-
1Academic Journal
Authors: A. V. Pashkevich, A. K. Fedotov, E. N. Poddenezhny, L. A. Bliznyuk, V. V. Khovaylo, V. V. Fedotova, A. A. Kharchanko, А. В. Пашкевич, А. К. Федотов, Е. Н. Подденежный, Л. А. Близнюк, В. В. Ховайло, В. В. Федотова, А. А. Харченко
Contributors: This research was funded by the State program of scientific research “PhysMatTech, New Materials and Technologies” (Belarus) under grant number 1.15.1., Исследование выполнено за счет Государственной программы научных исследований «Физматтех, новые материалы и технологии» (Беларусь) по гранту № 1.15.1.
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 2 (2023); 122-136 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 2 (2023); 122-136 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-2
Subject Terms: термоэлектрическая добротность, zinc oxide, density, thermal conductivity, phonon scattering, thermoelectric figure of merit, оксид цинка, плотность, теплопроводность, рассеяние фононов
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/518/422; Ponja S.D., Sathasivam S., Parkin I.P., Carmalt C.J. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Scientific Reports. 2020; 10(1): 638. https://doi.org/10.1038/s41598-020-57532-7; Lee Y.-P., Lin Ch-Ch., Hsiao Ch-Ch., Chou P.-A., Cheng Y.-Y., Hsieh Ch-Ch., Dai Ch-A. Nanopiezoelectric devices for energy generation based on ZnO nanorods / flexible-conjugated copolymer hybrids using all wet-coating processes. Micromachines. 2020; 11(1): 14. https://doi.org/10.3390/mi11010014; Bernik S., Daneu N. Characteristics of SnO2-doped ZnO-based varistor ceramics. Journal of the European Ceramic Society. 2001; 21(10-11): 1879—1882. https://doi.org/10.1016/S0955-2219(01)00135-2; Wu X., Lee J., Varshney V., Wohlwend J.L., Roy A.K., Luo T. Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics – a comparative study with gallium nitride. Scientific Reports. 2016; 6(1): 22504. https://doi.org/10.1038/srep22504; Sawalha A., Abu-Abdeen M., Sedky A. Electrical conductivity study in pure and doped ZnO ceramic system. Physica B: Condensed Matter. 2009; 404(8-11): 1316—1320. https://doi.org/10.1016/j.physb.2008.12.017; Winarski D. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method. Thesis diss. of master science. Graduate College of Bowling Green State University; 2015.; Chen H., Zheng L., Zeng J., Li G., Effect of Sr doping on nonlinear current–voltage properties of ZnO-based ceramics. Journal of Electronic Materials. 2021; 50(7): 4096—4103. https://doi.org/10.1007/s11664-021-08960-2; Mohammed M.A., Izman S., Alias M.N., Rajoo S., Uday M.B., Obayes N.H., Omar M.F. A review of thermoelectric ZnO nanostructured ceramics for energy recovery. International Journal of Engineering & Technology. 2018; 7(2.29): 27—30. https://doi.org/10.14419/IJET.V7I2.29.13120; Colder H., Guilmeau E., Harnois C., Marinel S., Retoux R., Savary E. Preparation of Ni-doped ZnO ceramics for thermoelectric applications. Journal of the European Ceramic Society. 2011; 31(15): 2957—2963. https://doi.org/10.1016/j.jeurceramsoc.2011.07.006; Jeong A., Suekuni K., Ohtakia M., Jang B.-K. Thermoelectric properties of In- and Ga-doped spark plasma sintered ZnO ceramics. Ceramics International. 2021; 47(17): 23927—23934. https://doi.org/10.1016/j.ceramint.2021.05.101; Levinson L.M., Hirano S. Ceramic transactions. In: Procced. materials of Inter. symposium. Vol. 41. Grain boundaries and interfacial phenomena in electronic ceramics. Westerville: American Ceramic Society; 1994.; Li J., Yang S., Pu Y., Zhu D. Effects of pre-calcination and sintering temperature on the microstructure and electrical properties of ZnO-based varistor ceramics. Materials Science in Semiconductor Processing. 2021; 123(6): 105529. https://doi.org/10.1016/j.mssp. 2020.105529; Liang X. Thermoelectric transport properties of naturally nanostructured Ga–ZnO ceramics: Effect of point defect and interfaces. Journal of the European Ceramic Society. 2016; 36(7): 1643—1650. https://doi.org/10.1016/j.jeurceramsoc.2016.02.017; Liang X. Thermoelectric transport properties of Fe-enriched ZnO with high-temperature nanostructure refinement. ACS Applied Materials & Interfaces. 2015; 7(15): 7927—7937. https://doi.org/10.1021/am509050a; Walia S., Balendhran S., Nili H., Zhuiykov S., Rosengarten G., Wang Q.H., Bhaskaran M., Sriram S., Strano M.S., Kalantar-zadeh K. Transition metal oxides – thermoelectric properties. Progress in Materials Science. 