-
1Academic Journal
Authors: Мискевич О.Е., Хрусталёв В.В.
Source: Cifra: Биологические науки, Vol 8, Iss 4 (2025)
Subject Terms: посттрансляционные модификации, фосфорилирование, ацетилирование, молекулярная динамика, моделирование белков, post-translational modifications, phosphorylation, acetylation, molecular dynamics, protein modelling, Agriculture, Biology (General), QH301-705.5
File Description: electronic resource
-
2Academic Journal
Authors: Voronina, A.I., Rybina, A.V.
Source: Biomedical Chemistry: Research and Methods; Vol. 6 No. 3 (2023); e00196 ; Biomedical Chemistry: Research and Methods; Том 6 № 3 (2023); e00196 ; 2618-7531
Subject Terms: peptide retention time, isoelectric point, post-translational modifications, web service, время удержания пептида, изоэлектрическая точка, посттрансляционные модификации, web-сервис
File Description: application/pdf; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/196/484; http://www.bmc-rm.org/index.php/BMCRM/article/view/196/485; http://www.bmc-rm.org/index.php/BMCRM/article/view/196/486
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/196
-
3Academic Journal
Authors: M. B. Degterev, R. R. Shukurov, М. Б. Дегтерев, Р. Р. Шукуров
Contributors: The authors thank S. Taran, Lead Expert of the Department of Analytical Methods, and M. Smolov, Head of the Laboratory of Physicochemical Methods of IBC Generium, for their help with preparing the manuscript., Авторы статьи благодарят С. Тарана, ведущего эксперта Отдела аналитических методов, и М. Смолова, начальника Лаборатории физико-химических методов «МБЦ «Генериум», за помощь в подготовке текста статьи.
Source: Fine Chemical Technologies; Vol 16, No 1 (2021); 76-87 ; Тонкие химические технологии; Vol 16, No 1 (2021); 76-87 ; 2686-7575 ; 2410-6593
Subject Terms: middle-up, mass spectrometry, posttranslational modifications, biosimilar drugs, glycosylation, high-performance liquid chromatography-mass spectrometry, intact mass measurement, middle-up analysis, monoclonal antibody, масс-спектрометрия, посттрансляционные модификации, биоаналогичность, гликозилирование, ВЭЖХ-МС
File Description: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/1688/1737; https://www.finechem-mirea.ru/jour/article/view/1688/1745; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1688/311; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1688/320; Dillon T.M., Bondarenko P.V., Rehder D.S., Pipes G.D., Kleemann G.R., Ricci M.S. Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. J. Chromatogr. A. 2006;1120(1–2):112-120. https://doi.org/10.1016/j.chroma.2006.01.016; Ren D., Pipes G., Xiao G., Kleemann G.R., Bondarenko P.V., Treuheit M.J., Gadgil H.S. Reversed-phase liquid chromatography–mass spectrometry of site-specific chemical modifications in intact immunoglobulin molecules and their fragments. J. Chromatogr. A. 2008;1179(2):198–204. https://doi.org/10.1016/j.chroma.2007.11.088; Sawyer W.S., Srikumar N., Carver J., Chu P.Y., Shen A., Xu A., Williams A.J., Spiess C., Wu C., Liu Y., Tran J.C. High-throughput antibody screening from complex matrices using intact protein electrospray mass spectrometry. Proc. Natl. Acad. Sci. USA. 2020;117(18):9851–9856. https://doi.org/10.1073/pnas.1917383117; Haberger M., Leiss M., Heidenreich A-K., Pester O., Hafenmair G., Hook M., Bonnington L., Wegele H., Haindl M., Reusch D., Bulau P. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs. 2015;8(2):331–33. https://doi.org/10.1080/19420862.2015.1122150; Leney A.C., Heck A.J. Native Mass Spectrometry: What is in the Name? J. Am. Soc. Mass Spectrom. 2017;28(1):5–13. https://doi.org/10.1007/s13361-016-1545-3; Wehofsky M., Hoffmann R. Automated deconvolution and deisotoping of electrospray mass spectra. J. Mass Spectrom. 2002;37(2):223–229. https://doi.org/10.1002/jms.278; Lu J., Trnka M.J., Roh S.H., et al. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes. J. Am. Soc. Mass Spectrom. 