Showing 1 - 20 results of 174 for search '"ПРОТИВООПУХОЛЕВАЯ АКТИВНОСТЬ"', query time: 0.71s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: This study was supported by Russian Science Foundation grant No. 23-75-01026 «Development of targeted combined structures based on phospholipid nanosystems for lung cancer therapy»., Грант РНФ 23-75-01026 «Разработка адресных комбинированных структур на основе фосфолипидных наносистем для терапии рака легкого».

    Source: Drug development & registration; Принято в печать ; Разработка и регистрация лекарственных средств; Принято в печать ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/2092/1397; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2092/2858; Dechbumroong P., Hu R., Keaswejjareansuk W., Namdee K., Liang X.-J. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. Cancer Drug Resistance. 2024;7:24. DOI:10.20517/cdr.2024.19.; Mahato R. Multifunctional Micro- and Nanoparticles. In: Mitra A. K., Cholkar K., Mandal A., editors. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Amsterdam: Elsevier Inc.; 2017. P. 21–43. DOI:10.1016/b978-0-323-42978-8.00002-4.; Trinh H. M., Joseph M., Cholkar K., Mitra R., Mitra A. K. Nanomicelles in Diagnosis and Drug Delivery. In: Mitra A. K., Cholkar K., Mandal A., editors. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Amsterdam: Elsevier Inc.; 2017. P. 45–58. DOI:10.1016/B978-0-323-42978-8.00003-6.; Санарова Е. В., Ланцова А. В., Николаева Л. Л., Дмитриева М. В., Орлова О. Л., Косоруков В. С. Создание липосомальных систем доставки для противоопухолевых субстанций. М.: Издательство «Перо»; 2023. 152 с.; Sanarova E., Lantsova A., Oborotova N., Polozkova A., Dmitrieva M., Orlova O., Nikolaeva L., Borisova L., Shprakh Z. Development of a Liposomal Dosage Form for a New Somatostatin Analogue. Indian Journal of Pharmaceutical Sciences. 2019;81(1):146–149. DOI:10.4172/pharmaceutical-sciences.1000490.; Sanarova E., Lantsova A., Oborotova N., Orlova O., Polozkova A., Dmitrieva M., Nikolaeva N. Liposome drug delivery. Journal of Pharmaceutical Sciences and Research. 2019;11(3):1148–1155.; Khan Z., Haider M. F., Naseem N., Siddiqui M. A., Ahmad U., Khan M. M. Nanocarrier for the treatment of liver cancer. Journal of Pharmaceutical Sciences and Research. 2022;14(11):944–957.; Alshweiat A., Jaber M., Abuawad A., Athamneh T., Oqal M. Recent insights into nanoformulation delivery systems of flavonoids against glioblastoma. Journal of Drug Delivery Science and Technology. 2024;91:105271. DOI:10.1016/j.jddst.2023.105271.; Санарова Е. В., Ланцова А. В., Николаева Л. Л., Оборотова Н. А. Применение полисорбатов для создания парентеральных лекарственных форм гидрофобных веществ (обзор). Химико-фармацевтический журнал. 2022;56(7):35–39. DOI:10.30906/0023-1134-2022-56-7-35-39.; Tang C., Zhao Y., Liu J., Zheng X., Guo X., Liu H., Chen L., Shi Y. Polysorbate 80 as a possible allergenic component in cross-allergy to docetaxel and fosaprepitant: A literature review. Journal of Oncology Pharmacy Practice. 2023;29(8):1998–2006. DOI:10.1177/10781552231203186.; Санарова Е. В., Ланцова А. В., Николаева Л. Л., Осипов В. Н., Гусев Д. В., Борисова Л. М. Солюбилизация производного 3-гидроксихиназолина, обладающего противоопухолевой активностью. Российский биотерапевтический журнал. 2023;22(4):60–67. DOI:10.17650/1726-9784-2023-22-4-60-67.; Gallego-Jara J., Lozano-Terol G., Sola-Martínez R. A., Cánovas-Díaz M., de Diego Puente T. A Compressive Review about Taxol®: History and Future Challenges. Molecules. 2020;25(24):5986. DOI:10.3390/molecules25245986.; Zarrintaj P., Ramsey J. D., Samadi A., Atoufi Z., Yazdi M. K., Ganjali M. R., Amirabad L. M., Zangene E., Farokhi M., Formela K., Saeb M. R., Mozafari M., Thomas S. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomaterialia. 2020;110:37–67. DOI:10.1016/j.actbio.2020.04.028.; Cappuccio de Castro K., Cedran Coco J., Mendes dos Santos É., Artem Ataide J., Miliani Martinez R., Monteiro do Nascimento M. H., Prata J., Martins Lopes da Fonte P. R., Severino P., Gava Mazzola P., Rolim Baby A., Barbosa Souto E., Ribeiro de Araujo D., Moreni Lopes A. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. Journal of Controlled Release. 2023;353:802–822. DOI:10.1016/j.jconrel.2022.12.017.; Бахрушина Е. О., Пыжов В. С., Сахарова П. С., Демина Н. Б., Чижова Д. А., Табанская Т. В., Лутфуллин М. Ф. Блок-сополимеры этиленоксида и пропиленоксида: перспективы применения в отечественной медицине и фармации. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023;13(2–1):333–344. DOI:10.30895/1991-2919-2023-530.; Bakhrushina E. O., Khodenok A. I., Pyzhov V. S., Solomatina P. G., Demina N. B., Korochkina T. V., Krasnyuk I. I. Study of the effect of active pharmaceutical ingredients of various classes of BCS on the parameters of thermosensitive systems based on poloxamers. Saudi Pharmaceutical Journal. 2023;31(10):101780. DOI:10.1016/j.jsps.2023.101780.; Mirzaei S., Gholami M. H., Hashemi F., Zabolian A., Farahani M. V., Hushmandi K., Zarrabi A., Goldman A., Ashrafizadeh M., Orive G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discovery Today. 2022;27(2):436–455. DOI:10.1016/j.drudis.2021.09.020.; Mehata A. K., Setia A., Vikas V., Malik A. K., Hassani R., Dailah H. G., Alhazmi H. A., Albarraq A. A., Mohan S., Muthu M. S. Vitamin E TPGS-Based Nanomedicine, Nanotheranostics, and Targeted Drug Delivery: Past, Present, and Future. Pharmaceutics. 2023;15(3):722. DOI:10.3390/pharmaceutics15030722.; Yan H., Du X., Wang R., Zhai G. Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids and Surfaces B: Biointerfaces. 2021;205:111914. DOI:10.1016/j.colsurfb.2021.111914.; Chen Y., Mo L., Wang X., Chen B., Hua Y., Gong L., Yang F., Li Y., Chen F., Zhu G., Ni W., Zhang C., Cheng Y., Luo Y., Shi J., Qiu M., Wu S., Tan Z., Wang K. TPGS-1000 exhibits potent anticancer activity for hepatocellular carcinoma in vitro and in vivo. Aging. 2020;12(2):1624–1642. DOI:10.18632/aging.102704.; Kumar Panthi V., Bashyal S., Raj Paudel K., Docetaxel-loaded nanoformulations delivery for breast cancer management: Challenges, recent advances, and future perspectives. Journal of Drug Delivery Science and Technology. 2024;92:105314. DOI:10.1016/j.jddst.2023.105314.; Dashputre N. L., Kadam J. D., Laddha U. D., Patil S. B., Udavant P. B., Kakad S. P. Targeting breast cancer using phytoconstituents: Nanomedicine-based drug deliver. European Journal of Medicinal Chemistry Reports. 