.A., Zhukov R.N., Sobolev N.A., Malinkovich M.D., Parkhomenko Y.N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors (Basel). 2019; 19(3): 614. https://doi.org/10.3390/s19030614; Alikin D.O., Shishkina E.I., Nikolaeva E.V., Shur V.Y., Sarmanova M.F., Ievlev A.V., Nebogatikov M.S., Gavrilov N.V. Formation of self-assembled domain structures in lithium niobate modified by ar ions implantation. Ferroelectrics. 2010; 399(1): 35—42. https://doi.org/10.1080/00150193.2010.489855; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 1977; 16(6): 1069—1070. https://doi.org/10.1143/JJAP.16.1069; Евланова Н.Ф., Рашкович Л.Н. Влияние отжига на доменную структуру монокристаллов метаниобата лития. Физика твердого тела. 1974; 16(2): 555—557.; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. IEEE 1986 Ultrasonics Symposium. Williamsburg, VA, USA. 17—19 November 1986. IEEE; 1986. P. 719—722. https://doi.org/10.1109/ULTSYM.1986.198828; Kubasov I.V., Timshina M.S., Kiselev D.A., Malinkovich M.D., Bykov A.S., Parkhomenko Y.N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports. 2015; 60(5): 700—705. https://doi.org/10.1134/S1063774515040136; Kubasov I.V., Kislyuk A.M., Bykov A.S., Malinkovich M.D., Zhukov R.N., Kiselev D.A., Ksenich S.V., Temirov A.A., Timushkin N.G., Parkhomenko Y.N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports. 2016; 61(2): 258—262. https://doi.org/10.1134/S1063774516020115; Kugel V.D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals. Applied Physics Letters. 1993; 62(23): 2902—2904. https://doi.org/10.1063/1.109191; Rosenman G., Kugel V.D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics. 1995; 172(1): 7—18. https://doi.org/10.1080/00150199508018452; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Applied Physics Letters. 1987; 50(20): 1413—1414. https://doi.org/10.1063/1.97838; Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. Journal of Applied Physics. 1979; 50(7): 4599—4603. https://doi.org/10.1063/1.326568; Chen J., Zhou Q., Hong J.F., Wang W.S., Ming N.B., Feng D., Fang C.G. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3. Journal of Applied Physics. 1989; 66(1): 336—341. https://doi.org/10.1063/1.343879; Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3. Applied Physics Letters. 1990; 56(16): 1535—1536. https://doi.org/10.1063/1.103213; Zhu Y.-Y., Zhu S.-N., Hong J.-F., Ming N. Ben domain inversion in LiNbO3 by proton exchange and quick heat treatment. Applied Physics Letters. 1994; 65(5): 558—560. https://doi.org/10.1063/1.112295; Zhang Z.-Y.Y., Zhu Y.-Y.Y., Zhu S.-N.N., Ming N.-B. Ben domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3. Physica Status Solidi (A). Applied Research. 1996; 153(1): 275—279. https://doi.org/10.1002/pssa.2211530128; Åhlfeldt H., Webjörn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides. IEEE Photonics Technology Letters. 1991; 3(7): 638—639. https://doi.org/10.1109/68.87938; Tasson M., Legal H., Peuzin J.C., Lissalde F.C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie. Physica Status Solidi (a). 1975; 31(2): 729—737. https://doi.org/10.1002/pssa.2210310246; Tasson M., Legal H., Gay J.C., Peuzin J.C., Lissalde F.C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point. Ferroelectrics. 1976; 13(1): 479—481. https://doi.org/10.1080/00150197608236646; Luh Y.S., Feigelson R.S., Fejer M.M., Byer R.L. Ferroelectric domain structures in LiNbO3 single-crystal fibers. Journal of Crystal Growth. 1986; 78(1): 135—143. https://doi.org/10.1016/0022-0248(86)90510-5; Bykov A.S., Grigoryan S.G., Zhukov R.N., Kiselev D.A., Ksenich S.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics. 2014; 43(8): 536—542. https://doi.org/10.1134/S1063739714080034; Blagov A.E., Bykov A.S., Kubasov I.V., Malinkovich M.D., Pisarevskii Y.V., Targonskii A.V., Eliovich I.A., Kovalchuk M.V. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal. Instruments and Experimental Techniques. 2016; 59(5): 728—732. https://doi.org/10.1134/S0020441216050043; Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode. Sensors and Actuators A: Physical. 2019; 293: 48—55. https://doi.org/10.1016/j.sna.2019.04.028; Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast x-ray experiments: Static and quasistatic modes. Sensors and Actuators A: Physical. 2019; 291: 68—74. https://doi.org/10.1016/j.sna.2019.03.041; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics. 1989; 93(1): 211—216. https://doi.org/10.1080/00150198908017348; Nakamura K. Antipolarity domains formed by heat treatment of ferroelectric crystals and their applications. Japanese Journal of Applied Physics. 1992; 31(S1): 9—13. https://doi.org/10.7567/JJAPS.31S1.9; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Japanese Journal of Applied Physics. 1993; 32(5S): 2415—2417. https://doi.org/10.1143/JJAP.32.2415; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Japanese Journal of Applied Physics. 1987; 26(S2): 198—200. https://doi.org/10.7567/JJAPS.26S2.198; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486: 165209. https://doi.org/10.1016/j.jmmm.2019.04.061; Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Temirov A.A., Ksenich S.V., Kiselev D.A., Bykov A.S., Parkhomenko Y.N. Vibrational power harvester based on lithium niobate bidomain plate. Acta Physica Polonica A. 2018; 134(1): 90—92. https://doi.org/10.12693/APhysPolA.134.90; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Sobolev N.A., Kholkin A.L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019; 66(9): 1480—1487. https://doi.org/10.1109/TUFFC.2019.2908396; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219—1229. https://doi.org/10.1109/TUFFC.2020.2967842; Webjorn J., Laurell F., Arvidsson G., Webjörn J., Laurell F., Arvidsson G., Webjorn J., Laurell F., Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation. Journal of Lightwave Technology. 1989; 7(10): 1597—1600. https://doi.org/10.1109/50.39103; Kugel V.D., Rosenman G. Ferroelectric domain switching in heat-treated LiNbO3 crystals. Ferroelectrics Letters Section. 1993; 15(3-4): 55—60. https://doi.org/10.1080/07315179308204239; Soergel E. Piezoresponse force microscopy (PFM). Journal of Physics D: Applied Physics. 2011; 44(46): 464003. https://doi.org/10.1088/0022-3727/44/46/464003; Kalinin S.V., Bonnell D.A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Physical Review B. Condensed Matter and Materials Physics. 2002; 65(12): 1—11. https://doi.org/10.1103/PhysRevB.65.125408; Yin Q.R., Zeng H.R., Yu H.F., Li G.R., Xu Z.K. Near-field acoustic microscopy of ferroelectrics and related materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2003; 99(1–3): 2—5. https://doi.org/10.1016/S0921-5107(02)00438-5; Yin Q.R., Zeng H.R., Yu H.F., Li G.R., Lang S., Chan H.L.W. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material. Journal of Materials Science. 2006; 41(1): 259—270. https://doi.org/10.1007/s10853-005-7244-2; Berth G., Hahn W., Wiedemeier V., Zrenner A., Sanna S., Schmidt W.G. Imaging of the ferroelectric domain structures by confocal raman spectroscopy. Ferroelectrics. 2011; 420(1): 44—48. https://doi.org/10.1080/00150193.2011.594774; Rüsing M., Neufeld S., Brockmeier J., Eigner C., Mackwitz P., Spychala K., Silberhorn C., Schmidt W.G., Berth G., Zrenner A., Sanna S. Imaging of 180 ferroelectric domain walls in uniaxial ferroelectrics by confocal Raman spectroscopy: Unraveling the contrast mechanism. Physical Review Materials. 2018; 2(10): 103801. https://doi.org/110.1103/PhysRevMaterials.2.103801; Dierolf V., Sandmann C., Kim S., Gopalan V., Polgar K. Ferroelectric domain imaging by defect-luminescence microscopy. Journal of Applied Physics. 