2015;26(12):21412151. https://doi.org/10.1007/s13361-015-1235-6; Wohlschlager T., Scheffler K., Forstenlehner I.C. et al. Native mass spectrometry combined with enzymatic dissection unravels glycoform heterogeneity of biopharmaceuticals. Nat. Commun. 2018;9:1713. https://doi.org/10.1038/s41467-018-04061-7; Lermyte F., Tsybin Y.O., O’Connor P.B., Loo J.A. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. J. Am. Soc. Mass Spectrom. 2019;30(7):1149-1157. https://doi.org/10.1007/s13361-019-02201-x; Marty M.T., Baldwin A.J., Marklund E.G., Hochberg G.R.A., Benesch J.L.P., Robinson C.V. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 2015;87(8):4370–4376. https://doi.org/10.1021/acs.analchem.5b00140; Tsong Y., Dong X., Shen M. Development of statistical methods for analytical similarity assessment. J. Biopharm. Stat. 2017;27(2):197–205. https://doi.org/10.1080/10543406.2016.1272606; Chow S.-C. Challenging issues in assessing analytical similarity in biosimilar studies. Biosimilars. 2015;5:33–39. https://doi.org/10.2147/BS.S84141; Raju T.S., Jordan R.E. Galactosylation variations in marketed therapeutic antibodies. MAbs. 2012;4(3):385–391. https://doi.org/10.4161/mabs.19868; Bruce A., Hunter J., Malanson H.F. Recombinant glycosylated eculizumab and eculizumab variants: US Patent US20170073399A1. Priority 11.09.2015.; Reusch D., Tejada M.L. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–1334. https://doi.org/10.1093/glycob/cwv065
-
4Academic Journal
Authors: Skvortsov, V.S., Voronina, A.I., Ivanova, Y.O., Rybina, A.V.
Source: Biomedical Chemistry: Research and Methods; Vol. 4 No. 4 (2021); e00161 ; Biomedical Chemistry: Research and Methods; Том 4 № 4 (2021); e00161 ; 2618-7531
Subject Terms: property prediction, chemical modifications, post-translational modifications, isoelectric point, peptide, предсказание свойств, химические модификации, посттрансляционные модификации, изоэлектрическая точка, пептид
File Description: application/pdf; application/zip; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/161/401; http://www.bmc-rm.org/index.php/BMCRM/article/view/161/428; http://www.bmc-rm.org/index.php/BMCRM/article/view/161/402; http://www.bmc-rm.org/index.php/BMCRM/article/view/161/403
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/161
-
5Academic Journal
Authors: M. V. Bass, G. A. Armeev, K. V. Shaitan, A. K. Shaytan, М. В. Басс, Г. А. Армеев, К. В. Шайтан, А. К. Шайтан
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 74, № 3 (2019); 156-162 ; Вестник Московского университета. Серия 16. Биология; Том 74, № 3 (2019); 156-162 ; 0137-0952
Subject Terms: посттрансляционные модификации, chromatin, free energy calculations, DNA, histones, mutations, post-translational modifications, хроматин, свободная энергия, ДНК, гистоны, мутации
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/763/473; Zhou B.-R., Jiang J., Feng H., Ghirlando R., Xiao T.S., Bai Y. Structural mechanisms of nucleosome recognition by linker histones // Mol. Cell. 2015. Vol. 59. N 4. P. 628–638.; Bednar J., Garcia-Saez I., Boopathi R., et al. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1 // Mol. Cell. 2017. Vol. 66. N 3. P. 384–397.; Gorkovets T.K., Armeev G.A., Shaitan K.V., Shaytan A.K. Joint effect of histone H1 amino acid sequence and DNA nucleotide sequence on the structure of chromatosomes: analysis by molecular modeling methods // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 2. P. 82–87.; Draizen E.J., Shaytan A.K., Mariсo-Ramírez L., Talbert P.B., Landsman D., Panchenko A.R. HistoneDB 2.0: a histone database with variants— an integrated resource to explore histones and their variants // Database (Oxford). 2016. Vol. 2016: baw014. DOI:10.1093/database/baw014.; Kuzmichev A., Jenuwein T., Tempst P., Reinberg D. Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3 // Mol. Cell. 2004. Vol. 14. N 2. P. 183–193.; Th’ng J.P.H., Sung R., Ye M., Hendzel M.J. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain // J. Biol. Chem. 2005. Vol. 280. N 30. P. 27809–27814.; Li H., Kaminski M.S., Li Y., et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma // Blood. 2014. Vol. 123. N 10. P. 1487–1498.; Tatton-Brown K., Loveday C., Yost S., et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability // Am. J. Hum. Genet. 2017. Vol. 100. N 5. P. 725–736.; Sjöblom T., Jones S., Wood L.D., et al. The consensus coding sequences of human breast and colorectal cancers // Science. 2006. Vol. 314. N 5797. P. 268–274.; Th’ng J.P., Guo X.W., Swank R.A., Crissman H.A., Bradbury E.M. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation // J. Biol. Chem. 1994. Vol. 269. N 13. P. 9568–9573.; Clausell J., Happel N., Hale T.K., Doenecke D., Beato M. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/ SNF or NURF // PLOS One. 2009. Vol. 4. N 10: e0007243.; Christophorou M.A., Castelo-Branco G., Halley-Stott R.P., Oliveira C.S., Loos R., Radzisheuskaya A., Mowen K.A., Bertone P., Silva J.C.R., Zernicka-Goetz M., Nielsen M.L., Gurdon J.B., Kouzarides T. Citrullination regulates pluripotency and histone H1 binding to chromatin // Nature. 2014. Vol. 507. N 7490. P. 104–108.; Dai L., Peng C., Montellier E., et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark // Nat. Chem. Biol. 2014. Vol. 10. N 5. P. 365–370.; Xie Z., Zhang D., Chung D., et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation // Mol. Cell. 2016. Vol. 62. N 2. P. 194–206.; Nacev B.A., Feng L., Bagert J.D., Lemiesz A.E., Gao J., Soshnev A.A., Kundra R., Schultz N., Muir T.W., Allis C.D. The expanding landscape of ‘oncohistone’ mutations in human cancers // Nature. 2019. Vol. 567. N 7749. P. 473.; Webb B., Sali A. Protein structure modeling with MODELLER // Protein Structure Prediction. Methods in Molecular Biology (Methods and Protocols), vol 1137 / Eds. D. Kihara. N.Y.: Humana Press, 2014. P. 1–15.; Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: an online force field // Nucleic Acids Res. 2005. Vol. 33. Suppl. 2. P. W382–W388.; Tate J.G., Bamford S., Jubb H.C., et al. COSMIC: the catalogue of somatic mutations in cancer // Nucleic Acids Res. 2019. Vol. 47. N D1. P. D941–D947.; Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations // Nature Methods. 2010. Vol. 7. N 4. P. 248–249.; UniProt: a worldwide hub of protein knowledge // Nucleic Acids Res. 2019. Vol. 47. N D1. P. D506–D515.; Margreitter C., Petrov D., Zagrovic B. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications // Nucleic Acids Res. 2013. Vol. 41. N W1. P. W422–W426.; Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform // J. Cheminform. 2012. Vol. 4: 17.; Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis // J. Comput. Chem. 2004. Vol. 25. N 13. P. 1605–1612.; Bozic I., Antal T., Ohtsuki H., Carter H., Kim D., Chen S., Karchin R., Kinzler K.W., Vogelstein B., Nowak M.A. Accumulation of driver and passenger mutations during tumor progression // Proc. Natl. Acad. Sci. U.S.A. 2010. Vol. 107. N 43. P. 18545–18550.; Schwartzentruber J., Korshunov A., Liu X.Y., et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma // Nature. 2012. Vol. 482. N 7384. P. 226–231.; Kumar N.M., Walker I.O. The binding of histones H1 and H5 to chromatin in chicken erythrocyte nuclei // Nucleic Acids Res. 1980. Vol. 8. N 16. P. 3535–3552.
Availability: https://vestnik-bio-msu.elpub.ru/jour/article/view/763
-
6Academic Journal
Authors: V. D. Gusarova, M. S. Pantyushenko, V. M. Simonov, R. R. Shukurov, R. A. Khamitov, A. Yu. Vishnevskiy, В. Д. Гусарова, М. С. Пантюшенко, В. М. Симонов, Р. Р. Шукуров, Р. А. Хамитов, А. Ю. Вишневский
Contributors: Выражаем благодарность всему коллективу отдела аналитических методов МБЦ «ГЕНЕРИУМ» за советы и поддержку в работе над проектом. Научному сотруднику М.А. Смолову за разработку методов анализа гликанов и важные замечания к статье. Исследование проводилось без спонсорской поддержки.
