Showing 1 - 4 results of 4 for search '"НЕЙРОПРОТЕКТОРНАЯ АКТИВНОСТЬ"', query time: 0.57s Refine Results
  1. 1
    Academic Journal

    Source: Pharmacokinetics and Pharmacodynamics; № 4 (2024); 3-16 ; Фармакокинетика и Фармакодинамика; № 4 (2024); 3-16 ; 2686-8830 ; 2587-7836

    File Description: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/433/385; McIntyre RS, Alsuwaidan M, Baune BT, et al. Treatment-resistant depression: definition, prevalence, detection, management, and investigational interventions. World Psychiatry. 2023;22(3):394-412. doi:10.1002/wps.21120.; Li K, Zhou G, Xiao Y, et al. Risk of Suicidal Behaviors and Antidepressant Exposure Among Children and Adolescents: A Meta-Analysis of Observational Studies. Front Psychiatry. 2022;13:880496. doi:10.3389/fpsyt.2022.880496.; Wang SM, Han C, Bahk WM, et al. Addressing the Side Effects of Contemporary Antidepressant Drugs: A Comprehensive Review. Chonnam Med J. 2018;54(2):101-112. doi:10.4068/cmj.2018.54.2.101.; McIntyre RS, Rosenblat JD, Nemeroff CB, et al. Synthesizing the Evidence for Ketamine and Esketamine in Treatment-Resistant Depression: An International Expert Opinion on the Available Evidence and Implementation. Am J Psychiatry. 2021;178(5):383-399. doi:10.1176/appi.ajp.2020.20081251.; Sakurai H, Yonezawa K, Tani H, et al. Novel Antidepressants in the Pipeline (Phase II and III): A Systematic Review of the US Clinical Trials Registry. Pharmacopsychiatry. 2022;55(4):193-202. doi:10.1055/a-1714-9097.; Vasiliu O. Investigational Drugs for the Treatment of Depression (Part 1): Monoaminergic, Orexinergic, GABA-Ergic, and Anti-Inflammatory Agents. Front Pharmacol. 2022;13:884143. doi:10.3389/fphar.2022.884143.; Liu W, Ge T, Leng Y, et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017;2017:6871089. doi:10.1155/2017/6871089.; Numakawa T, Odaka H, Adachi N. Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci. 2018;19(11):3650. doi:10.3390/ijms19113650.; Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706-17. doi:10.1523/ JNEUROSCI.21-17-06706.2001.; Correia AS, Cardoso A, Vale N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics. 2023;15(8):2081. doi:10.3390/pharmaceu-tics15082081.; Polyakova M, Stuke K, Schuemberg K, et al. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord. 2015;174:432-40. doi:10.1016/j.jad.2014.11.044.; Allen AP, Naughton M, Dowling J, et al. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: A comparison of ketamine and ECT. J Affect Disord. 2015;186:306-11. doi:10.1016/j.jad.2015.06.033.; Karege F, Vaudan G, Schwald M, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136(1-2):29-37. doi:10.1016/j.molbrainres.2004.12.020.; Pandey GN, Ren X, Rizavi HS, et al. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol. 2008;11(8):1047-61. doi:10.1017/S1461145708009000.; Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251-61. doi:10.1523/JNEUROSCI.22-08-03251.2002.; Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005;1037(1-2):204-8. doi:10.1016/j.brainres.2005.01.007.; Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23(1):349-57. doi:10.1523/JNEUROSCI.23-01-00349.2003.; Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry. 2017;22(8):1085-1095. doi:10.1038/mp.2017.61.; Casarotto PC, Girych M, Fred SM, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184(5):1299-1313.e19. doi:10.1016/j.cell.2021.01.034.; Miranda-Lourenço C, Ribeiro-Rodrigues L, Fonseca-Gomes J, et al. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol Res. 2020;162:105281. doi:10.1016/j.phrs.2020.105281.; Ochs G, Penn RD, York M, et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(3):201-6. doi:10.1080/14660820050515197.; A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology. 1999;52(7):1427-33. doi:10.1212/wnl.52.7.1427.; Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev. 2021;41(5):2746-2774. doi:10.1002/med.21721.; O'Leary PD, Hughes RA. Design of potent peptide mimetics of brain-derived neurotrophic factor. J Biol Chem. 2003;278(28):25738-44. doi:10.1074/jbc.M303209200.; Cerquone Perpetuini A, Mathoux J, Kennedy BN. The potential of small molecule brain-derived neurotrophic factor: mimetics to treat inherited retinal degeneration. Neural Regen Res. 2019;14(1):85-86. doi:10.4103/1673-5374.243711.; Zhang JC, Yao W, Dong C, et al. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology (Berl). 2015;232(23):4325-35. doi:10.1007/s00213-015-4062-3.; Zhang MW, Zhang SF, Li ZH, Han F. 7,8-Dihydroxyflavone reverses the depressive symptoms in mouse chronic mild stress. Neurosci Lett. 2016;635:33-38. doi:10.1016/j.neulet.2016.10.035.; Madjid N, Lidell V, Nordvall G, et al. Antidepressant effects of novel positive allosteric modulators of Trk-receptor mediated signaling - a potential therapeutic concept? Psychopharmacology (Berl). 2023;240(8):1789-1804. doi:10.1007/s00213-023-06410-x.; Гудашева Т.А., Антипова Т.А., Середенин С.Б. Новые низкомолекулярные миметики фактора роста нервов. Доклады Академии Наук. 2010;4(1):549-552.; Гудашева Т.А., Тарасюк А.В., Помогайбо С.В., и др. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фактора. Биоорганическая Химия. 