2003; 93(4): 2295—2297. https://doi.org/10.1063/1.1538333; Otto T., Grafström S., Chaib H., Eng L.M. Probing the nanoscale electro-optical properties in ferroelectrics. Applied Physics Letters. 2004; 84(7): 1168—1170. https://doi.org/10.1063/1.1647705; Pei S.-C., Ho T.-S., Tsai C.-C., Chen T.-H., Ho Y., Huang P.-L., Kung A. H., Huang S.-L. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics. Optics Express. 2011; 19(8): 7153. https://doi.org/10.1364/oe.19.007153; Bozhevolnyi S.I., Pedersen K., Skettrup T., Zhang X., Belmonte M. Far- and near-field second-harmonic imaging of ferroelectric domain walls. Optics Communications. 1998; 152(4-6): 221—224. https://doi.org/10.1016/S0030-4018(98)00176-X; Neacsu C.C., Van Aken B.B., Fiebig M., Raschke M.B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3. Physical Review B. Condensed Matter and Materials Physics. 2009; 79(10): 100107. https://doi.org/10.1103/PhysRevB.79.100107; Sheng Y., Best A., Butt H.-J., Krolikowski W., Arie A., Koynov K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Optics Express. 2010; 18(16): 16539. https://doi.org/10.1364/oe.18.016539; Kämpfe T., Reichenbach P., Schröder M., Haußmann A., Eng L. M., Woike T., Soergel E. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Physical Review B. Condensed Matter and Materials Physics. 2014; 89(3): 035314. https://doi.org/10.1103/PhysRevB.89.035314; Cherifi-Hertel S., Bulou H., Hertel R., Taupier G., Dorkenoo K.D.H., Andreas C., Guyonnet J., Gaponenko I., Gallo K., Paruch P. Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nature Communications. 2017; 8(1): 15768. https://doi.org/10.1038/ncomms15768; Irzhak D.V., Kokhanchik L.S., Punegov D.V., Roshchupkin D.V. Study of the specific features of lithium niobate crystals near the domain walls. Physics of the Solid State. 2009; 51(7): 1500—1502. https://doi.org/10.1134/s1063783409070452; Tikhonov Y., Maguire J.R., McCluskey C.J., McConville J.P.V., Kumar A., Lu H., Meier D., Razumnaya A., Gregg J.M., Gruverman A., Vinokur V.M., Luk’yanchuk I. Polarization topology at the nominally charged domain walls in uniaxial ferroelectrics. Advanced Materials. 2022; 34(45): 2203028. https://doi.org/10.1002/adma.202203028; Steffes J.J., Ristau R.A., Ramesh R., Huey B.D. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proceedings of the National Academy of Sciences. 2019; 116(7): 2413—2418. https://doi.org/10.1073/pnas.1806074116; Alikin Y.M., Turygin A.P., Alikin D.O., Shur V.Y. Tilt control of the charged domain walls created by local switching on the non-polar cut of MgO doped lithium niobate single crystals. Ferroelectrics. 2021; 574(1): 16—22. https://doi.org/10.1080/00150193.2021.1888044; Eyben P., Bisiaux P., Schulze A., Nazir A., Vandervorst W. Fast fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques. Nanotechnology. 2015; 26(35): 355702. https://doi.org/10.1088/0957-4484/26/35/355702; Shportenko A.S., Kislyuk A.M., Turutin A.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Effect of contact phenomena on the electrical conductivity of reduced lithium niobate. Modern Electronic Materials. 2021; 7(4): 167—175. https://doi.org/10.3897/j.moem.7.4.78569; Zhang W.J., Shen B.W., Fan H.C., Hu D., Jiang A.Q., Jiang J. Nonvolatile ferroelectric LiNbO3 domain wall crossbar memory. IEEE Electron Device Letters. 2023; 44(3): 420—423. https://doi.org/10.1109/LED.2023.3240762; McConville J.P.V., Lu H., Wang B., Tan Y., Cochard C., Conroy M., Moore K., Harvey A., Bangert U., Chen L., Gruverman A., Gregg J.M. Ferroelectric domain wall memristor. Advanced Functional Materials. 