2023;9:100116. DOI:10.1016/j.ejmcr.2023.100116.; Zhang P., Xiao Y., Sun X., Lin X., Koo S., Yaremenko A. V., Qin D., Kong N., Farokhzad O. C., Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med. 2023;4(3):147–167. DOI:10.1016/j.medj.2022.12.001.; Чеберда А. Е., Белоусов Д. Ю. Сравнительный фармакоэкономический анализ препаратов Пакликал® и Таксол® в условиях Российской Федерации. Качественная клиническая практика. 2016;(1):14–24.; Lim W. T., Tan E. H., Toh C. K., Hee S. W., Leong S. S., Ang P. C. S., Wong N. S., Chowbay B. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol®-PM) in patients with solid tumors. Annals of Oncology. 2010;21(2):382–388. DOI:10.1093/annonc/mdp315.; Nam S. H., Lee S.-W., Lee Y.-J., Kim Y. M. Safety and Tolerability of Weekly Genexol-PM, a Cremophor-Free Polymeric Micelle Formulation of Paclitaxel, with Carboplatin in Gynecologic Cancer: A Phase I Study. Cancer Research and Treatment. 2023;55(4):1346–1354. DOI:10.4143/crt.2022.1436.; Wileński S., Koper A., Śledzińska P., Bebyn M., Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. Journal of Oncology Pharmacy Practice. 2024;30(2):367–384. DOI:10.1177/10781552231208978.; Pei Q., Jiang B., Hao D., Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharmaceutica Sinica B. 2023;13(8):3252–3276. DOI:10.1016/j.apsb.2023.02.021.; Tu Y., Zhang W., Fan G., Zou C., Zhang J., Wu N., Ding J., Zou W. Q., Xiao H., Tan S. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy. Drug Delivery. 2023;30(1):2189106. DOI:10.1080/10717544.2023.2189106.; Kim T.-Y., Kim D.-W., Chung J.-Y., Shin S. G., Kim S.-C., Heo D. S., Kim N. K., Bang Y.-J. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research. 2004;10(11):3708–3716. DOI:10.1158/1078-0432.CCR-03-0655.; Kim S. C., Kim D. W., Shim Y. H., Bang J. S., Oh H. S., Kim S. W., Seo M. H. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. Journal of Controlled Release. 2001;72(1–3):191–202. DOI:10.1016/s0168-3659(01)00275-9.; Lee S.-W., Kim Y.-M., Cho C.-H., Kim Y. T., Kim S. M., Hur S. Y., Kim J.-H., Kim B.-G., Kim S.-C., Ryu H.-S., Kang S. B. An Open-Label, Randomized, Parallel, Phase II Trial to Evaluate the Efficacy and Safety of a Cremophor-Free Polymeric Micelle Formulation of Paclitaxel as First-Line Treatment for Ovarian Cancer: A Korean Gynecologic Oncology Group Study (KGOG-3021). Cancer Research and Treatment. 2018;50(1):195–203. DOI:10.4143/crt.2016.376.; Lee S.-W., Kim Y.-M., Kim Y. T., Kang S. B. An open-label, multicenter, phase I trial of a cremophor-free, polymeric micelle formulation of paclitaxel combined with carboplatin as a first-line treatment for advanced ovarian cancer: a Korean Gynecologic Oncology Group study (KGOG-3016). Journal of Gynecologic Oncology. 2017;28(3):e26. DOI:10.3802/jgo.2017.28.e26.; Hou X., Guan Y., He S., Wu Z., Bai J., Xu J., Wang J., Xu S., Zhu H., Yin Y., Yang X., Shi Y. A novel self-assembled nanoplatform based on retrofitting poloxamer 188 for triple-negative breast cancer targeting treatment. Chemico-Biological Interactions. 2023;384:110710. DOI:10.1016/j.cbi.2023.110710.; Hu Y., Ran M., Wang B., Lin Y., Cheng Y., Zheng S. Co-Delivery of Docetaxel and Curcumin via Nanomicelles for Enhancing Anti-Ovarian Cancer Treatment. International Journal of Nanomedicine. 2020;15:9703–9715. DOI:10.2147/IJN.S274083.; Viswanadh M. K., Agrawal N., Azad S., Jha A., Poddar S., Mahto S. K., Muthu M. S. Novel redox-sensitive thiolated TPGS based nanoparticles for EGFR targeted lung cancer therapy. International Journal of Pharmaceutics. 2021;602:120652. DOI:10.1016/j.ijpharm.2021.120652.; Zhang H., Wang K., Zhang P., He W., Song A, Luan Y. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel. Colloids and Surfaces B: Biointerfaces. 2016;142:89–97. DOI:10.1016/j.colsurfb.2016.02.045.; Zhang E., Xing R., Liu S., Li P. Current advances in development of new docetaxel formulations. Expert Opinion on Drug Delivery. 2019;16(3):301–312. DOI:10.1080/17425247.2019.1583644.; Zeng W., Luo Y., Gan D., Zhang Y., Deng H., Liu G. Advances in Doxorubicin-based nano-drug delivery system in triple negative breast cancer. Frontiers in Bioengineering and Biotechnology. 2023;11:1271420. DOI:10.3389/fbioe.2023.1271420.; Wang M., Malfanti A., Bastiancich C., Préat V. Synergistic effect of doxorubicin lauroyl hydrazone derivative delivered by α-tocopherol succinate micelles for the treatment of glioblastoma. International Journal of Pharmaceutics: X. 2023;5:100147. DOI:10.1016/j.ijpx.2022.100147.; Alshamrani S., Kumar A., Aldughaim M. S., Alghamdi K. M., Hussain M. D., Alanazi F. K., Kazi M. Development of Polymeric Micelles for Combined Delivery of Luteolin and Doxorubicin for Cancer Therapy. Journal of Cancer. 2024;15(14):4717–4730. DOI:10.7150/jca.96402.; Paul M., Ghosh B., Biswas S. F127/chlorin e6-nanomicelles to enhance Ce6 solubility and PDT-efficacy mitigating lung metastasis in melanoma. Drug Delivery and Translational Research. 2025;15:621–637. DOI:10.1007/s13346-024-01619-5.; Mesquita B., Singh A., Prats Masdeu C., Lokhorst N., Hebels E. R., van Steenbergen M., Mastrobattista E., Heger M., van Nostrum C. F., Oliveira S. Nanobody-mediated targeting of zinc phthalocyanine with polymer micelles as nanocarriers. International Journal of Pharmaceutics. 2024;655:124004. DOI:10.1016/j.ijpharm.2024.124004.; Николаева Л. Л., Санарова Е. В., Ланцова А. В. Гефитиниб: комбинированная терапия и комплексные системы доставки (обзор). Разработка и регистрация лекарственных средств. 2024;13(1):26–33. DOI:10.33380/2305-2066-2024-13-1-1615.; Санарова Е. В., Ланцова А. В., Николаева Л. Л., Оборотова Н. А., Литвиненко Я. Е., Соловьева Н. Л. Создание модели комплексной наносистемы доставки, содержащей ингибитор тирозинкиназ и фотосенсибилизатор. Химико-фармацевтический журнал. 2023;57(7):43–46. DOI:10.30906/0023-1134-2023-57-7-43-46.; Nikolaeva L. L., Sanarova E. V., Kolpaksidi A. P., Shcheglov S. D., Rudakova A. A., Baryshnikova M. A., Lantsova A. V. Effect of the composition of combined solid lipid particles with geftinib and a photosensitizer on their size, stability and cytotoxic activity. Biomedical Photonics. 2024;13(2):19–25. DOI:10.24931/2413–9432–2023–13-1-19–25.; https://www.pharmjournal.ru/jour/article/view/2092