2012;38(3):280-290.; Robinson RC, Radziejewski C, Spraggon G, et al. The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci. 1999;8(12):2589-97. doi:10.1110/ps.8.12.2589.; Тарасюк А.В., Сазонова Н.М., Курилов Д.В., и др. Синтез и нейропротекторная активность in vitro аналогов димерного дипептидного миметика фактора роста нервов ГК-2 с разной длиной спейсера. Химико-фармацевтический журнал. 2019;53(6):3-10.; Тарасюк А.В., Помогайбо С.В., Курилов Д.В., Гудашева Т.А. Синтез димерного дипептидного миметика BDNF ГСБ-106, потенциального нейропротективного препарата. Химико-фармацевтический журнал. 2013;47(1):21-28.; Логвинов И.О., Антипова Т.А., Гудашева Т.А., и др. Нейропротективные свойства дипептидного миметика мозгового нейротрофического фактора ГСБ-106 в экспериментах in vitro. Бюллетень экспериментальной биологии и медицины. 2013;155(3):319-322.; Zainullina LF, Vakhitova YV, Lusta AY, et al. Dimeric mimetic of BDNF loop 4 promotes survival of serum-deprived cell through TrkB-dependent apoptosis suppression. Sci Rep. 2021;11(1):7781. doi:10.1038/s41598-021-87435-0.; Гудашева Т.А., Логвинов И.О., Антипова Т.А., Середенин С.Б. Дипептидный миметик 4-й петли мозгового нейротрофического фактора ГСБ-106 активирует TrkB, Erk, Аkt и способствует выживаемости нейронов in vitro. Доклады Академии Наук. 2013;451(5):577-580.; Гудашева Т.А., Логвинов И.О., Николаев С.В., и др. Дипептидные миметики отдельных петель NGF и BDNF активируют PLC-γ1. Доклады Российской академии наук. Науки о жизни. 2020;494(1):486-490.; Антипова Т.А., Логвинов И.О., Деев И.Е., и др. Фармакогенетический анализ взаимодействия низкомолекулярного миметика BDNF дипептида ГСБ-106 с Trk рецепторами. Доклады Российской академии наук. Науки о жизни. 2023;511:391-394.; Тарасюк А.В., Мезенцев Ю.В., Гнеденко О.В., и др. Исследование взаимодействия дипептидного миметика нейротрофина BDNF ГСБ-106 с тирозинкиназным рецептором TrkB с помощью технологии поверхностного плазмонного резонанса. Фармакокинетика и Фармакодинамика. 2022;4:50-54.; Середенин С.Б., Воронина Т.А., Гудашева Т.А., и др. Антидепрессивный эффект оригинального низкомолекулярного миметика BDNF, димерного дипептида ГСБ-106. Acta Naturae. 2013;5(4(19)): 116-120.; Поварнина П.Ю., Гарибова Т.Л., Гудашева Т.А., Середенин С.Б. Дипептидный миметик мозгового нейротрофического фактора обладает свойствами антидепрессанта при пероральном введении. Acta Naturae. 2018;10(3(38)):88-91.; Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress. 2016;6:78-93. doi:10.1016/j.ynstr.2016.08.002.; Vakhitova YV, Kalinina TS, Zainullina LF, et al. Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling. Int J Mol Sci. 2021;22(24):13381. doi:10.3390/ijms222413381.; Патент РФ №2697254 C2, 2019.; Hollis F, Kabbaj M. Social defeat as an animal model for depression. ILAR J. 2014;55(2):221-32. doi:10.1093/ilar/ilu002.; Поварнина П.Ю., Таллерова А.В., Межлумян А.Г., и др. Антидепрессивная активность димерного дипептидного миметика BDNF ГСБ-106 при однократном пероральном введении на модели социального стресса у мышей. Экспериментальная и клиническая фармакология. 2020;83(4):3-7.; Gudasheva TA, Tallerova AV, Mezhlumyan AG, et al. Low-Molecular Weight BDNF Mimetic, Dimeric Dipeptide GSB-106, Reverses Depressive Symptoms in Mouse Chronic Social Defeat Stress. Biomolecules. 2021;11(2):252. doi:10.3390/biom11020252.; Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016 Jan;16(1):22-34. doi:10.1038/nri.2015.5.; O'Connor JC, Lawson MA, André C, et al. Lipopolysaccharideinduced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511-22. doi:10.1038/sj.mp.4002148.; Remus JL, Dantzer R. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol. 2016 Sep 21;19(9):pyw028. doi:10.1093/ijnp/pyw028.; Zhang JC, Wu J, Fujita Y, et al. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol. 2014;18(4):pyu077. doi:10.1093/ijnp/pyu077.; Таллерова А.В., Межлумян А.Г., Яркова М.А., и др. Эффекты оригинальных соединений ГСБ-106, ГМЛ-3 и ГЗК-111 на экспериментальной модели ангедонии, индуцированной липополисахаридом. Химико-фармацевтический журнал. 2021;55(2):3-7.; Song X, Vilares I. Assessing the relationship between the human learned helplessness depression model and anhedonia. PLoS One. 2021;16(3):e0249056. doi:10.1371/journal.pone.0249056.; Гарибова Т.Л., Крайнева В.А., Котельникова С.О., и др. Поведенческие эффекты димерного дипептидного миметика BDNF ГСБ-106 на модели депрессивно-подобного состояния у крыс. Бюллетень экспериментальной биологии и медицины. 2020;169(2):252-256.; Mezhlumyan AG, Tallerova AV, Povarnina PY, et al. Antidepressant-like Effects of BDNF and NGF Individual Loop Dipeptide Mimetics Depend on the Signal Transmission Patterns Associated with Trk. Pharmaceuticals (Basel). 2022;15(3):284. doi:10.3390/ph15030284.; Yang T, Nie Z, Shu H, et al. The Role of BDNF on Neural Plasticity in Depression. Front Cell Neurosci. 2020;14:82. doi:10.3389/fncel.2020.00082.; Chakrapani S, Eskander N, De Los Santos LA, et al. Neuroplasticity and the Biological Role of Brain Derived Neurotrophic Factor in the Pathophysiology and Management of Depression. Cureus. 2020;12(11):e11396. doi:10.7759/cureus.11396.; Gudasheva TA, Povarnina PY, Seredenin SB. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice. Bull Exp Biol Med. 2017;162(4):454-457. doi:10.1007/s10517-017-3638-9.; Алексеева С.