2020; 30(28): 2000109. https://doi.org/10.1002/adfm.202000109; Zahn M., Beyreuther E., Kiseleva I., Lotfy A.S., McCluskey C.J., Maguire J.R., Suna A., Rüsing M., Gregg J.M., Eng L.M. R2D2 – An equivalent-circuit model that quantitatively describes domain wall conductivity in ferroelectric LiNbO3. Condensed Matter. 2023. https://doi.org/10.48550/arXiv.2307.10322; Schröder M., Haußmann A., Thiessen A., Soergel E., Woike T., Eng L.M. Conducting domain walls in lithium niobate single crystals. Advanced Functional Materials. 2012; 22(18): 3936—3944. https://doi.org/110.1002/adfm.201201174; Godau C., Kämpfe T., Thiessen A., Eng L.M., Haußmann A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano. 2017; 11(5): 4816—4824. https://doi.org/10.1021/acsnano.7b01199; Chai X., Lian J., Wang C., Hu X., Sun J., Jiang J., Jiang A. Conductions through head-to-head and tail-to-tail domain walls in LiNbO3 nanodevices. Journal of Alloys and Compounds. 2021; 873: 159837. https://doi.org/10.1016/j.jallcom.2021.159837; Wang C., Wang T., Zhang W., Jiang J., Chen L., Jiang A. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Research. 2022; 15(4): 3606—3613. https://doi.org/10.1007/s12274-021-3899-5; Chaudhary P., Lu H., Lipatov A., Ahmadi Z., McConville J.P.V., Sokolov A., Shield J.E., Sinitskii A., Gregg J.M., Gruverman A. Low-voltage domain-wall LiNbO3 memristors. Nano Letters. 2020; 20(8): 5873—5878. https://doi.org/10.1021/acs.nanolett.0c01836; Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Shportenko A.S., Malinkovich M.D., Parkhomenko Y.N. Degradation of the electrical conductivity of charged domain walls in reduced lithium niobate crystals. Modern Electronic Materials. 2022; 8(1): 15—22. https://doi.org/10.3897/j.moem.8.1.85251; Shur V.Ya., Baturin I.S., Akhmatkhanov A.R., Chezganov D.S., Esin A.A. Time-dependent conduction current in lithium niobate crystals with charged domain walls. Applied Physics Letters. 2013; 103(10): 102905. https://doi.org/10.1063/1.4820351; Schröder M., Chen X., Haußmann A., Thiessen A., Poppe J., Bonnell D.A., Eng L.M. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Materials Research Express. 2014; 1(3): 035012. https://doi.org/10.1088/2053-1591/1/3/035012; Gerson R., Kirchhoff J.F., Halliburton L.E., Bryan D.A. Photoconductivity parameters in lithium niobate. Journal of Applied Physics. 1986; 60(10): 3553—3557. https://doi.org/10.1063/1.337611; Singh E., Beccard H., Amber Z.H., Ratzenberger J., Hicks C.W., Rüsing M., Eng L.M. Tuning domain wall conductivity in bulk lithium niobate by uniaxial stress. Physical Review B. 2022; 106(14): 144103. https://doi.org/10.1103/PhysRevB.106.144103; Qian Y., Zhang Y., Xu J., Zhang G. Domain-wall p-n junction in lithium niobate thin film on an insulator. Physical Review Applied. 2022; 17(4): 044011. https://doi.org/10.1103/PhysRevApplied.17.044011; McCluskey C.J., Colbear M.G., McConville J.P.V., McCartan S.J., Maguire J.R., Conroy M., Moore K., Harvey A., Trier F., Bangert U., Gruverman A., Bibes M., Kumar A., McQuaid R.G.P., Gregg J.M. Ultrahigh carrier mobilities in ferroelectric domain wall corbino cones at room temperature. Advanced Materials. 2022; 34(32): e2204298. https://doi.org/10.1002/adma.202204298; Beccard H., Beyreuther E., Kirbus B., Seddon S.D., Rüsing M., Eng L.M. Hall mobilities and sheet carrier densities in a single LiNbO3 onductive ferroelectric domain wall. https://doi.org/10.48550/arXiv.2308.00061; Pawlik A.-S., Kämpfe T., Haußmann A., Woike T., Treske U., Knupfer M., Büchner B., Soergel E., Streubel R., Koitzsch A., Eng L.M. Polarization driven conductance variations at charged ferroelectric domain walls. Nanoscale. 2017; 9(30): 10933—10939. https://doi.org/10.1039/c7nr00217c; Ohmori Y., Yamaguchi M., Yoshino K., Inuishi Y. Electron hall mobility in reduced LiNbO3. Japanese Journal of Applied Physics. 