Source: Biological Products. Prevention, Diagnosis, Treatment; Том 19, № 1 (2019); 39-49 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 19, № 1 (2019); 39-49 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2019-19-1
Subject Terms: лизис фибринового сгустка, biosimilar, Actilyse®, Revelyse®, glycosylation profile, post-translational modifications, fibrin clot lysis, биоаналог, Актилизе®, Ревелиза®, профиль гликозилирования, посттрансляционные модификации
File Description: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/207/164; Guzzetta AW, Basa LJ, Hancock WS, Keyt BA, Bennett WF. Identification of carbohydrate structures in glycoprotein peptide maps by the use of LC/MS with selected ion extraction with special reference to tissue plasminogen activator and a glycosylation variant produced by site directed mutagenesis. Anal Chem. 1993;65(21):2953–62.; Spellman MW, Basa LJ, Leonard CK, Chakel JA, O’ConnorJV, Wilson S, van Halbeek H. Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J Biol Chem. 1989;264(24):14100–11.; Harris RJ, Leonard CK, Guzzetta AW, Spellman MW. Tissue plasminogen activator has an O-linked fucose attached to threonine-61 in the epidermal growth factor domain. Biochemistry. 1991;30(9):2311–4.; Parekh RB, Dwek RA, Thomas JR, Opdenakker G, Rademacher TW, Wittwer AJ, et al. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry. 1989;28(19):7644–62.; Wittwer AJ, Howard SC, Carr LS, Harakas NK, Feder J, Parekh RB, et al. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry. 1989;28(19):7662–9.; Berg DT, Burck PJ, Berg DH, Grinnell BW. Kringle glycosylation in a modified human tissue plasminogen activator improves functional properties. Blood. 1993;81(5):1312–22.; Cole ES, Nichols EH, Poisson L, Harnois ML, Livingston DJ. In vivo clearance of tissue plasminogen activator: The complex role of sites of glycosylation and level of sialylation. Fibrinilysis. 1993;7(1):15–22. https://doi.org/10.1016/0268-9499(93)90050-6; Chloupek RC, Harris RJ, Leonard CK, Keck RG, Keyt BA, Spellman MW, et al. Study of the primary structure of recombinant tissue plasminogen activator by reversedphase high-performance liquid chromatographic tryptic mapping. J Chromatogr. 1989;463(2):375–96.; Kim PY, Tieu LD, Stafford AR, Fredenburgh JC, Weitz JI. A high affinity interaction of plasminogen with fibrin is not essential for efficient activation by tissue-type plasminogen activator. J Biol Chem. 2012;287(7):4652–61. https://doi.org/10.1074/jbc.M111.317719; Björquist P, Brohlin M, Ehnebom J, Ericsson M, Kristansen C, Pohl G, Deinum J. Plasminogen activator inhibitor type-1 interacts exclusively with the proteinase domain of tissue plasminogen activator. Biochim Biophys Acta. 1994;1209(2):191–202.; https://www.biopreparations.ru/jour/article/view/207
-
7Conference
Authors: Oshepkova, V., Shepkin, D., Kopylova, G.
Subject Terms: POSTTRANSLATIONAL MODIFICATIONS, IN VITRO ПОДВИЖНАЯ СИСТЕМА, ПОСТТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ, КАЛЬЦИЕВАЯ РЕГУЛЯЦИЯ, CALCIUM REGULATION, IN VITRO MOTILITY ASSAY, TROPOMYOSIN, ТРОПОМИОЗИН, АКТИНМИОЗИНОВОЕ ВЗАИМОДЕЙСТВИЕ, ACTIN-MYOSIN INTERACTION
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/60845
-
8Academic Journal
Source: Biomedical Chemistry: Research and Methods; Vol. 1 No. 2 (2018); e00009 ; Biomedical Chemistry: Research and Methods; Том 1 № 2 (2018); e00009 ; 2618-7531
Subject Terms: белок, пептид, изоэлектрическая точка, посттрансляционные модификации, предсказание свойств, protein, peptide, isoelectric point, posttranslational modifications, property prediction
File Description: application/pdf; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/9/19; http://www.bmc-rm.org/index.php/BMCRM/article/view/9/17; http://www.bmc-rm.org/index.php/BMCRM/article/view/9/18
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/9
-
9Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: посттрансляционные модификации, открытый поиск, масс-спектрометрия, идентификация пептидов, протеомика
Access URL: https://openrepository.ru/article?id=190726
-
10Academic Journal
Subject Terms: 24-ЭПИБРАССИНОЛИД, ПОСТТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ БЕЛКОВ, ФОСФОРИЛИРОВАНИЕ БЕЛКОВ ПО ТИРОЗИНУ
File Description: text/html
-
11Academic Journal
Authors: Князев, Д., Иванова, И.