2013; 58(8): 1443—1489. https://doi.org/10.1016/j.pmatsci.2013.06.003; Li P., Zhang H., Gao C., Jiang G., Li Z. Electrical property of Al/La/Cu modified ZnO-based negative temperature coefficient (NTC) ceramics with high ageing stability. Journal of Materials Science: Materials in Electronics. 2019; 30(21): 19598—19608. https://doi.org/10.1007/s10854-019-02333-6; Pullar R.C., Piccirilloa C., Novais R.M., Quarta A., Bettini S., Iafisco M. A sustainable multi-function biomorphic material for pollution remediation or UV absorption: aerosol assisted preparation of highly porous ZnO-based materials from cork templates. Journal of Environmental Chemical Engineering. 2019; 7(2): 102936. https://doi.org/10.1016/j.jece.2019.102936; Sun Q., Li G., Tian T., Zeng J., Zhao K., Zheng L., Barre M., Dittmer J., Gouttenoire F., Rousseau A., Kassiba A.H. Co-doping effects of (Al, Ti, Mg) on the microstructure and electrical behavior of ZnO-based ceramics. Journal of the American Ceramic Society. 2020; 103(5): 3194—3204. https://doi.org/10.1111/jace.16999; Vu D.V., Le D.H., Nguyen C.X., Trinh T.Q. Comparison of structural and electric properties of ZnO-based n-type thin films with different dopants for thermoelectric applications. Journal of Sol-Gel Science and Technology. 2019; 91(1): 146—153. https://doi.org/10.1007/s10971-019-05024-0; Pashkevich A.V., Fedotov A.K., Poddenezhny E.N., Bliznyuk L.A., Fedotova J.A., Basov N.A., Kharchanka A.A., Zukowski P., Koltunowicz T.N., Korolik O.V., Fedotova V.V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co. Journal of Alloys and Compounds. 2022; 895: 162621. https://doi.org/10.1016/j.jallcom.2021.162621; Пашкевич А.В., Близнюк Л.А., Федотов А.К., Ховайло В.В., Харченко А.А., Федотова В.В. Тепловые и термоэлектрические свойства керамики на основе оксида цинка, легированной железом. Журнал Белорусского государственного университета. Физика. 2022; (3): 56—67. https://doi.org/10.33581/2520-2243-2022-3-56-67; Wu Z.-H., Xie H.-Q., Zhai Y.-B. Preparation and thermoelectric properties of Co-doped ZnO synthesized by sol-gel. Journal of Nanoscience and Nanotechnology. 2015; 15(4): 3147—3150. https://doi.org/10.1166/jnn.2015.9658; Sawalha A., Abu-Abdeen M., Sedky A. Electrical conductivity study in pure and doped ZnO ceramic system. Physica B Condensed Matter. 2009; 404(8-11): 1316—1320. https://doi.org/10.1016/j.physb.2008.12.017; Gorokhova E.I., Anan’eva G.V., Eron’ko S.B., Oreshchenko E.A., Rodnyi P.A., Chernenko K.A., Khodyuk I.V., Lokshin E.P., Kunshina G.B., Gromov O.G., Lott K.P. Structural, optical, and scintillation characteristics of ZnO ceramics. Journal of Optical Technology. 2011; 78(11): 733—760. https://doi.org/10.1364/jot.78.000753; Кржижановская М.Г., Фирсова В.А., Бубнова Р.С. Применение метода Ритвельда для решения задач порошковой дифрактометрии. СПб.: Санкт-Петербургский университет; 2016. 67 с.; Зеер Г.М., Фоменко О.Ю., Ледяева О.Н. Применение сканирующей электронной микроскопии в решении актуальных проблем материаловедения. Журнал Сибирского федерального университета. Серия: Химия. 2009; 4(2): 287—293.; Bosi F., Biagioni C., Pasero M. Nomenclature and classification of the spinel supergroup. European Journal of Mineralogy. 2019; 31(1): 183—192. https://doi.org/10.1127/ejm/2019/0031-2788; Cheng H., Xu X.J., Hng H.H., Ma J. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceramics International. 2009; 35(8): 3067—3072. https://doi.org/10.1016/j.ceramint.2009.04.010; Chernyshova E., Serhiienko I., Kolesnikov E., Voronin A., Zheleznyy M., Fedotov A., Khovaylo V. Influence of NiO nanoparticles on the thermoelectric propertiesof (ZnO)1-x(NiO)x composites. Nanobiotechnology Reports. 2021; 16(3): 381—386. https://doi.org/10.1134/S2635167621030034; Adun H., Kavaz D., Wole-Osho I., Dagbasi M. Synthesis of Fe3O4–Al2O3–ZnO / water ternary hybrid nanofluid: Investigating the effects of temperature, volume concentration and mixture ratio on specific heat capacity, and development of hybrid machine learning for prediction. Journal of Energy Storage. 2021; 41(13-14): 102947. https://doi.org/10.1016/j.est.2021.102947; Barin I. Thermochemical data of pure substances. Weinheim, Federal Republic of Germany; N.Y., USA: VCH; 1995. 2003 p.; Kim H.-S., Gibbs Z.M., Tang Y., Wang H., Snyder G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials. 2015; 3(4): 041506. https://doi.org/10.1063/1.4908244; Gadzhiev G.G. The thermal and elastic properties of zinc oxide-based ceramics at high temperatures. High Temperature. 2003; 41(6): 778—782. https://doi.org/10.1023/b:hite.0000008333.59304.58; https://met.misis.ru/jour/article/view/518
-
2Academic Journal
Authors: Zholonko, M. M.