1976; 15(11): 2263—2264. https://doi.org/10.1143/JJAP.15.2263; Palatnikov M., Makarova O., Kadetova A., Sidorov N., Teplyakova N., Biryukova I., Tokko O. Structure, optical properties and physicochemical features of LiNbO3:Mg,B crystals grown in a single technological cycle: an optical material for converting laser radiation. Materials. 2023; 16(13): 4541. https://doi.org/10.3390/ma16134541; Volk T., Wöhlecke M., Reichert A., Jermann F., Rubinina N. The peculiar impurity concentration ranges in damage-resistant LiNbO3 crystals doped with Mg, Zn, In and Sn. Ferroelectrics Letters Section. 1995; 20(3-4): 97—103. https://doi.org/10.1080/07315179508204289; Hu M.-L., Hu L.-J., Chang J.-Y. Polarization switching of pure and MgO-doped lithium niobate crystals. Japanese Journal of Applied Physics. 2003; 42(12, Pt 1): 7414—7417. https://doi.org/10.1143/JJAP.42.7414; Yatsenko A.V., Evdokimov S.V., Palatnikov M.N., Sidorov N.V. Analysis of the conductivity and current-voltage characteristics nonlinearity in LiNbO3 crystals of various compositions at temperatures 300—450 K. Solid State Ionics. 2021; 365(2): 115651. https://doi.org/10.1016/j.ssi.2021.115651; Yatsenko A.V., Evdokimov S.V., Shul’gin V.F., Palatnikov M.N., Sidorov N.V., Makarova O.V. Effect of magnesium impurity concentration on electrical properties of LiNbO3 crystals. Physics of the Solid State. 2021; 63(12): 1851—1856. https://doi.org/10.1134/S1063783421100401; Li Y., Zheng Y., Tu X., Xiong K., Lin Q., Shi E. The high temperature resistivityof lithium niobate and related crystals. In: Proceed. of the 2014 Symposium on piezoelectricity, acoustic waves, and device applications (SPAWDA). Beijing, China. 30 October 2014 — 02 November 2014. IEEE; 2014. P. 283—286. https://doi.org/10.1109/SPAWDA.2014.6998581; Polgár K., Kovács L., Földvári I., Cravero I. Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals. Solid State Communications. 1986; 59(6): 375—379. https://doi.org/10.1016/0038-1098(86)90566-1; Schirmer O.F., Imlau M., Merschjann C., Schoke B. Electron small polarons and bipolarons in LiNbO3. Journal of Physics: Condensed Matter. 2009; 21(12): 123201. https://doi.org/10.1088/0953-8984/21/12/123201; Guilbert L., Vittadello L., Bazzan M., Mhaouech I., Messerschmidt S., Imlau M. The elusive role of Nb Li bound polaron energy in hopping charge transport in Fe: LiNbO3. Journal of Physics: Condensed Matter. 2018; 30(12): 125701. https://doi.org/10.1088/1361-648X/aaad34; Faust B., Muller H., Schirmer O.F. Free small polarons in LiNbO3. Ferroelectrics. 1994; 153(1): 297—302. https://doi.org/10.1080/00150199408016583; García-Cabaes A., Sanz-García J.A., Cabrera J.M., Agulló-López F., Zaldo C., Pareja R., Polgár K., Raksányi K., Fölvàri I. Influence of stoichiometry on defect-related phenomena in LiNbO3. Physical Review B. 1988; 37(11): 6085—6091. https://doi.org/10.1103/PhysRevB.37.6085; Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Malinkovich M.D., Polisan A.A., Parkhomenko Y.N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy. Modern Electronic Materials. 2019; 5(2): 51—60. https://doi.org/10.3897/j.moem.5.2.51314; Jiang J., Chai X., Wang C., Jiang A. High temperature ferroelectric domain wall memory. Journal of Alloys and Compounds. 2021; 856: 158155. https://doi.org/10.1016/j.jallcom.2020.158155; Niu L., Qiao X., Lu H., Fu W., Liu Y., Bi K., Mei L., You Y., Chou X., Geng W. Diode-like behavior based on conductive domain wall in LiNbO ferroelectric single-crystal thin film. IEEE Electron Device Letters. 2023; 44(1): 52—55. https://doi.org/10.1109/LED.2022.3224915; Suna A., McCluskey C.J., Maguire J. R., Kumar A., McQuaid R.G.P., Gregg J.M. Ferroelectric domain wall logic gates. https://doi.org/10.48550/arXiv.2209.08133; Wang J., Ma J., Huang H., Ma J., Jafri H.M., Fan Y., Yang H., Wang Y., Chen M., Liu D., Zhang J., Lin Y.-H., Chen L.-Q., Yi D., Nan C.