  4. 4
    Academic Journal

    Contributors: The study was carried out with the financial support of the Ministry of Health of the Russian Federation (“Development of novel medicinal products for the prevention and treatment of doxorubicin-induced cardiomyopathy” No. 123021000147-5)., Работа выполнена при поддержке Министерства здравоохранения Российской Федерации («Создание новых препаратов для лечения и профилактики доксорубицин-индуцированной кардиомиопатии» № 123021000147-5).

    Source: Regulatory Research and Medicine Evaluation; Online First ; Регуляторные исследования и экспертиза лекарственных средств; Online First ; 3034-3453 ; 3034-3062

    File Description: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/655/1741; https://www.vedomostincesmp.ru/jour/article/view/655/1750; https://www.vedomostincesmp.ru/jour/article/view/655/1757; https://www.vedomostincesmp.ru/jour/article/view/655/1764; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/655/759; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/655/788; Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163(1):39–53. https://doi.org/10.1016/j.cell.2015.08.068; Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal Model Exp Med. 2021;4(2):87–103. https://doi.org/10.1002/ame2.12165; Галагудза ММ, Гущин ЯА, Исакова-Сивак ИН, Карал-Оглы ДД, Ковалева МА, Ловать МЛ и др. Методология доклинических исследований. В кн.: Макаров ВГ, Шестаков ВН, ред. Консультант GLP-planet. Мнение фармацевтической отрасли. М.: Русский врач; 2021. С. 56–73. https://doi.org/10.29296/978-5-7724-0177-4-s3; Китаева КВ, Ризванов АА, Соловьева ВВ. Современные методы доклинического скрининга противоопухолевых препаратов с применением тест-систем на основе культур клеток. Ученые записки Казанского университета. Серия: Естественные науки. 2021;163(2):155–76. https://doi.org/10.26907/2542-064X.2021.2.155-176; Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev. 2021;40(1):7–30. https://doi.org/10.1007/s10555-020-09931-5; Mahalmani V, Sinha S, Prakash A, Medhi B. Translational research: Bridging the gap between preclinical and clinical research. Indian J Pharmacol. 2022;54(6):393–6. https://doi.org/10.4103%2Fijp.ijp_860_22; Hay RJ, Reid YA, McClintock PR, Chen TR, Macy ML. Cell line banks and their role in cancer research. J Cell Biochem Suppl. 1996;24:107–30. https://doi.org/10.1002/jcb.240630507; Mirabelli P, Coppola L, Salvatore M. Cancer cell lines are useful model systems for medical research. Cancers (Basel). 2019;11(8):1098. https://doi.org/10.3390/cancers11081098; Yu C, Mannan AM, Yvone GM, Ross KN, Zhang YL, Marton MA, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol. 2016;34(4):419–23. https://doi.org/10.1038/nbt.3460; Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003; Yang X, Wen Y, Song X, He S, Bo X. Exploring the classification of cancer cell lines from multiple omic views. PeerJ. 2020;8:e9440. https://doi.org/10.7717/peerj.9440; Amereh M, Akbari M. Immunohistochemistry (IHC) staining of in-vitro cancer cell-generated tumoroids. MethodsX. 2023;10:102242. https://doi.org/10.1016/j.mex.2023.102242; Mentink A, Isebia KT, Kraan J, Terstappen L, Stevens M. Measuring antigen expression of cancer cell lines and circulating tumour cells. Sci Rep. 2023;13(1):6051. https://doi.org/10.1038/s41598-023-33179-y; Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167–97. https://doi.org/10.1016/j.ccell.2020.06.001; Rockwell S. In vivo-in vitro tumour cell lines: Characteristics and limitations as models for human cancer. Br J Cancer Suppl. 1980;4:118–22. PMID: 6932914; Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Perry MJ, et al. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm. 2023;640:123011. https://doi.org/10.1016/j.ijpharm.2023.123011; Almutairi MS, Hassan ES, Keeton AB, Piazza GA, Abdelhameed AS, Attia MI. Antiproliferative activity and possible mechanism of action of certain 5-methoxyindole tethered C-5 functionalized isatins. Drug Des Devel Ther. 2019;13:3069–78. https://doi.org/10.2147/dddt.s208241; Ediriweera MK, Tennekoon KH, Samarakoon SR. In-vitro anti-proliferative assays and techniques used in pre-clinical anti-cancer drug discovery. Frontiers in Anti-Cancer Drug Discovery. 2019;10:43–61. https://doi.org/10.2174/9789811400711119100005; Mishra R, Mishra PS, Varshney S, Mazumder R, Mazumder A. In vitro and in vivo approaches for screening the potential of anticancer agents: A review. Curr Drug Discov Technol. 2022;19(3):e060122200071. https://doi.org/10.2174/1570163819666220106122811; Афанасьева АН, Сапарова ВБ, Сельменских ТА, Макаренко ИЕ. Выбор оптимального метода детекции жизнеспособности клеточных культур для тестов на пролиферативную активность и цитотоксичность. Лабораторные животные для научных исследований. 2021;(2)16–24. https://doi.org/10.29296/2618723X-2021-02-03; Dadmehr M, Mortezaei M, Korouzhdehi B. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite. Biosens Bioelectron. 2023;220:114889. https://doi.org/10.1016/j.bios.2022.114889; Batool S, Javaid S, Javed H, Asim L, Shahid I, Khan M, Muhammad A. Addressing artifacts of colorimetric anticancer assays for plant-based drug development. Med Oncol. 2022;39(12):198 https://doi.org/10.1007/s12032-022-01791-z; Cobaleda C, Sánchez-García I. Leukemia stem cell drug discovery. Methods Mol Biol. 2021;2185:39–48. https://doi.org/10.1007/978-1-0716-0810-4_3; Nakamura D. The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction. Sci Rep. 2023;13:5405. https://doi.org/10.1038/s41598-023-32442-6; Bobadilla AVP, Arévalo J, Sarró E, Byrne HM, Maini PK, Carraro T, et al. In vitro cell migration quantification method for scratch assays. J R Soc Interface. 2019;16(151):20180709. https://doi.org/10.1098/rsif.2018.0709; Cheon D-J, Orsulic S. Mouse models of cancer. Annu Rev Pathol. 2011;6:95–119. https://doi.org/10.1146/annurev.pathol.3.121806.154244; Rivina L, Schiestl R. Mouse models of radiation-induced cancers. Adv Genet. 2013;84:83–122. https://doi.org/10.1016/b978-0-12-407703-4.00003-7; Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, et al. Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag Res. 2021;13:2455–75. https://doi.org/10.2147/CMAR.S302565; Yusuf K, Umar S, Ahmed I. Animal models in cancer research. In: Pathak S, Banerjee A, Bisgin A, eds. Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. https://doi.org/10.1007/978-981-19-3824-5_17; Chen X, Li Y, Yao T, Jia R. Benefits of zebrafish xenograft models in cancer research. Front Cell Dev Biol. 2021;9:616551. https://doi.org/10.3389/fcell.2021.616551; Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The zebrafish xenograft models for investigating cancer and cancer therapeutics. Biology (Basel). 2021;10(4):252. https://doi.org/10.3390/biology10040252; Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N, et al. The oncopig cancer model: An innovative large animal translational oncology platform. Front Oncol. 2017;7:190. https://doi.org/10.3389/fonc.2017.00190; Bailey KL, Carlson MA. Porcine models of pancreatic cancer. Front Oncol. 2019;9:144. https://doi.org/10.3389/fonc.2019.00144; Kalla D, Kind A, Schnieke A. Genetically engineered pigs to study cancer. Int J Mol Sci. 2020;21(2):488. https://doi.org/10.3390/ijms21020488; Robertson N, Schook LB, Schachtschneider KM. Porcine cancer models: Potential tools to enhance cancer drug trials. Expert Opin Drug Discov. 