В., Сорокина А.В., Волкова А.В., и др. Исследование острой и хронической токсичности готовой лекарственной формы дипептидного миметика мозгового нейротрофического фактора ГСБ-106. Фармакокинетика и фармакодинамика. 2019;2:46-49.; Жердев В.П., Колыванов Г.Б., Литвин А.А., и др. Фармакокинетика дипептидного миметика BDNF ГСБ-106 у крыс. Фармакокинетика и фармакодинамика. 2019;1:37-43.; Колыванов Г.Б., Жердев В.П., Грибакина О.Г., и др. Сравнительная доклиническая фармакокинетика и биодоступность таблетированной лекарственной формы антидепрессанта ГСБ-106. Бюллетень экспериментальной биологии и медицины. 2019;167(5):577-580.; Гудашева Т.А., Константинопольский М.А., Тарасюк А.В., и др. Дипептидный миметик 4-й петли мозгового нейротрофического фактора обладает анальгетической активностью. Доклады Академии Наук. 2019;485(3):366-369.; Groth R, Aanonsen L. Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain. 2002;100(1-2):171-81. doi:10.1016/s0304-3959(02)00264-6.; Marcos JL, Galleguillos D, Pelissier T, et al. Role of the spinal TrkB-NMDA receptor link in the BDNF-induced long-lasting mechanical hyperalgesia in the rat: A behavioural study. Eur J Pain. 2017;21(10):1688-1696. doi:10.1002/ejp.1075.; Siuciak JA, Altar CA, Wiegand SJ, Lindsay RM. Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res. 1994;633(1-2):326-30. doi:10.1016/0006-8993(94)91556-3.; Merighi A, Salio C, Ghirri A, et al. BDNF as a pain modulator. Prog Neurobiol. 2008;85(3):297-317. doi:10.1016/j.pneurobio.2008.04.004.; Bekinschtein P, Cammarota M, Katche C, et al. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A. 2008;105(7):2711-6. doi:10.1073/pnas.0711863105.; Bechara RG, Lyne R, Kelly ÁM. BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat. Behav Brain Res. 2014;275:297-306. doi:10.1016/j.bbr.2013.11.015.; Поварнина П.Ю., Никифоров Д.М., Котельникова С.О., и др. Ноотропная активность дипептидного миметика мозгового нейротрофического фактора ГСБ-106. Вопросы биологической, медицинской и фармацевтической химии. 2020;23(1):16-22.; Schäbitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165-72. doi:10.1161/STROKEAHA.106.477331.; Jeong CH, Kim SM, Lim JY, et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int. 2014;2014:129145. doi:10.1155/2014/129145.; Chen HH, Zhang N, Li WY, et al. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression. Neural Regen Res. 2015;10(9):1427-32. doi:10.4103/1673-5374.165510.; Luo L, Li C, Du X, et al. Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav Brain Res. 2019;362:323-331. doi:10.1016/j.bbr.2018.11.037.; El-Tamawy MS, Abd-Allah F, Ahmed SM, et al. Aerobic exercises enhance cognitive functions and brain derived neurotrophic factor in ischemic stroke patients. NeuroRehabilitation. 2014;34(1):209-13. doi:10.3233/NRE-131020.; Krafft PR, Bailey EL, Lekic T, et al. Etiology of stroke and choice of models. Int J Stroke. 2012;7(5):398-406. doi:10.1111/j.1747-4949.2012.00838.x.; Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445-54. doi:10.2147/DDDT.S56071.; Gudasheva TA, Povarnina P, Logvinov IO, et al. Mimetics of brain-derived neurotrophic factor loops 1 and 4 are active in a model of ischemic stroke in rats. Drug Des Devel Ther. 2016;10:3545-3553. doi:10.2147/DDDT.S118768.; Back T, Schüler OG. The natural course of lesion development in brain ischemia. Acta Neurochir Suppl. 2004;89:55-61. doi:10.1007/978-3-7091-0603-7_7. PMID: 15335101.; Gudasheva TA, Povarnina PY, Antipova TA, et al. Neuroregenerative Activity of the Dipeptide Mimetic of Brain-derived Neurotrophic Factor GSB-106 Under Experimental Ischemic Stroke. CNS Neurol Disord Drug Targets. 2021;20(10):954-962. doi:10.2174/1871527320666210525090904.; Cuartero MI, García-Culebras A, Torres-López C, et al. Post-stroke Neurogenesis: Friend or Foe? Front Cell Dev Biol. 2021;9:657846. doi:10.3389/fcell.2021.657846.; Woitke F, Ceanga M, Rudolph M, et al. Adult hippocampal neurogenesis poststroke: More new granule cells but aberrant morphology and impaired spatial memory. PLoS One. 2017;12(9):e0183463. doi:10.1371/journal.pone.0183463.; Niv F, Keiner S, et al. Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke. 2012;43(9):2468-75. doi:10.1161/STROKEAHA.112.660977.; Cuartero MI, de la Parra J, Pérez-Ruiz A, et al. Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. J Clin Invest. 2019;129(4):1536-1550. doi:10.1172/JCI120412.; Povarnina PY, Antipova TA, Logvinov IO, et al. Сhronically Administered BDNF Dipeptide Mimetic GSB-106 Prevents the Depressive-like Behavior and Memory Impairments after Transient Middle Cerebral Artery Occlusion in Rats. Curr Pharm Des. 2023;29(2):126-132. doi:10.2174/1381612829666230103161824.; https://www.pharmacokinetica.ru/jour/article/view/433

  2. 2
    Academic Journal

    Contributors: The study was carried out within the framework of the institutional research project N АААА-А19-119031290052-1 (Vascular plants of Eurasia: systematic, flora, plant resources) of the Komarov Botanical Institute of the Russian Academy of Sciences., Работа выполнена по плановой теме Ботанического института им. В. Л. Комарова РАН ААА-А19-119031290052-1 «Сосудистые растения Евразии: систематика, флора, растительные ресурсы».