Source: Вестник Харьковского национального университета имени В. Н. Каразина. Серия «Физика»; № 23 (2015); 11-15 ; Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Фізика»; № 23 (2015); 11-15 ; 2073-3771 ; 2222-5617
Subject Terms: rare gas solids, isochoric high-temperature thermal conductivity, phonon scattering by diffusive modes, Callaway method, атомарные криокристалы, изохорная высокотемпературная теплопроводность, рассеяние фононов диффузными модами, метод Каллауэя, атомарні кріокристали, ізохорна високотемпературна теплопровідність, розсіяння фононів дифузними модами, метод Каллауея
File Description: application/pdf
Relation: http://periodicals.karazin.ua/physics/article/view/7766/7239; http://periodicals.karazin.ua/physics/article/view/7766
Availability: http://periodicals.karazin.ua/physics/article/view/7766
-
3Academic Journal
Authors: Кругляк, Ю.
Subject Terms: НАНОФИЗИКА, НАНОЭЛЕКТРОНИКА, РАССЕЯНИЕ ЭЛЕКТРОНОВ, РАССЕЯНИЕ ФОНОНОВ, КОЭФФИЦИЕНТ ПРОХОЖДЕНИЯ, ДЛИНА СВОБОДНОГО ПРОБЕГА, КОЭФФИЦИЕНТ ДИФФУЗИИ, ПОДВИЖНОСТЬ
File Description: text/html
-
4Academic Journal
Authors: Kruglyak, Yu. A., Strikha, M. V.
Source: Sensor Electronics and Microsystem Technologies; Том 13, № 4 (2016); 5-18
Сенсорная электроника и микросистемные технологии; Том 13, № 4 (2016); 5-18
Сенсорна електроніка і мікросистемні технології; Том 13, № 4 (2016); 5-18Subject Terms: нанофизика, наноэлектроника, рассеяние электронов, рассеяние фононов, коэффициент прохождения, длина свободного пробега, коэффициент диффузии, подвижность, Si MOSFET, нанофізика, наноелектроніка, розсіяння електронів, розсіяння фононів, коефіцієнт проходження, довжина вільного пробігу, коефіцієнт дифузії, рухливість, nanophysics, nanoelectronics, electron scattering, phonon scattering, transmission coefficient, mean free path, diffusion coefficient, mobility
File Description: application/pdf
Access URL: http://semst.onu.edu.ua/article/view/86639
-
5Academic Journal
Authors: Kruglyak, Yu. A., Strikha, M. V.
Source: Sensor Electronics and Microsystem Technologies; Том 13, № 2 (2016); 16-35
Сенсорная электроника и микросистемные технологии; Том 13, № 2 (2016); 16-35
Сенсорна електроніка і мікросистемні технології; Том 13, № 2 (2016); 16-35Subject Terms: фононний транспорт, квант теплопровідності, коефіцієнт проходження, фононні моди, дебаївська модель, розсіювання фононів, фононный транспорт, квант теплопроводности, коэффициент прохождения, фононные моды, дебаевская модель, рассеяние фононов, phonon transport, quantum of thermoconductance, transmission coefficients, phonon modes, Debye model, phonon scattering
File Description: application/pdf
Access URL: http://semst.onu.edu.ua/article/view/73586
-
6Academic Journal
Source: ScienceRise; Том 3, № 2 (8) (2015); 99-107
Subject Terms: нанофизика, наноэлектроника, рассеяние электронов, рассеяние фононов, коэффициент прохождения, длина свободного пробега, коэффициент диффузии, подвижность, Si MOSFET, УДК 537.32, 0211 other engineering and technologies, 02 engineering and technology, 0204 chemical engineering, nanophysics, nanoelectronics, electron scattering, phonon scattering, transmission coefficient, mean free path, diffusion coefficient, mobility
File Description: application/pdf
-
7Academic Journal
Source: ScienceRise; Том 2, № 2(7) (2015); 81-93
Subject Terms: nanophysics, nanoelectronics, phonon transport, thermal conductivity quantum, transmission coefficient, phonon modes, Debye model, phonon scattering, УДК 537.32, 0211 other engineering and technologies, 02 engineering and technology, нанофизика, наноэлектроника, фононный транспорт, квант теплопроводности, коэффициент прохождения, фононные моды, дебаевская модель, рассеяние фононов, 0204 chemical engineering
File Description: application/pdf