2020;15(8):893–902. https://doi.org/10.1080/17460441.2020.1757644; Simmons HA, Mattison JA. The incidence of spontaneous neoplasia in two populations of captive rhesus macaques (Macaca mulatta). Antioxid Redox Signal. 2011;14(2):221–7. https://doi.org/10.1089/ars.2010.3311; Chapman KL, Pullen N, Andrews L, Ragan I. The future of non-human primate use in mAb development. Drug Discov Today. 2010;15(5–6):235–42. https://doi.org/10.1016/j.drudis.2010.01.002; Deycmar S, Gomes B, Charo J, Ceppi M, Cline JM. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J Immunother Cancer. 2023;11(1):e005514. https://doi.org/10.1136/jitc-2022-005514; Dewi FN, Cline JM. Nonhuman primate model in mammary gland biology and neoplasia research. Lab Anim Res. 2021;37(1):3. https://doi.org/10.1186/s42826-020-00053-1; Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, et al. Laboratory mice — a driving force in immunopatholo gy and immunotherapy studies of human multiple myeloma. Front Immunol. 2021;12:667054. https://doi.org/10.3389/fimmu.2021.667054; Sargent JK, Warner MA, Low BE, Schott WH, Hoffert T, Coleman D, et al. Genetically diverse mouse platform to xenograft cancer cells. Dis Model Mech. 2022;15(9):dmm049457. https://doi.org/10.1242/dmm.049457; Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, et al. Spontaneous and induced animal models for cancer research. Diagnostics (Basel). 2020;10(9):660. https://doi.org/10.3390/diagnostics10090660; Hoffmann J. Integrative oncology drug discovery accompanied by preclinical translational research as prerequisite for clinical development. Chin Clin Oncol. 2014;3(2):15. https://doi.org/10.3978/j.issn.2304-3865.2014.05.09; Durinikova E, Buzo K, Arena S. Preclinical models as patients’ avatars for precision medicine in colorectal cancer: Past and future challenges. J Exp Clin Cancer Res. 2021;40(1):185. https://doi.org/10.1186/s13046-021-01981-z; Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013; Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. Preclinical murine tumor models: A structural and functional perspective. Elife. 2020;9:e50740. https://doi.org/10.7554/elife.50740; Kemp CJ. Animal models of chemical carcinogenesis: Driving breakthroughs in cancer research for 100 years. Cold Spring Harb Protoc. 2015;(10):865–74. https://doi.org/10.1101/pdb.top069906; Oka K, Fujioka S, Kawamura Y, Komohara Y, Chujo T, Sekiguchi K, et al. Resistance to chemical carcinogenesis induction via a dampened inflammatory response in naked mole-rats. Commun Biol. 2022;5(1):287. https://doi.org/10.1038/s42003-022-03241-y; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical agents and related occupations. Lyon: International Agency for Research on Cancer; 2012.; Naito T, Higuchi T, Shimada Y, Kakinuma C. An improved mouse orthotopic bladder cancer model exhibiting progression and treatment response characteristics of human recurrent bladder cancer. Oncol Lett. 2020;19(1):833–9. https://doi.org/10.3892/ol.2019.11172; Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2005;26(3):513–23. https://doi.org/10.1093/carcin/bgh261; Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: Technologies and applications. Signal Transduct Target Ther. 2023;8(1):160. https://doi.org/10.1038/s41392-023-01419-2; Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 2008;1(2–3):78–82. https://doi.org/10.1242/dmm.000976; Tian H, Lyu Y, Yang Y-G, Hu Z. Humanized rodent models for cancer research. Front Oncol. 2020;10:1696. https://doi.org/10.3389/fonc.2020.01696; Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30. https://doi.org/10.1038/nature21349; Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68. https://doi.org/10.1038/s41577-020-0306-5; Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A review of cancer immunotherapy: From the past, to the present, to the future. Curr Oncol. 2020;27(Suppl 2):S87–S97. https://doi.org/10.3747/co.27.5223; Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A, Van Gestel D, Krayem M. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front Oncol. 2021;11:784947. https://doi.org/10.3389/fonc.2021.784947; Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: Progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.https://doi.org/10.1038/nri3311; Tan JHL, Hwang YY, Chin HX, Liu M, Tan SY, Chen Q. Towards a better preclinical cancer model — human immune aging in humanized mice. Immun Ageing. 2023;20(1):49. https://doi.org/10.1186/s12979-023-00374-4; Hu Z, Yang YG. Human lymphohematopoietic reconstitution and immune function in immunodeficient mice receiving cotransplantation of human thymic tissue and CD34(+) cells. Cell Mol Immunol. 2012;9(3):232–6. https://doi.org/10.1038/cmi.2011.63; McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II, Thomson JA. Nonirradiated NOD,B6.SCID Il2rγ-/- Kit W41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports. 2015;4(2):171–80. https://doi.org/10.1016/j.stemcr.2014.12.005; Jin J, Yoshimura K, Sewastjanow-Silva M, Song S, Ajani JA. Challenges and prospects of patient-derived xenografts for cancer research. Cancers (Basel). 2023;15(17):4352. https://doi.org/10.3390/cancers15174352; He M, Henderson M, Muth S, Murphy A, Zheng. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. Ann Pancreat Cancer. 2020;3:7. https://doi.org/10.21037/apc.2020.03.03; Long Y, Xie B, Shen HC, Wen D. Translation potential and challenges of in vitro and murine models in cancer clinic. Cells. 2022;11(23):3868. https://doi.org/10.3390/cells11233868; Li Q-X, Feuer G, Ouyang X, An X. Experimental animal modeling for immuno-oncology. Pharmacol Ther. 2017;173:34–46. https://doi.org/10.1016/j.pharmthera.2017.02.002; Brennan TV, Lin L, Huang X, Yang Y. Generation of luciferase-expressing tumor cell lines. Bio Protoc. 2018;8(8):e2817. https://doi.org/10.21769/BioProtoc.2817; Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt. 2001;6(4):432–40. https://doi.org/10.1117/1.1413210; Левчук КА, Богданова ДА, Ершова АЕ, Смирнов СВ, Голдаева АА, Васютина МЛ и др. Прямое сравнение вариантов дальне-красных флуоресцентных белков KATUSHKA с люциферазной биолюминесценцией на ксенографтных мышиных моделях изучения опухолей эпителиального происхождения. Трансляционная медицина. 2022;9(6):59–70. https://doi.org/10.18705/2311-4495-2022-9-6-59-70; Choi YJ, Ramos SC, Sim HB, Han JY, Park DH, Mun SK, Lee JB, Lee CH, Lee YA, Kim JJ. Promising approach for optimizing in vivo fluorescence imaging in a tumor mouse model: Precision in cancer research. Anticancer Research.2024;44(10):4347–58. https://doi.org/10.21873/anticanres.17264; Diao S, Hong G, Antaris AL, Blackburn JL, Cheng K, Cheng Z, et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 2015;8:3027–34. https://doi.org/10.1007/s12274-015-0808-9; Paster EV, Villines KA, Hickman DL. Endpoints for mouse abdominal tumor models: refinement of current criteria. Comp Med. 2009;59(3):234–41. PMCID: PMC2733284; Silva-Reis R, Faustino-Rocha AI, Gonçalves M, Ribeiro CC, Ferreira T, Ribeiro-Silva C, et al. Refinement of animal model of colorectal carcinogenesis through the definition of novel humane endpoints. Animals (Basel). 2021;11(4):985. https://doi.org/10.3390/ani11040985; Winn CB, Hwang SK, Morin J, Bluette CT, Manickam B, Jiang ZK, et al. Automated monitoring of respiratory rate as a novel humane endpoint: A refinement in mouse metastatic lung cancer models. PLoS One. 2021;16(9):e0257694. https://doi.org/10.1371/journal.pone.0257694; https://www.vedomostincesmp.ru/jour/article/view/655