Subject Terms: ХРУСТАЛИК,ФОСФОЛИПИДЫ,СВОБОДНО-РАДИКАЛЬНЫЕ ПРОЦЕССЫ,ПОСТТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ БЕЛКОВ ХРУСТАЛИКА
File Description: text/html
-
12Academic Journal
Source: Вестник Башкирского университета.
Subject Terms: 2. Zero hunger, 24-ЭПИБРАССИНОЛИД, ПОСТТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ БЕЛКОВ, ФОСФОРИЛИРОВАНИЕ БЕЛКОВ ПО ТИРОЗИНУ
File Description: text/html
-
13Conference
Subject Terms: TROPOMYOSIN, POSTTRANSLATIONAL MODIFICATIONS, ACTIN-MYOSIN INTERACTION, CALCIUM REGULATION, IN VITRO MOTILITY ASSAY, ТРОПОМИОЗИН, ПОСТТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ, АКТИНМИОЗИНОВОЕ ВЗАИМОДЕЙСТВИЕ, КАЛЬЦИЕВАЯ РЕГУЛЯЦИЯ, IN VITRO ПОДВИЖНАЯ СИСТЕМА
File Description: application/pdf
Relation: info:eu-repo/grantAgreement/RSF//16-14-10044; Российские регионы в фокусе перемен. — Ч. 1. — Екатеринбург, 2018; 577.353.2; http://elar.urfu.ru/handle/10995/60845
Availability: http://elar.urfu.ru/handle/10995/60845
-
14Academic Journal
Source: Современные технологии в медицине.
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, ХРУСТАЛИК,ФОСФОЛИПИДЫ,СВОБОДНО-РАДИКАЛЬНЫЕ ПРОЦЕССЫ,ПОСТТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ БЕЛКОВ ХРУСТАЛИКА
File Description: text/html
-
15Academic Journal
Authors: A V Rybina, N N Alekseychuk, Yu. V. Miroshnichenko, V S Skvortsov
Source: Biomedical Chemistry: Research and Methods; Vol. 1 No. 2 (2018); e00009
Biomedical Chemistry: Research and Methods; Том 1 № 2 (2018); e00009Subject Terms: 2. Zero hunger, 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, белок, пептид, изоэлектрическая точка, посттрансляционные модификации, предсказание свойств, protein, peptide, isoelectric point, posttranslational modifications, property prediction
File Description: application/pdf; text/html
-
16Academic Journal
Authors: Левицкий Лев Игоревич, Бубис Юлия Александровна, Иванов Иванов, Тарасова Ирина Алексеевна, Горшков Михаил Владимирович
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: протеомика, масс-спектрометрия, идентификация пептидов, открытый поиск, посттрансляционные модификации
Relation: В поисках моделей персонализированной медицины; http://rour.neicon.ru:80/xmlui/bitstream/rour/190726/1/nora.pdf; 57.081.23; https://openrepository.ru/article?id=190726
Availability: https://openrepository.ru/article?id=190726
-
17
Authors: Дьяконов Егор Егорович, Diakonov Egor
Contributors: Ефимова Ольга Алексеевна, Голубкова Елена Валерьевна, Candidate of Biology E.V.Golubkova
Subject Terms: убиквитин-протеасомная система, протеасома, внеклеточные протеасомы, посттрансляционные модификации, ubiquitin-proteasome system, proteasome, extracellular proteasomes, posttranslational modifications
Relation: 058463; http://hdl.handle.net/11701/12786
Availability: http://hdl.handle.net/11701/12786
-
18Electronic Resource
Authors: Левицкий Лев Игоревич, Бубис Юлия Александровна, Иванов Иванов, Тарасова Ирина Алексеевна, Горшков Михаил Владимирович
Index Terms: протеомика, масс-спектрометрия, идентификация пептидов, открытый поиск, посттрансляционные модификации, article
URL:
http://hdl.handle.net/rour/190726uri
В поисках моделей персонализированной медицины