-W. Ferroelectric domain-wall logic units. Nature Communications. 2022; 13(1): 3255. https://doi.org/10.1038/s41467-022-30983-4; Park B.-E., Ishiwara H., Okuyama M., Sakai S., Yoon S.-M. (eds.). Ferroelectric-gate field effect transistor memories : Device physics and applications (Topics in applied physics book 131). Dordrecht: Springer Netherlands; 2016. 350 p. https://doi.org/10.1007/978-94-024-0841-6; Lupascu D.C. Fatigue in ferroelectric ceramics and related issues. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. Vol. 61. 228 p. https://doi.org/10.1007/978-3-662-07189-2; Baeumer C., Saldana-Greco D., Martirez J.M.P., Rappe A.M., Shim M., Martin L.W. Ferroelectrically driven spatial carrier density modulation in graphene. Nature Communications. 2015; 6(1): 6136. https://doi.org/10.1038/ncomms7136; Chai X., Jiang J., Zhang Q., Hou X., Meng F., Wang J., Gu L., Zhang D. W., Jiang A. Q. Nonvolatile ferroelectric field-effect transistors. Nature Communications. 2020; 11(1): 2811. https://doi.org/10.1038/s41467-020-16623-9; Sun J., Li Y., Zhang B., Jiang A. High-power LiNbO3 domain-wall nanodevices. ACS Applied Materials & Interfaces. 2023; 15(6): 8691—8698. https://doi.org/110.1021/acsami.2c20579; https://met.misis.ru/jour/article/view/565
-
6Dissertation/ Thesis
Authors: Панявин, И. А., Panyavin, I. A.
Thesis Advisors: Вохминцев, А. С., Vokhmintsev, A. S., УрФУ. Физико-технологический институт, Кафедра физических методов и приборов контроля качества
Subject Terms: MASTER'S THESIS, IMPEDANCE SPECTROSCOPY, MEMRISTIVE STRUCTURE, RESISTIVE SWITCHING, EQUIVALENT CIRCUIT, TITANIUM DIOXIDE, ZIRCONIUM DIOXIDE, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, ИМПЕДАНСНАЯ СПЕКТРОСКОПИЯ, МЕМРИСТИВНАЯ СТРУКТУРА, РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, ЭКВИВАЛЕНТНАЯ СХЕМА, ДИОКСИД ТИТАНА, ДИОКСИД ЦИРКОНИЯ
File Description: application/pdf
Availability: http://elar.urfu.ru/handle/10995/140684
-
7Dissertation/ Thesis
Authors: Федоров, Д. Д., Fedorov, D. D.
Thesis Advisors: Вохминцев, А. С., Vokhmintsev, A. S., УрФУ. Физико-технологический институт, Кафедра физических методов и приборов контроля качества
Subject Terms: MASTER'S THESIS, SYNAPTIC PLASTICITY, MEMRISTORS, TITANIUM DIOXIDE, MIM-STRUCTURE, CONDUCTION MECHANISM, RESISTIVE SWITCHING, ANODIZING, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, СИНАПТИЧЕСКАЯ ПЛАСТИЧНОСТЬ, МЕМРИСТОРЫ, ДИОКСИД ТИТАНА, МДМ-СТРУКТУРА, МЕХАНИЗМ ПРОВОДИМОСТИ, РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, АНОДИРОВАНИЕ
File Description: application/pdf
Availability: http://elar.urfu.ru/handle/10995/140685
-
8Review
-
9
-
10Academic Journal
Authors: Ибрагим, А. Х. А., Бусыгин, А. Н., Удовиченко, С. Ю., Ebrahim, A. Kh. A., Busygin, A. N., Udovichenko, S. Yu.
Subject Terms: мемристор на основе оксида металла, кислородные вакансии и ионы, математическое моделирование, физическая модель массопереноса зарядов, вольт-амперная характеристика, резистивное переключение мемристора, metal oxide memristor, oxygen vacancies and ions, mathematical modeling, physical model of stationary mass transfer of charges, volt-ampere characteristic, resistive switching of the memristor
File Description: application/pdf
Relation: Вестник Тюменского государственного университета. Серия: Физико-математическое моделирование. Нефть, газ, энергетика. – 2022. – Т. 8, № 2(30)
-
11Academic Journal
Authors: Шевырталов, Сергей, Коива, Дарья, Гойхман, Александр
Subject Terms: РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, МЕМРИСТОР, АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ, ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ
File Description: text/html
-
12Dissertation/ Thesis
Resistive switching mechanisms of memristors based on nanotubular arrays of anodic zirconium dioxide
Authors: Петренев, И. А., Petrenyov, I. A.