  5. 5
  6. 6
  7. 7
    Dissertation/ Thesis
  8. 8
  9. 9
    Academic Journal

    Contributors: Работа выполнена при финансовой поддержке Министерства здравоохранения Российской Федерации (государственное задание по теме «Создание и оценка противоопухолевой активности конъюгатов неанелированных 1,3,5-триазинил-тетразолов с молекулами адресной доставки к мишеням клеток опухоли микроокружения»).

    Source: Translational Medicine; Том 10, № 5 (2023); 402-411 ; Трансляционная медицина; Том 10, № 5 (2023); 402-411 ; 2410-5155 ; 2311-4495

    File Description: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/826/533; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/826/1844; Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017; 263(3). DOI:10.1088/1757-899X/263/3/032019.; Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007; 2(3):14–21. DOI:10.1016/S1748-0132(07)70083-X.; Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Front Nanotechnol. 2021;3:15. DOI:10.3389/fnano.2021.644564.; Шляхто Е.В. Нанотехнологии в биологии и медицине. СПб: Санкт-Петербург, 2009. С. 320.; Singh SK, Singh MK, Kulkarni PP, et al. Aminemodified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012;6(3):2731–40. DOI:10.1021/nn300172t.; Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. 2016;116 (9):5464–5519. DOI:10.1021/acs.chemrev.5b00620.; Gaponenko IN, Ageev S V., Iurev GO, et al. Biological evaluation and molecular dynamics simulation of water-soluble fullerene derivative C60[C(COOH)2]3. Toxicol Vitr. 2020; 62:104683. DOI:10.1016/j.tiv.2019.104683.; Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine. 2007;2(2):129–41. PMID: 17722542; PMCID: PMC2673971.; Zhao H, Ding R, Zhao X, et al. Graphenebased nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today. 2017;22(9):1302–17. DOI:10.1016/j.drudis.2017.04.002.; Gackowski M, Koba M, Pluskota R, et al. Pharmacological classification of anticancer drugs applying chromatographic retention data and chemometric analysis. Chem Pap. 2021;75(1):265–78. DOI:10.1007/s11696-02001301-3.; Rixe O, Fojo T. Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? Clin Cancer Res. 2007;13(24):7280–7287. DOI:10.1158/1078-0432. CCR-07-2141; Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clinical Cancer Research. Clin Cancer Res; 2007;13(24):7271–9. DOI:10.1158/1078-0432.CCR-07-1595; Di Maio M, Gallo C, Leighl NB, et al. Symptomatic toxicities experienced during anticancer treatment: Agreement between patient and physician reporting in three randomized trials. J Clin Oncol. 2015;33(8):910–5. DOI:10.1200/JCO.2014.57.9334.; Scharf O, Colevas AD. Adverse Event Reporting in Publications Compared With Sponsor Database for Cancer Clinical Trials. J Clin Oncol. 2006; 24(24):3933–8. DOI:10.1200/JCO.2005.05.3959.; Pearce A, Haas M, Viney R, et al. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. 2017; 12(10):e0184360. DOI:10.1371/journal.pone.0184360.; Yan Y, Ding H. Ph-responsive nanoparticles for cancer immunotherapy: A brief review. Nanomaterials. 2020;10(8):1613. DOI:10.3390/nano10081613.; Омельченко А.И. Биофункциональные наночастицы в лазерной медицине. Вестник ЮГУ. 2011;2(21):40–50.; Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci. 2020; 21(17):6280. DOI:10.3390/ijms21176280.; Бабаев А.А., Зобов М.Е., Корнилов Д.Ю. и др. Оптические и электрические свойства оксида графена. Оптика и спектроскопия. 2018; 215(6):4–8.; Feng L-L, Wu Y-X, Zhang D-L, et al. Near Infrared Graphene Quantum Dots-Based Two-Photon Nanoprobe for Direct Bioimaging of Endogenous Ascorbic Acid in Living Cells. Anal Chem. 2017;89(7):4077–84. DOI:10.1021/acs.analchem.6b04943.; Fang M, Wang K, Lu H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem. 2009;19(38):7098– 105. DOI:10.1039/B908220D.; Pei X, Zhu Z, Gan Z, et al. PEGylated nanographene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020;10(1):1–15. DOI:10.1038/s41598-020-59624-w.; Abdelhalim AOE, Semenov KN, Nerukh DA, et al. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq. 2022;348:118368. DOI:10.1016/j.molliq.2021.118368.; Nanda SS, Papaefthymiou GC, Yi DK. Functionalization of Graphene Oxide and its Biomedical Applications. Crit Rev Solid State Mater Sci. 2015; 40(5):291–315. DOI:10.1080/10408436.2014.1002604.; Feng L, Wu L, Qu X. New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide. Adv Mater. 2013;25(2):168–86. DOI:10.1002/adma.201203229.; Sharoyko VV, Mikolaichuk OV, Shemchuk OS, et al. Novel non-covalent conjugate based on graphene oxide and alkylating agent from 1,3,5-triazine class. J Mol Liq. 2023; 372:121203. DOI:10.1016/j.molliq.2023.121203.; Servant A, Bianco A, Prato M, Kostarelos K. Graphene for multi-functional synthetic biology: The last ‘zeitgeist’ in nanomedicine. Bioorg Med Chem Lett. 2014; 24(7):1638–49. DOI:10.1016/j.bmcl.2014.01.051.; Rahimi S, Chen Y, Zareian M, et al. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv Drug Deliv Rev. 2022; 189:114467. DOI:10.1016/j.addr.2022.114467.; Mousavi SM, Low FW, Hashemi SA, et al. Development of graphene based nanocomposites towards medical and biological applications. Artif Cells, Nanomedicine, Biotechnol. 2020;48(1):1189–205. DOI:10.1080/21691401.2020.1817052.; Kesavan S, Meena K., Sharmili SA, et al. Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug delivery. J Drug Deliv Sci Technol. 2021;65:102760. DOI:10.1016/j. jddst.2021.102760.; Поройский С.В., Носаева Т.А., Коняева Н.В. Использование графена и наноматериалов на его основе в медицине. 2014;3:9–10.; Zhou T, Zhang B, Wei P, et al. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials. 2014;35(37):9833–43. DOI:10.1016/j.biomaterials.2014.08.033.; Wang H, Gu W, Xiao N, et al. Chlorotoxinconjugated graphene oxide for targeted delivery of an anticancer drug. Int J Nanomedicine. 2014;9(1):1433–42. DOI:10.2147/IJN.S58783.; Zhang L, Xia J, Zhao Q, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537– 44. DOI:10.1002/smll.200901680.; Motlagh N, Parvin P, Refahizadeh M, Bavali A. Fluorescence properties of doxorubicin coupled carbon nanocarriers. Appl Opt. 2017;56:7498. DOI:10.1364/AO.56.007498.; Yan J, Song B, Hu W, et al. Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells. Cancer Biother Radiopharm. 2018;33(4):125–30. DOI:10.1089/cbr.2017.2348.; Bullo S, Buskaran K, Baby R, et al. Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Pharm Res. 2019;36(6):91. DOI:10.1007/s11095-0192621-8.; Rosli NF, Fojtů M, Fisher AC, Pumera M. Graphene Oxide Nanoplatelets Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells. Langmuir. 2019; 35(8):3176–82. DOI:10.1021/acs.langmuir.8b03086.; Zhuang W, He L, Wang K, et al. Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells. ACS Omega. 2018; 3(2):2396–405. DOI:10.1021/acsomega.7b02022.; Wei L, Li G, Lu T, et al. Functionalized Graphene Oxide as Drug Delivery Systems for Platinum Anticancer Drugs. J Pharm Sci. 2021;110(11):3631–8. DOI:10.1016/j.xphs.2021.07.009.; Singh G, Nenavathu BP, Imtiyaz K, Moshahid A Rizvi M. Fabrication of chlorambucil loaded grapheneoxide nanocarrier and its application for improved antitumor activity. Biomed Pharmacother. 2020;129:110443. DOI: j.biopha.2020.110443.; Wei X, Li P, Zhou H, et al. Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy. J Photochem Photobiol B Biol. 2021;216:112125. DOI: j.biopha.2020.110443.; Zhang Y, Li B, Li Z, et al. Synthesis and characterization of Tamoxifen citrate modified reduced graphene oxide nano sheets for breast cancer therapy. J Photochem Photobiol B Biol. 2018;180:68–71. DOI:10.1016/j.jphotobiol.2017.12.017.; Trusek A, Kijak E, Granicka L. Graphene oxide as a potential drug carrier — Chemical carrier activation, drug attachment and its enzymatic controlled release. Mater Sci Eng C. 2020;116:111240. DOI:10.1016/j.msec.2020.111240.; Tiwari H, Karki N, Pal M, et al. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surfaces B Biointerfaces. 2019;178:452–9. DOI:10.1016/j.colsurfb.2019.03.037.; Lin H-M, Lin H-Y, Chan M-H. Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. J Mater Chem B. 2013;1(44):6147. DOI:10.1039/ C3TB20867B.; Vinothini K, Rajendran NK, Ramu A, et al. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed Pharmacother. 2019;110:906– 17. DOI:10.1016/j.biopha.2018.12.008.; Loftus C, Saeed M, Davis DM, Dunlop IE. Activation of Human Natural Killer Cells by Graphene Oxide-Templated Antibody Nanoclusters. Nano Lett. 2018;18(5):3282–9. DOI:10.1021/acs.nanolett.8b01089.; Sachdeva H, Raj Khandelwal A, Meena R, et al. Graphene-based nanomaterials for cancer therapy. Mater Today Proc. 2021;43:2954–7. DOI:10.1016/j.matpr.2021.01.314.; Chavva SR, Pramanik A, Nellore BPV, et al. Theranostic Graphene Oxide for Prostate Cancer Detection and Treatment. Part Part Syst Charact. 2014;31(12):1252–9. DOI:10.1002/ppsc.201400143.; Xiao H, Jensen PE, Chen X. Elimination of Osteosarcoma by Necroptosis with Graphene OxideAssociated Anti-HER2 Antibodies. Int J Mol Sci. 2019;20(18):4360. DOI:10.3390/ijms20184360.; Kazemzadeh H, Mozafari M. Fullerene-based delivery systems. Drug Discov Today. 2019; 24(3):898–905. DOI:10.1016/j.drudis.2019.01.013.; Giannopoulos GI. Fullerene Derivatives for Drug Delivery against COVID-19: A Molecular Dynamics Investigation of Dendro[60]fullerene as Nanocarrier of Molnupiravir. Nanomater. 2022;12(15):2711. DOI:10.3390/nano12152711.; Zakharian TY, Seryshev A, Sitharaman B, et al. A Fullerene−Paclitaxel Chemotherapeutic: Synthesis, Characterization, and Study of Biological Activity in Tissue Culture. J Am Chem Soc. 2005;127(36):12508–9. DOI:10.1021/ja0546525.; Prylutskyy YI, Evstigneev MP, Pashkova IS, et al. Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys Chem Chem Phys. 2014;16(42):23164–72. DOI:10.1039/C4CP03367A.; Butowska K, Kozak W, Zdrowowicz M, et al. Cytotoxicity of doxorubicin conjugated with C60 fullerene. Structural and in vitro studies. Struct Chem. 2019;30:2327–2338. DOI:10.1007/s11224-019-01428-4.; Prylutska S, Grynyuk I, Skaterna T, et al. Toxicity of C60 fullerene–cisplatin nanocomplex against Lewis lung carcinoma cells. Arch Toxicol. 2019;93:1213–1226. DOI:10.1007/s00204-019-02441-6.; Shi J, Zhang H, Wang L, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34(1):251–61. DOI:10.1016/j.biomaterials.2012.09.039.; Joshi M, Kumar P, Kumar R, et al. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2017;75:1376–1388. DOI:10.1016/j.msec.2017.03.057.; https://transmed.almazovcentre.ru/jour/article/view/826

  10. 10
    Academic Journal

    Source: Журнал органічної та фармацевтичної хімії, Vol 17, Iss 3, Pp 5-14 (2019)
    Žurnal organičnoï ta farmacevtičnoï himiï; Том 17, № 3(67) (2019); 5-14
    Журнал органической и фармацевтической химии; Том 17, № 3(67) (2019); 5-14
    Журнал органічної та фармацевтичної хімії; Том 17, № 3(67) (2019); 5-14

    File Description: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Contributors: Исследование выполнено при поддержке субсидии, выделенной Казанскому федеральному университету на выполнение государственного задания в сфере научной деятельности, проект №0671-2020-0053.

    Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 195-200 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 195-200

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907561-33-5; https://phsreda.com/e-articles/10364/Action10364-102531.pdf; Choi J.-S., Doh K.-O., Kim B.-K., Seu Y.-B. Synthesis of cholesteryl doxorubicin and its anti-cancer activity. Bioorg Med Chem Lett. 2017 Feb 15; 27(4): 723–8.; Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol Rev. 2004 Jun 1; 56(2): 185–229. 3. doi; 10.1124/pr.56.2.6.; Parra M., Stahl S., Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells. 2018 Jul 22; 7(7): 84. doi:10.3390/cells7070084.; Szydlowski N., Bürkle L., Pourcel L., Moulin M., Stolz J., Fitzpatrick T.B. Recycling of pyridoxine (vitamin B6) by PUP1 in Arabidopsis. Plant J. 2013 Jul; 75(1): 40–52. doi:10.1111/tpj.12195.; Tacar O., Sriamornsak P., Dass C.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013 Feb; 65(2): 157–70. doi:10.1111/j.2042-7158.2012.01567.; https://phsreda.com/files/Books/62b19487cf261.jpg?req=102531; https://phsreda.com/article/102531/discussion_platform

  18. 18
    Academic Journal

    Contributors: The study was performed in the framework research work No. АААА-А19-119021890101-1 “Development of approaches for search of antitumor agents based on potential inducers of ferroptosis” (2019–2021)., Исследование проведено в рамках государственного задания по теме «Разработка подходов к созданию противоопухолевых агентов на основе соединений – потенциальных индукторов ферроптоза» (№ АААА-А19-119021890101-1, 2019–2021 гг.).

    Source: Advances in Molecular Oncology; Том 9, № 1 (2022); 48-56 ; Успехи молекулярной онкологии; Том 9, № 1 (2022); 48-56 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-1