Thesis Advisors: Вохминцев, А. С., Vokhmintsev, A. S., УрФУ. Физико-технологический институт, Кафедра физических методов и приборов контроля качества
Subject Terms: МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, НАНОТРУБКИ, ДИОКСИД ЦИРКОНИЯ, МЕМРИСТОРЫ, РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ, ФИЛАМЕНТЫ, КВАНТОВАЯ ПРОВОДИМОСТЬ, МЕХАНИЗМЫ ПРОВОДИМОСТИ, АНОДИРОВАНИЕ, MASTER'S THESIS, NANOTUBES, ZIRCONIUM DIOXIDE, MEMRISTORS, RESISTIVE SWITCHING, CURRENT-VOLTAGE CURVES, FILAMENTS, QUANTUM CONDUCTANCE, CONDUCTION MECHANISMS, ANODIZATION
File Description: application/pdf
Availability: http://elar.urfu.ru/handle/10995/107354
-
13Academic Journal
Authors: Кундозерова, Т., Черемисин, А., Путролайнен, В.
Subject Terms: АНОДНЫЕ ОКСИДНЫЕ ПЛЕНКИ., ГИБКИЕ ЭЛЕМЕНТЫ ПАМЯТИ, УНИПОЛЯРНОЕ РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, ЭЛЕМЕНТЫ RERAM, ANODIC OXIDE FILMS
File Description: text/html
-
14Academic Journal
Authors: Горшков, О., Антонов, И., Белов, А., Касаткин, А., Тихов, С., Шенина, М., Коряжкина, М.
File Description: text/html
-
15Academic Journal
Authors: Антонов, Д., Филатов, Д., Горшков, О., Дудин, А., Шарапов, А., Зенкевич, А., Матвеев, Ю.
Subject Terms: РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, ДИОКСИД ГАФНИЯ, ТУННЕЛЬНАЯ АСМ, МИГРАЦИЯ ВАКАНСИЙ КИСЛОРОДА, SCANNING TUNNELING MICROSCOPY (STM), TUNNELING ATOMIC FORCE MICROSCOPY (TUNNELING AFM)
File Description: text/html
-
16Academic Journal
Authors: Куроптев, Вадим, Путролайнен, Вадим, Стефанович, Генрих
Subject Terms: ЭЛЕМЕНТЫ RERAM, БИПОЛЯРНОЕ РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, АНОДНЫЕ ОКСИДЫ НИОБИЯ
File Description: text/html
-
17Dissertation/ Thesis
Authors: Petrenyov, I. A.
Contributors: Вохминцев, А. С., Vokhmintsev, A. S., УрФУ. Физико-технологический институт, Кафедра физических методов и приборов контроля качества
Subject Terms: ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ, MEMRISTORS, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, MASTER'S THESIS, ZIRCONIUM DIOXIDE, CURRENT-VOLTAGE CURVES, NANOTUBES, НАНОТРУБКИ, ФИЛАМЕНТЫ, РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, RESISTIVE SWITCHING, МЕХАНИЗМЫ ПРОВОДИМОСТИ, ДИОКСИД ЦИРКОНИЯ, АНОДИРОВАНИЕ, FILAMENTS, ANODIZATION, МЕМРИСТОРЫ, КВАНТОВАЯ ПРОВОДИМОСТЬ, QUANTUM CONDUCTANCE, CONDUCTION MECHANISMS
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/107354
-
18Academic Journal
Source: Вестник Балтийского федерального университета им. И. Канта. Серия: Физико-математические и технические науки.
Subject Terms: РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, МЕМРИСТОР, АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ, ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ
File Description: text/html
-
19Academic Journal
Source: Современные проблемы науки и образования.
Subject Terms: АНОДНЫЕ ОКСИДНЫЕ ПЛЕНКИ., ГИБКИЕ ЭЛЕМЕНТЫ ПАМЯТИ, УНИПОЛЯРНОЕ РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ, ЭЛЕМЕНТЫ RERAM, ANODIC OXIDE FILMS
File Description: text/html
-
20Academic Journal
Source: Вестник Нижегородского университета им. Н.И. Лобачевского.
File Description: text/html