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/416/253; Harbeck N., Gnant M. Breast cancer. Lancet 2017;389(10074):1134–50. DOI:10.1016/S0140-6736(16)31891-8.; Waks A.G., Winer E.P. Breast cancer treatment: a review. JAMA 2019;321(3): 288–300. DOI:10.1001/jama.2018.19323.; Dixon S.J., Lemberg K.M., Lamprecht M.R. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149(5):1060–72. DOI:10.1016/j.cell.2012.03.042.; Viswanathan V.S., Ryan M.J., Dhruv H.D. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017;547(7664):453–7. DOI:10.1038/nature23007.; Li J., Cao F., Yin H.L., Huang Z.J. et al. Ferroptosis: past, present and future. Cell Death Dis 2020;11(2):88. DOI:10.1038/s41419-020-2298-2.; Yang W.S., Stockwell B.R. Ferroptosis: death by lipid peroxidation. Trends Cell Biol 2016;26(3):165–76. DOI:10.1016/j.tcb.2015.10.014.; Gaschler M.M., Stockwell B.R. Lipid peroxidation in cell death. Biochem Biophys Res Commun 2017;482(3):419–25. DOI:10.1016/j.bbrc.2016.10.086.; Marques O., da Silva B.M., Porto G. Iron homeostasis in breast cancer. Cancer Lett 2014;347(1):1–14. DOI:10.1016/j.canlet.2014.01.029.; Chang V.C., Cotterchio M., Khoo E. Iron intake, body iron status, and risk of breast cancer: a systemic review and metaanalysis. BMC Cancer 2019;19(1):543–8. DOI:10.1186/s12885-019-5642-0.; Bitonto V., Alberti D., Ruiu R. et al. L-ferritin: a theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J Control Release 2020;319:300–10. DOI:10.1016/j.jconrel.2019.12.051.; Tang R., Xu J., Zhang B. et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 2020;13(1):110–6. DOI:10.1186/s13045-020-00946-7.; Yu M., Gai C., Li Z. et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 2019;110(10):3173–82. DOI:10.1111/cas.14181.; Неганова М.Е., Александрова Ю.Р., Пухов С.А. и др. Механизмы цитотоксического действия ряда циклических гидроксамовых кислот. Биомедицинская химия 2020;66(4):332–8. [Neganova M.E., Alexandrova Y.R., Pukhov S.A. et al. Mechanisms of cytotoxic action of a number of cyclic hydroxamic acids. Biomedicinskaya himiya = Biomedical Chemistry 2020;66(4):332–8. (In Russ.)]. DOI:10.18097/PBMC20206604332.; Борисова Л.М., Осипов В.Н., Гусев Д.В. и др. Производное 3-гидроксихиназолина, аналог эрастина, индуцирует ферроптоз в метастатических клетках меланомы. Российский биотерапевтический журнал 2021;20(1):67–73. [Borisova L.M., Osipov V.N., Gusev D.V. et al. A derivative of 3 hydroxyquinazoline, an analogue of erastin, induces apoptosis in metastatic melanoma cells. Rossijskij bioterapevticheskij zhurnal = Russian Biotherapeutic Journal 2021;20(1):67–73. (In Russ.)]. DOI:10.17650/1726-9784-2021-20-1-67-73.; Руководство по содержанию и использованию лабораторных животных. 8-е изд. Пер. с англ. Под ред. И.В. Белозерцевой, Д.В. Блинова, М.С. Красильщиковой. M.: ИРБИС, 2017. 336 c. [Guide for the care and use of laboratory animals. 8th ed. Translated from English. Ed. by I.V. Belozertseva, D.V. Blinov, M.S. Krasilschikova. Moscow: IRBIS, 2017. 336 р. (In Russ.)].; Экспериментальная оценка противоопухолевых препаратов в СССР и США. Под ред. З.П. Софьина, А.Б. Сыркина, A. Голдина, И. Кляйн. М.: Медицина, 1980. 296 c. [Experimental evaluation ofantitumor drugsin the USSR and the USA. Ed. by Z.P. Sofina, A.B. Syrkin, A. Goldin, A. Klein. Moscow: Medicine, 1980. 296 p. (In Russ.)].; Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Ч. 1. М.: Гриф и К., 2012. С. 642–657. [Treschalina E.M., Zhukova O.S., Gerasimova G.K. et al. Methodical recommendations for the preclinical study of the antitumor activity of drugs. In: Guidelines for conducting preclinical studies of drugs. Part 1. Moscow: Grif and K., 2012. Рp. 642–57. (In Russ.)].; Ji X., Lu Y., Tian H. et al. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother 2019;114:108800. DOI:10.1016/j.biopha.2019.108800.; Weiwer M., Bittker J.A., Lewis T.A. et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett 2012;22(4):1822–6. DOI:10.1016/j.bmcl.2011.09.047.; Lee H., Zandkarimi F., Zhang Y.et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 2020;22(2):225–34. DOI:10.1038/s41556-020-0461-8.; Shibata Y., Yasui H., Higashikawa K. Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLoS One 2019;14(12): e0225931. DOI:10.1371/journal.pone.0225931.; Hecht F., Pessoa C.F., Gentile L.B. et al. The role of oxidative stress on breast cancer development and therapy. Tumour Biol 2016;37(4):4281–91. DOI:10.1007/s13277-016-4873-9.; Zhang D.L., Ghosh M.C., Rouault T.A. The physiological functions of iron regulatory proteins in iron homeostasis – an update. Front Pharmacol 2014;5:124–9. DOI:10.3389/fphar.2014.00124.; Kleingardner J.G., Bren K.L. Biological significance and applications of heme proteins and peptides. Acc Chem Res 2015;48(7):1845–52. DOI:10.1021/acs.accounts.5b00106.; Orth M., Schapira A.H. Mitochondria and degenerative disorders. Am J Med Genet 2001;106(1):27–36. DOI:10.1002/ajmg.1425.; Doroshow J.H. Prevention of doxorubicininduced killing of MCF-7 human breast cancer cells by oxygen radical scavengers and iron chelating agents. Biochem Biophys Res Commun 1986;135(1):330–5. DOI:10.1016/0006-291x(86)90981-2.; Buranrat B., Connor J.R. Cytoprotective effects of ferritin on doxorubicin induced breast cancer cell death. Oncol Rep 2015;34(5):2790–6. DOI:10.3892/or.2015.4250.; Gammella E., Maccarinelli F., Buratti P. et al. The role of iron in anthracycline cardiotoxicity. Front Pharmacol 2014;5:25–9. DOI:10.3389/fphar.2014.00025.; https://umo.abvpress.ru/jour/article/view/416

  19. 19
    Academic Journal

    Source: Siberian journal of oncology; Том 21, № 3 (2022); 42-49 ; Сибирский онкологический журнал; Том 21, № 3 (2022); 42-49 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-3

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2162/987; Gao X., Xu C., Asada N., Frenette P.S. The hematopoietic stem cell niche: from embryo to adult. Development. 2018; 145(2). doi:10.1242/ dev.139691.; Osmond D.G. The ontogeny and organization of the lymphoid system. J Invest Dermatol. 1985; 85(1): 2–9. doi:10.1111/1523-1747. ep12275397.; Grzywa T.M., Justyniarska M., Nowis D., Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel). 2021; 13(4): 870. doi:10.3390/cancers13040870.; Цырлова И.Г., Чеглякова В.В., Козлов В.А. Иммунодепрессивный эффект популяций клеток с различной эритропоэтической активностью у зародышей и новорожденных. Онтогенез 1985; 16(2): 143–51.; Grzywa T.M., Nowis D., Golab J. The role of CD71+ erythroid cells in the regulation of the immune response. Pharmacol Ther. 2021; 228: 107927. doi:10.1016/j.pharmthera.2021.107927.; Sennikov S.V., Krysov S.V., Unjelevskaya T.V., Silkov A.N., Kozlov V.A. Production of cytokines by immature erythroid cells derived from human embryonic liver. Eur Cytokine Net. 2001; 12(2): 274–9.; Samarin D.M., Seledtsova G.V., Seledtsov V.I., Taraban V.Ya., Kozlov V.A. Suppressive Efect of Immature Erythroid Cells on the B-Cell Proliferation. Bull Exp Biol Med. 1997; 123: 57.; Seledtsov V.I., Seledtsova G.V., Samarin D.M., Senyukov V.V., Poveschenko O.V., Felde M.A., Kozlov V.A. Erythroid cells in suppressing leukemia cell growth. Leuk Lymphoma. 2005; 46(9): 1353–6. doi:10.1080/10428190500160207.; Lee J., Jung M.K., Park H.J., Kim K.E., Cho D. Erdr1 Suppresses Murine Melanoma Growth via Regulation of Apoptosis. Int J Mol Sci. 2016; 17(1): 107. doi:10.3390/ijms17010107.; Jung M.K., Park Y., Song S.B., Cheon S.Y., Park S., Houh Y., Ha S., Kim H.J., Park J.M., Kim T.S., Lee W.J., Cho B.J., Bang S.I., Park H., Cho D. Erythroid diferentiation regulator 1, an interleukin 18-regulated gene, acts as a metastasis suppressor in melanoma. J Invest Dermatol. 2011; 131(10): 2096–104. doi:10.1038/jid.2011.170.; Mercogliano M.F., Bruni S., Mauro F., Elizalde P.V., Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Efective Cancer Immunotherapy. Cancers (Basel). 2021; 13(3): 564. doi:10.3390/cancers13030564.; Marchal-Bras-Goncalves R., Rouas-Freiss N., Connan F., Choppin J., Dausset J., Carosella E.D., Kirszenbaum M., Guillet J. A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. Transplant Proc. 2001; 33(3): 2355–9. doi:10.1016/s0041-1345(01)02020-6.; Riteau B., Rouas-Freiss N., Menier C., Paul P., Dausset J., Carosella E.D. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specifc CTL cytolysis. J Immunol. 2001; 166(8): 5018–26. doi:10.4049/jimmunol.166.8.5018.; Lila N., Rouas-Freiss N., Dausset J., Carpentier A., Carosella E.D. Soluble HLA-G protein secreted by allo-specifc CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci U S A. 2001; 98(21): 12150–5. doi:10.1073/ pnas.201407398.; Grzywa T.M., Sosnowska A., Rydzynska Z., Lazniewski M., Plewczynski D., Klicka K., Malecka-Gieldowska M., Rodziewicz-Lurzynska A., Ciepiela O., Justyniarska M., Pomper P., Grzybowski M.M., Blaszczyk R., Wegrzynowicz M., Tomaszewska A., Basak G., Golab J., Nowis D. Potent but transient immunosuppression of T-cells is a general feature of CD71+ erythroid cells. Commun Biol. 2021; 4(1): 1384. doi:10.1038/s42003- 021-02914-4.; Elahi S., Vega-López M.A., Herman-Miguel V., RamírezEstudillo C., Mancilla-Ramírez J., Motyka B., West L., Oyegbami O. CD71+ Erythroid Cells in Human Neonates Exhibit Immunosuppressive Properties and Compromise Immune Response Against Systemic Infection in Neonatal Mice. Front Immunol. 2020; 11: 597433. doi:10.3389/ fmmu.2020.597433.; Fultang L., Vardon A., De Santo C., Mussai F. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int J Cancer. 2016; 139(3): 501–9. doi:10.1002/ijc.30051.; Zou S., Wang X., Liu P., Ke C., Xu S. Arginine metabolism and deprivation in cancer therapy. Biomed Pharmacother. 2019 Oct;118:109210. doi:10.1016/j.biopha.2019.109210.; Chernukhin I.V., Khaldoyanidi S.K., Gaidul K.V. Endogenous retroviral envelope peptide expression in involved in a regulation of lymphocyte and hematopoietic precursor activity. Biomed Pharmacother, 1995; 49(2): 145–51. doi:10.1016/0753-3322(96)82608-4.; Elahi S. New insight into an old concept: role of immature erythroid cells in immune pathogenesis of neonatal infection. Front Immunol. 2014; 5: 376. doi:10.3389/fmmu.2014.00376.; Michaëlsson J., Mold J.E., McCune J.M., Nixon D.F. Regulation of T cell responses in the developing human fetus. J Immunol. 2006; 176(10): 5741–8. doi:10.4049/jimmunol.176.10.5741.; https://www.siboncoj.ru/jour/article/view/2162

  20. 20
    Academic Journal

    Contributors: The studied compound was synthesized as part of implementation of the SSC RAS State task No. 01201354239, with financial support of the Ministry of Science and Higher Education of the Russian Federation (State task in science, project No. 0852-2020-0031). Studies in vivo were performed as part of the State task No. 121031100253-3 “Study of antitumor activity of pharmacological substances in vivo and in vitro”., Синтез исследуемого соединения осуществляли в рамках реализации Государственного задания ЮНЦ РАН № 01201354239 при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Государственное задание в области научной деятельности, проект № 0852-2020-0031). Исследования in vivo проводили в рамках государственного задания № 121031100253-3 «Изучение противоопухолевой активности фармакологических субстанций in vivo и in vitro».

    Source: Research and Practical Medicine Journal; Том 9, № 2 (2022); 50-64 ; Research'n Practical Medicine Journal; Том 9, № 2 (2022); 50-64 ; 2410-1893 ; 10.17709/2410-1893-2022-9-2

    File Description: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/743/482; https://www.rpmj.ru/rpmj/article/downloadSuppFile/743/532; https://www.rpmj.ru/rpmj/article/downloadSuppFile/743/533; Кит О. И., Франциянц Е. М., Меньшенина А. П., Моисеенко Т. И., Ушакова Н. Д., Попова Н. Н. и др. Роль плазмофереза и ксенонтерапии в коррекции острых последствий хирургической менопаузы у больных раком шейки матки. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2016;(117):472–486.; Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. https://doi.org/10.3322/caac.21492; National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer. 2019. Доступно по: https://seer.cancer.gov/statfacts/html/lungb.html, Дата обращения: 23.03.2022.; Gonzalez‑Rajal A, Hastings JF, Watkins DN, Croucher DR, Burgess A. Breathing New Life into the Mechanisms of Platinum Resistance in Lung Adenocarcinoma. Front Cell Dev Biol. 2020;8:305. https://doi.org/10.3389/fcell.2020.00305; Бурнашева Е. В., Шатохин Ю. В., Снежко И. В., Мацуга А. А. Поражение почек при противоопухолевой терапии. Нефрология. 2018;22(5):17–24. https://doi.org/10.24884/1561‑6274‑2018‑22‑5‑17‑24; Kit OI, Shikhlyarova AI, Maryanovskaya GY, Barsukova LP, Kuzmenko TS, Zhukova GV, et al. Theory of health: successful translation into the real life. General biological prerequisites. Cardiometry. 2015;(7):11–17. https://doi.org/10.12710/cardiometry.2015.7.1117; Haney SL, Allen C, Varney ML, Dykstra KM, Falcone ER, Colligan SH, et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget. 2017 Sep 29;8(44):76085–76098. https://doi.org/10.18632/oncotarget.18543; Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β‑Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS‑mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419‑019‑1492‑6; Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 2010 Dec 15;70(24):10192–10201. https://doi.org/10.1158/0008‑5472.CAN‑10‑2429; Kurek J, Kwaśniewska‑Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, et al. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019 Sep;94(5):1930–1943. https://doi.org/10.1111/cbdd.13583; Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase‑3. Cell Prolif. 1999 Feb;32(1):63–73. https://doi.org/10.1046/j.1365‑2184.1999.3210063.x; Патент РФ. RU 2741311 C1. Заявка № 2020123736 от 17.07.20 г. Минкин В. И., Кит О. И., Гончарова А. С., Лукбанова Е. А., Саяпин Ю. А., Гусаков Е. А. и др. Средство, обладающее цитотоксической активностью в отношении культуры клеток немелкоклеточного рака легких А 549. Доступно по: https://patenton.ru/patent/RU2741311C1.pdf, Дата обращения: 23.03.2022.; Li L‑H, Wu P, Lee J‑Y, Li P‑R, Hsieh W‑Y, Ho C‑C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib‑resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. https://doi.org/10.1371/journal.pone.0104203; Патент RU № 2712916, опубл. 03.02.2020, Бюл. № 4. Колесников Е. Н., Лукбанова Е. А., Ванжа Л. В., Максимов А. Ю., Кит С. О., Гончарова А. С. и др. Способ проведения наркоза у мышей Balb/c Nude при оперативных вмешательствах. Доступно по: https://patenton.ru/patent/RU2712916C1.pdf, Дата обращения: 23.03.2022.; Трещалина Е. М., Жукова О. С., Герасимова Г. К., Андронова Н. В., Гарин А. М. Методические указания по изучению противоопухолевой активности фармакологических веществ. В кн.: Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. Под ред. Хабриева Р. У. М: Медицина, 2005, 637–651 с.; Чибуновский В. А. Интерпретация результатов клинико‑биохимических лабораторных исследований. Алматы, 1998.; Лукбанова Е. А., Заикина Е. В., Саяпин Ю. А., Гусаков Е. А., Филиппова С. Ю., Златник Е. Ю. и др. Оценка противоопухолевого эффекта 2‑(6,8‑диметил‑5‑нитро‑4‑хлорхинолин‑2‑ил)‑5,6,7‑трихлор‑1,3‑трополона на подкожных ксенографтах культуры опухолевых клеток А‑549. Альманах клинической медицины. 2021;49(6):396–404. https://doi.org/10.18786/2072‑0505‑2021‑49‑021; Заборовский А. В., Кокорев А. В., Бродовская Е. П., Фирстов С. А., Минаева О. В., Куликов О. А. и др. Направленная доставка доксорубицина с помощью экзогенных биосовместимых нановекторов при экспериментальных неоплазиях. Вестник Мордовского университета. 2017;27(1):93–107. https://doi.org/10.15507/0236‑2910.027.201701.093‑107; Chen S‑M, Wang B‑Y, Lee C‑H, Lee H‑T, Li J‑J, Hong G‑C, et al. Hinokitiol up‑regulates miR‑494‑3p to suppress BMI1 expression and inhibits self‑renewal of breast cancer stem/progenitor cells. Oncotarget. 2017 Sep 29;8(44):76057–76068. https://doi.org/10.18632/oncotarget.18648; Lee Y‑S, Choi K‑M, Kim W, Jeon Y‑S, Lee Y‑M, Hong J‑T, et al. Hinokitiol inhibits cell growth through induction of S‑phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod. 2013 Dec 27;76(12):2195–2202. https://doi.org/10.1021/np4005135; Seo JS, Choi YH, Moon JW, Kim HS, Park S‑H. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017 Feb 27;18(1):14. https://doi.org/10.1186/s12860‑017‑0130‑3; https://www.rpmj.ru/rpmj/article/view/743