    Source: Pharmacy & Pharmacology; Том 9, № 1 (2021); 17-31 ; Фармация и фармакология; Том 9, № 1 (2021); 17-31 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2021-9-1

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/793/686; https://www.pharmpharm.ru/jour/article/view/793/702; Istikoglou C.I., Mavreas V., Geroulanos G. History and therapeutic properties of Hypericum perforatum from antiquity until today // Psychiatriki. - 2010. - Vol. 21, No.4. - P. 332–338.; Klemow K.M., Bartlow A., Crawford J., Kocher N., Shah J., Ritsick M. Medical Attributes of St. John’s Wort (Hypericum perforatum). In: Benzie IFF, Wachtel-Galor S, editors // Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; - 2011. - Chapter 11.; Russo E., Scicchitano F., Whalley B.J., Mazzitello C., Ciriaco M., Esposito S., Patanè M., Upton R., Pugliese M., Chimirri S., Mammì M., Palleria C., De Sarro G. Hypericum perforatum: pharmacokinetic, mechanism of action, tolerability, and clinical drug-drug interactions // Phytother Res. - 2014. - Vol. 28, No.5. - P. 643–655. DOI:10.1002/ptr.5050.; Wölfle U., Seelinger G., Schempp C.M. Topical application of St. John’s wort (Hypericum perforatum) // Planta Med. - 2014. - Vol. 80, No.2–3. - P. 109–120. DOI:10.1055/s-0033-1351019.; Marrelli M., Statti G., Conforti F. Hypericum spp.: An update on the biological activities and metabolic profiles // Mini Rev. Med. Chem. - 2020. - Vol. 20, No.1. - P. 66–87. DOI:10.2174/1389557519666190926120211.; Nahrstedt A., Butterweck V. Lessons learned from herbal medicinal products: the example of St. John’s wort // J. Nat. Prod. - 2010. - Vol. 73, No.5. - P. 1015–1021. DOI:10.1021/np1000329.; Jakobs D., Hage-Hülsmann A., Prenner L., Kolb C., Weiser D., Häberlein H. Downregulation of β1-adrenergic receptors in rat C6 glioblastoma cells by hyperforin and hyperoside from St John’s wort // J. Pharm. Pharmacol. - 2013. - Vol. 65, No.6. - P. 907–915. DOI:10.1111/jphp.12050.; Tian J., Zhang F., Cheng J., Guo S., Liu P., Wang H. Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L. // Sci Rep. – 2014. – No.4. – P.5632. DOI:10.1038/srep05632.; Friedland K., Harteneck C. Hyperforin: To be or not to be an activator of TRPC(6) // Rev. Physiol. Biochem. Pharmacol. - 2015. - Vol. 169. - P. 1–24. DOI:10.1007/112_2015_25.; Oliveira A.I., Pinho C., Sarmento B., Dias A.C. Neuroprotective Activity of Hypericum perforatum and Its Major Components // Front Plant Sci. – 2016. – No.7. – P.1004. DOI:10.3389/fpls.2016.01004.; Schmidt M., Butterweck V. The mechanisms of action of St. John’s wort: an update // Wiener Medizinische Wochenschrift. - 2015. - Vol. 165, No.11–12. - P. 229–235. DOI:10.1007/s10354-015-0372-7.; Zhai X., Chen F., Chen C., Zhu C., Lu Y. LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model // J. Ethnopharmacol. - 2015. - Vol. 169. - P. 363–369. DOI:10.1016/j.jep.2015.04.053.; Pochwat B., Szewczyk B., Kotarska K., Rafało-Ulińska A., Siwiec M., Sowa J.E., Tokarski K., Siwek A., Bouron A., Friedland K., Nowak G. Hyperforin potentiates antidepressant-like activity of lanicemine in mice // Front. Mol. Neurosci. - 2018. - Vol. 11. – P.456. DOI:10.3389/fnmol.2018.00456.; Bukhari I.A., Dar A. Behavioral profile of Hypericum perforatum (St. John’s Wort) extract. A comparison with standard antidepressants in animal models of depression // Eur. Rev. Med. Pharmacol. Sci. - 2013. - Vol. 17, No.8. - P. 1082–1089. DOI:10.1111/bpa.12069.; Apaydin E.A., Maher A.R., Shanman R., Booth M.S., Miles J.N.V., Sorbero M.E., Hempel S. A systematic review of St. John’s wort for major depressive disorder // Syst. Rev. - 2016. - Vol. 5, No.1. – P.148. DOI:10.1186/s13643-016-0325-2.; Ng Q.X., Venkatanarayanan N., Ho C.Y.X. Clinical use of Hypericum perforatum (St John’s wort) in depression: a meta-analysis // J. Affect. Disord. 2017. Vol. 210. P. 211–221. DOI:10.1016/j.jad.2016.12.048.; Sarris J. St. John’s wort for the treatment of psychiatric disorders // Psychiatr. Clin. - 2013. - Vol. 36, No.1. - P. 65–72. DOI:10.1016/j.psc.2013.01.004.; Zirak N., Shafiee M., Soltani G., Mirzaei M., Sahebkar A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action // J. Cell. Physiol. - 2019. - Vol. 234, No.6). - P. 8496–8508. DOI:10.1002/jcp.27781.; Bitran S., Farabaugh A.H., Ameral V.E., LaRocca R.A., Clain A.J., Fava M., Mischoulon D. Do early changes in the HAM-D-17 anxiety/somatization factor items affect treatment outcome among depressed outpatients? Comparison of two controlled trials of St John’s Wort (Hypericum perforatum) versus an SSRI // Int. Clin. Psychopharmacol. - 2011. - Vol. 26, No.4. - P. 206–212. DOI:10.1097/YIC.0b013e328343ba08.; Kasper S., Caraci F., Forti B., Drago F., Aguglia E. Efficacy and tolerability of Hypericum extract for the treatment of mild to moderate depression // Eur. Neuropsychopharmacol. - 2010. - Vol. 20, No.11. - P. 747–765. DOI:10.1016/j.euroneuro.2010.07.005.; Gastpar M. Hypericum extract WS® 5570 for depression — An overview // Int. J. Psychiatry Clin. Pract. - 2013. - Vol. 17. - Suppl 1. - P. 1–7. DOI:10.3109/13651501.2013.813554.; Cipriani A., Purgato M., Furukawa T.A., Trespidi C., Imperadore G., Signoretti A., Churchill R., Watanabe N., Barbui C. Citalopram versus other antidepressive agents for depression // Cochrane Database Syst. Rev. - 2012. - Vol. 7. - CD006534. DOI:10.1002/14651858.CD006534.pub2.; Seifritz E., Hatzinger M., Holsboer-Trachsler E. Efficacy of Hypericum extract WS® 5570 compared with paroxetine in patients with a moderate major depressive episode — a subgroup analysis // Int. J. Psychiatry Clin Pract. - 2016. - Vol. 20, No.3. - P. 126–132. DOI:10.1080/13651501.2016.1179765.; Pierro F. di, Risso P., Settembre R. Role in depression of a multi-fractionated versus a conventional Hypericum perforatum extract // Panminerva Medica. - 2018. - Vol. 60, No.4. - P. 156–160. DOI:10.23736/S0031-0808.18.03518-8.; Grobler A.C., Matthews G., Molenberghs G. The impact of missing data on clinical trials: a re-analysis of a placebo controlled trial of Hypericum perforatum (St Johns wort) and sertraline in major depressive disorder // Psychopharmacology. - 2014. - Vol. 231, No.9. - P. 1987–1999. DOI:10.1007/s00213-013-3344-x.; Purgato M., Papola D., Gastaldon C., Trespidi C., Magni L.R., Rizzo C., Furukawa T.A., Watanabe N., Cipriani A., Barbui C. Paroxetine versus other antidepressive agents for depression // Cochrane Database Syst. Rev. - 2014. - Vol. 4. - CD006531. DOI:10.1002/14651858.CD006531.pub2.; Melzer J., Brignoli R., Keck M.E., Saller R. A Hypericum extract in the treatment of depressive symptoms in outpatients: an open study // Forschende Komplementärmedizin. - 2010. - Vol. 17, No.1. - P. 7–14. DOI:10.1159/000277628.; Maher A.R., Hempel S., Apaydin E., Shanman R.M., Booth M., Miles J.N.V., Sorbero M.E. St. John’s Wort for major depressive disorder: a systematic review // Rand Health Q. - 2016. - Vol. 5, No.4. – P.12.; Ferrara M., Mungai F., Starace F. St John’s wort (Hypericum perforatum)-induced psychosis: a case report // J. Med. Case Rep. - 2017. - Vol. 11, No.1. – P.137. DOI:10.1186/s13256-017-1302-7.; Jungke P., Ostrow G., Li J.-L., Norton S., Nieber K., Kelber O., Butterweck V. Profiling of hypothalamic and hippocampal gene expression in chronically stressed rats treated with St. John’s wort extract (STW 3-VI) and fluoxetine // Psychopharmacology. - 2011. - Vol. 213, No.4. - P. 757–772. DOI:10.1007/s00213-010-2032-3.; Herraiz T., Guillén H. Monoamine oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions // BioMed Res. Int. - 2018. – P.4810394. DOI:10.1155/2018/4810394.; Wang Y., Shi X., Qi Z. Hypericin prolongs action potential duration in hippocampal neurons by acting on K+ channels // Brit. J. Pharmacol. - 2010. - Vol. 159, No.7. - P. 1402–1407. DOI:10.1111/j.1476-5381.2009.00513.x.; Vance K.M., Ribnicky D.M., Hermann G.E., Rogers R.C. St. John’s Wort enhances the synaptic activity of the nucleus of the solitary tract // Nutrition. - 2014. - Vol. 30, No.7–8. - P. S37–S42. DOI:10.1016/j.nut.2014.02.008.; Sell T.S., Belkacemi T., Flockerzi V., Beck A. Protonophore properties of hyperforin are essential for its pharmacological activity // Sci. Rep. - 2014. - Vol. 4. – P. 7500. DOI:10.1038/srep07500.; Bonaterra G.A., Schwendler A., Hüther J., Schwarzbach H., Schwarz A., Kolb C., Abdel-Aziz H., Kinscherf R. Neurotrophic, cytoprotective, and anti-inflammatory effects of St. John’s wort extract on differentiated mouse hippocampal HT-22 neurons // Front. Pharmacol. - 2018. - Vol. 8. – P.955. DOI:10.3389/fphar.2017.00955.; Zou Y.-P., Lu Y.-H., Wei D.-Z. Protective effects of a flavonoid-rich extract of Hypericum perforatum L. against hydrogen peroxide-induced apoptosis in PC12 cells // Phytother. Res. - 2010. - Vol. 24, Suppl. 1. - P. S6–S10. DOI:10.1002/ptr.2852.; Keksel N., Bussmann H., Unger M., Drewe J., Boonen G., Häberlein H., Franken S. St John’s wort extract influences membrane fluidity and composition of phosphatidylcholine and phosphatidylethanolamine in rat C6 glioblastoma cells // Phytomedicine. - 2019. - Vol. 54. - P. 66–76. DOI:10.1016/j.phymed.2018.06.013.; Altun M.L., Yılmaz B.S., Orhan I.E., Citoglu G.S. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s wort) // Industr. Crops Prod. - 2013. - Vol. 43. - P. 87–92. DOI:10.1016/j.indcrop.2012.07.017.; Nazıroğlu M., Kutluhan S., Övey İ.S., Aykur M., Yurekli V.A. Modulation of oxidative stress, apoptosis, and calcium entry in leukocytes of patients with multiple sclerosis by Hypericum perforatum // Nutrit. Neurosci. - 2014. - Vol. 17, No.5. - P. 214–221. DOI:10.1179/1476830513Y.0000000083.; Nazıroğlu M., Çiğ B., Özgül C. Modulation of oxidative stress and Ca2+ mobilization through TRPM2 channels in rat dorsal root ganglion neuron by Hypericum perforatum // Neuroscience. - 2014. - Vol. 263. - P. 27–35. DOI:10.1016/j.neuroscience.2014.01.006.; Özdemir Ü.S., Nazıroğlu M., Şenol N., Ghazizadeh V. Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels // Mol. Neurobiol. - 2016. - Vol. 53, No.6. - P. 3540–3551. DOI:10.1007/s12035-015-9292-1.; Gómez del Río M.A., Sánchez-Reus M.I., Iglesias I., Pozo M.A., García-Arencibia M., Fernández-Ruiz J., García-García L., Delgado M., Benedí J. Neuroprotective properties of standardized extracts of Hypericum perforatum on rotenone model of Parkinson’s disease // CNS Neurolog. Disord.-Drug Targ. - 2013. - Vol. 12, No.5. - P. 665–679. DOI:10.2174/1871527311312050013.; Kiasalari Z., Baluchnejadmojarad T., Roghani M. Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease // Cell. Mol. Neurobiol. - 2016. - Vol. 36, No.4. - P. 521–530. DOI:10.1007/s10571-015-0230-6.; Nosratabadi R., Rastin M., Sankian M., Haghmorad D., Tabasi N., Zamani S., Aghaee A., Salehipour Z., Mahmoudi M. St. John’s wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells // J. Immunotoxicol. - 2016. - Vol. 13, No.3. - P. 364–374. DOI:10.3109/1547691X.2015.1101512.; Selek Ş., Eşrefoğlu M., Meral I., Bulut H., Caglar H.G., Sonuc G., Yildiz C., Teloglu E.S., Dogan N., Yuce B., Tiftik E., Bayındır N. Effects of Oenothera biennis L. and Hypericum perforatum L. extracts on some central nervous system myelin proteins, brain histopathology and oxidative stress in mice with experimental autoimmune encephalomyelitis // Biotech. Histochem. - 2019. - Vol. 94, No.2. - P. 75–83. DOI:10.1080/10520295.2018.1482001.; Cinci L., Cesare Mannelli L. di, Maidecchi A., Mattoli L., Ghelardini C. Effects of Hypericum perforatum extract on oxaliplatin-induced neurotoxicity: in vitro evaluations // Zeitschr. Naturforsch., C: Biosci. - 2017. - Vol. 72, No.5–6. - P. 219–226. DOI:10.1515/znc-2016-0194.; Valvassori S.S., Borges C., Bavaresco D.V., Varela R.B., Resende W.R., Peterle B.R., Arent C.O., Budni J., Quevedo J. Hypericum perforatum chronic treatment affects cognitive parameters and brain neurotrophic factor levels // Brazil. J. Psychiatry. - 2018. - Vol. 40, No.4. - P. 367–375. DOI:10.1590/1516-4446-2017-2271.; Leuner K., Li W., Amaral M.D., Rudolph S., Calfa G., Schuwald A.N., Harteneck C., Inoue T., Pozzo-Miller L. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca2+-permeable TRPC6 channels // Hippocampus. - 2013. - Vol. 23, No.1. - P. 40–52. DOI:10.1002/hipo.22052.; Ampuero E., Rubio F.J., Falcon R., Sandoval M., Díaz-Véliz G., González R.E., Earle N., Dagnino-Subiabre A., Aboitiz F., Orrego F., Wyneken U. Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex // Neurosci. - 2010. - Vol. 169, No.1. - P. 98–108.; Marchetti C., Tafi E., Middei S., Rubinacci M.A., Restivo L., Ammassari-Teule M., Marie H. Synaptic adaptations of CA1 pyramidal neurons induced by a highly effective combinational antidepressant therapy // Biol. Psychiatry. - 2010. - Vol. 67, No.2. - P. 146–154. DOI:10.1016/j.biopsych.2009.09.017.; Heiser J.H., Schuwald A.M., Sillani G., Ye L., Müller W.E., Leuner K. TRPC 6 channel-mediated neurite outgrowth in PC 12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI 3K, and CAMKIV signaling // J. Neurochem. - 2013. - Vol. 127, No.3. - P. 303–313.; Jin N., Qian W., Yin X., Zhang L., Iqbal K., Grundke-Iqbal I., Gong C.-X., Liu F. CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer’s disease // Nucl. Acids Res. - 2013. - Vol. 41, No.5. - P. 3240-3256. DOI:10.1093/nar/gks1227.; Teich A.F., Nicholls R.E., Puzzo D., Fiorito J., Purgatorio R., Fà M., Ottavio A. Synaptic therapy in Alzheimer’s disease: a CREB-centric approach // Neurotherapeutics. - 2015. - Vol. 12, No.1. - P. 29–41.; Bartolotti N., Bennett D.A., Lazarov O. Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells // Mol. Psychiatry. - 2016. - Vol. 21, No.9. - P. 1158–1166. DOI:10.1038/mp.2016.111.; Hofrichter J., Krohn M., Schumacher T., Lange C., Feistel B., Walbroel B., Heinze H.-J., Crockett S., Scharbel T.F., Pahnke J. Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice // Current Alzheimer Res. - 2013. - Vol. 10, No.10. - P. 1057–1069. DOI:10.2174/15672050113106660171.; Wang H., Shao B., Yu H., Xu F., Wang P., Yu K., Han Y., Song M., Li Y., Cao Z. Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells // Chem.-Biol. Interact. - 2019. - Vol. 299. - P. 15–26. DOI:10.1016/j.cbi.2018.11.016.; Gibon J., Deloulme J.-C., Chevallier T., Ladevèze E., Abrous D.N., Bouron A. The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner // Int. J. Neuropsychopharm. - 2013. - Vol. 16, No.1. - P. 189–198. DOI:10.1017/S146114571100188X.; Brenn A., Grube M., Jedlitschky G., Fischer A., Strohmeier B., Eiden M., Keller M., Groschup M.H., Vogelgesang S. St. John’s wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model // role of P-glycoprotein // Brain Pathol. - 2014. - Vol. 24, No.1. - P. 18–24. DOI:10.1111/bpa.12069.; Ott M., Huls M., Cornelius M.G., Fricker G. St. John’s Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier // Pharmaceut. Res. - 2010. - Vol. 27, No.5. - P. 811–822. DOI:10.1007/s11095-010-0074-1.; Cao Z., Wang F., Xiu C., Zhang J., Li Y. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in aluminum chloride-induced Alzheimer’s disease rats // Biomed. Pharmacotherapy. - 2017. - Vol. 91. - P. 931–937. DOI:10.1016/j.biopha.2017.05.022.; Uslusoy F., Nazıroğlu M., Övey İ.S., Sönmez T.T. Hypericum perforatum L. supplementation protects sciatic nerve injury-induced apoptotic, inflammatory and oxidative damage to muscle, blood and brain in rats // J. Pharm. Pharmacol. - 2019. - Vol. 71, No.1. - P. 83–92. DOI:10.1111/jphp.12741.; Lin Y., Zhang J.-C., Fu J., Chen F., Wang J., Wu Z.-L., Yuan S.-Y. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation // J. Cereb. Blood Flow Metabol. - 2013. - Vol. 33, No.2. - P. 253–262. DOI:10.1038/jcbfm.2012.164.; Chang Y., Wang S.J. Hypericin, the active component of St. John’s wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway //Eur. J. Pharmacol. - 2010. - Vol. 634, No.1–3. - P. 53–61. DOI:10.1016/j.ejphar.2010.02.035.; Ouyang Z., Zhai Z., Li H., Liu X., Qu X., Li X., Fan Q., Tang T., Qin A., Dai K. Hypericin suppresses osteoclast formation and wear particle-induced osteolysis via modulating ERK signalling pathway // Biochem. Pharmacol. - 2014. - Vol. 90, No.3. - P. 276–287. DOI:10.1016/j.bcp.2014.06.009.; Do M.H., Kim S.Y. Hypericin, a naphthodianthrone derivative, prevents methylglyoxal-induced human endothelial cell dysfunction // Biomol. Therap. - 2017. - Vol. 25, No.2. - P. 158–164. DOI:10.4062/biomolther.2016.034.; Jeong E.J., Hwang L., Lee M., Lee K.Y., Ahn M.-J., Sung S.-H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells // Food Chem. Toxicol. - 2014. - Vol. 64. - P. 397–402. DOI:10.1016/j.fct.2013.12.003.; Ishola I.O., Tota S., Adeyemi O.O., Agbaje E.O., Narender T., Shukla R. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: a behavioral and biochemical study // Pharmaceut. Biol. - 2013. - Vol. 51, No.7. - P. 825-835. DOI:10.3109/13880209.2013.767360.; Ben-Eliezer D., Yechiam E. Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis // Sci. Reports. - 2016. - Vol. 6. – P.35700. DOI:10.1038/srep35700.; Gong S., Miao Y.-L., Jiao G.-Z., Sun M.-J., Li H., Lin J., Luo M.-J., Tan J.-H. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice // PLoS One. - 2015. - Vol. 10, No.2. – P.e0117503. DOI:10.1371/journal.pone.0117503.; El-Bakly W.M., Hasanin A.H. Hypericum perforatum decreased hippocampus TNF-α and corticosterone levels with no effect on kynurenine/tryptophan ratio in bilateral ovariectomized rats // Korean J. Physiol. Pharmacol. - 2014. - Vol. 18, No.3. - P. 233–239. DOI:10.4196/kjpp.2014.18.3.233.; Kumar A., Garg R., Prakash A.K. Effect of St. John’s Wort (Hypericum perforatum) treatment on restraint stress-induced behavioral and biochemical alteration in mice // BMC Complement. Altern. Med. - 2010. - Vol. 10, No.1. – P.18. DOI:10.1186/1472-6882-10-18.; Prakash D.J., Arulkumar S., Sabesan M. Effect of nanohypericum (Hypericum perforatum gold nanoparticles) treatment on restraint stressinduced behavioral and biochemical alteration in male albino mice // Pharmacogn. Res. - 2010. - Vol. 2, No.6. - P. 330–334. DOI:10.4103/0974-8490.75450.; Hasanein P., Shahidi S. Effects of Hypericum perforatum extract on diabetes-induced learning and memory impairment in rats // Phytother. Res. - 2011. - Vol. 25, No.4. - P. 544–549. DOI:10.1002/ptr.3298.; Crupi R., Mazzon E., Marino A., La Spada G., Bramanti P., Battaglia F., Cuzzocrea S., Spina E. Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice // BMC Complement. Alternat. Med. - 2011. - Vol. 11, No.1. – P.7. DOI:10.1186/1472-6882-11-7.; Trofimiuk E., Holownia A., Braszko J.J. St. John’s wort may relieve negative effects of stress on spatial working memory by changing synaptic plasticity // Naunyn-Schmiedeberg’s Arch. Pharmacol. - 2011. - Vol. 383, No.4. - P. 415–422. DOI:10.1007/s00210-011-0604-3.; Concerto C., Boo H., Hu C., Sandilya P., Krish A., Chusid E., Coira D., Aguglia E., Battaglia F. Hypericum perforatum extract modulates cortical plasticity in humans // Psychopharmacology. - 2018. - Vol. 235, No.1. - P. 145-153. DOI:10.1007/s00213-017-4751-1.; Yechiam E., Ben-Eliezer D., Ashby N.J.S., Bar-Shaked M. The acute effect of Hypericum perforatum on short-term memory in healthy adults // Psychopharmacol. - 2019. - Vol. 236, No.2. - P. 613–623. DOI:10.1007/s00213-018-5088-0.; Niederhofer H. St John’s Wort treating patients with autistic disorder // Phytother. Res. - 2009. - Vol. 23, No.11. - P. 1521–1523. DOI:10.1002/ptr.2580.; Diniz T.C., Silva J.C., de Lima-Saraiva S.R.G., Ribeiro F.P.R. de A., Pacheco A.G.M., de Freitas R.M., Quintans-Júnior L.J., Quintans J. de S.S., Mendes R.L., Almeida J.R.G. da S. The role of flavonoids on oxidative stress in epilepsy // Oxidat. Med. Cell. Longev. - 2015. DOI:10.1155/2015/171756.; Zhang Z., Sun T., Niu J.-G., He Z.-Q., Liu Y., Wang F. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects // Neural Regenerat. Res. - 2015. - Vol. 10, No.7. – P.1125. DOI:10.4103/1673-5374.160109.; Rong S., Wan D., Fan Y., Liu S., Sun K., Huo J., Zhang P., Li X., Xie X., Wang F., Sun T. Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome // Front. Pharmacol. - 2019. - Vol. 10. – P. 856. DOI:10.3389/fphar.2019.00856.; Ivetic V., Trivic S., Pogancev M.K., Popovic M., Zlinská J. Effects of St John’s wort (Hypericum perforatum L.) extracts on epileptogenesis // Molecules. - 2011. - Vol. 16, No.9. - P. 8062–8075. DOI:10.3390/molecules16098062.; Etemad L., Heidari M.R., Heidari M., Moshiri M., Behravan E., Abbasifard M., Azimzadeh B.S. Investigation of Hypericum perforatum extract on convulsion induced by picrotoxin in mice // Pak. J. Pharmaceut. Sci. - 2011. - Vol. 24, No.2. - P. 233–236.; Ishola I.O., Chatterjee M., Tota S., Tadigopulla N., Adeyemi O.O., Palit G., Shukla R. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice // Pharmacol. Biochem. Behav. - 2012. - Vol. 103, No.2. - P. 322–331. DOI:10.1016/j.pbb.2012.08.017.; Çiçek S.S. Structure-dependent activity of natural GABA (A) receptor modulators // Molecules. - 2018. - Vol. 23, No.7. – P. 1512. DOI:10.3390/molecules23071512.; Husain G.M., Chatterjee S.S., Singh P.N., Kumar V. Beneficial effect of Hypericum perforatum on depression and anxiety in a type 2 diabetic rat model // Acta Polon. Pharmaceut. - 2011. - Vol. 68, No.6. - P. 913–918.; Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. // J. Ethnopharmacol. - 2010. - Vol. 131, No.3. - P. 511–521. DOI:10.1016/j.jep.2010.07.034.; Orhan I.E., Kartal M., Gülpinar A.R., Cos P., Matheeussen A., Maes L., Tasdemir D. Assessment of antimicrobial and antiprotozoal activity of the olive oil macerate samples of Hypericum perforatum and their LC-DAD-MS analyses // Food Chem. - 2013. - Vol. 138, No.2–3. - P. 870–875. DOI:10.1016/j.foodchem.2012.11.053.; Lyles J.T., Kim A., Nelson K., Bullard-Roberts A.L., Hajdari A., Mustafa B., Quave C.L. The chemical and antibacterial evaluation of St. John’s Wort oil macerates used in Kosovar traditional medicine // Front. Microbiol. - 2017. - Vol. 8. – P. 1639. DOI:10.3389/fmicb.2017.01639.; Süntar I., Oyardı O., Akkol E.K., Ozçelik B. Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation // Pharm. Biol. - 2016. - Vol. 54, No.6. - P. 1065–1070. DOI:10.3109/13880209.2015.1102948.; Khadem Nezhad S., Taghavi Zenouz A., Aghazadeh M., Samadi Kafil H. Strong antimicrobial activity of Hypericum perforatum L. against oral isolates of Lactobacillus spp. // Cell. Mol. Biol. (Noisy-le-grand, France). - 2017. - Vol. 63, No.11. - P. 58–62. DOI:10.14715/cmb/2017.63.11.11.; López-Chicón P., Paz-Cristobal M.P., Rezusta A., Aspiroz C., Royo-Cañas M., Andres-Ciriano E., Gilaberte Y., Agut M., Nonell S. On the mechanism of Candida spp. photoinactivation by hypericin // Photochem. Photobiol. Sci. - 2012. - Vol. 11, No.6. - P. 1099–1107. DOI:10.1039/c2pp25105a.; Yow C.M., Tang H.M., Chu E.S., Huang Z. Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens // Photochem. Photobiol. - 2012. - Vol. 88, No.3. - P. 626–632. DOI:10.1111/j.1751-1097.2012.01085.x.; Mortensen T., Shen S., Shen F., Walsh M.K., Sims R.C., Miller C.D. Investigating the effectiveness of St John’s wort herb as an antimicrobial agent against mycobacteria // Phytother. Res. - 2012. - Vol. 26, No.9). - P. 1327–1333. DOI:10.1002/ptr.3716.; Chen H., Muhammad I., Zhang Y., Ren Y., Zhang R., Huang X., Diao L., Liu H., Li X., Sun X., Abbas G., Li G. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. // Front. Pharmacol. - 2019. - Vol. 10. – P.1272. DOI:10.3389/fphar.2019.01272.; Huang N., Singh N., Yoon K., Loiacono C.M., Kohut M.L., Birt D.F. The immuno-regulatory impact of orally-administered Hypericum perforatum extract on Balb/C mice inoculated with H1n1 influenza A virus // PLoS One. - 2013. - Vol. 8, No.9. – P. e76491. DOI:10.1371/journal.pone.0076491.; Pu X., Liang J., Shang R., Zhou L., Wang X., Li Y. Therapeutic efficacy of Hypericum perforatum L. extract for mice infected with an influenza A virus // Can. J. Physiol. Pharmacol. - 2012. - Vol. 90, No.2. - P. 123–130. DOI:10.1139/y11-111.; Pang R., Tao J., Zhang S., Zhu J., Yue X., Zhao L., Ye P., Zhu Y. In vitro anti-hepatitis B virus effect of Hypericum perforatum L. // J. Huazhong Univ. Sci. Technolog. Med. Sci. - 2010. – Vol.30, No.1. - P. 98–102. DOI:10.1007/s11596-010-0118-0.; Brito L.C., Berenger A.L.R., Figueiredo M.R. An overview of anticancer activity of Garcinia and Hypericum // Food Chem. Toxicol. - 2017. - Vol. 109, Pt 2. - P. 847–862. DOI: 0.1016/j.fct.2017.03.053.; Menichini G., Alfano C., Marrelli M., Toniolo C., Provenzano E., Statti G.A., Nicoletti M., Menichini F., Conforti F. Hypericum perforatum L. subsp. perforatum induces inhibition of free radicals and enhanced phototoxicity in human melanoma cells under ultraviolet light // Cell Prolif. - 2013. - Vol. 46, No.2. - P. 193–202. DOI:10.1111/cpr.12020.; Šemeláková M., Mikeš J., Jendželovský R., Fedoročko P. The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells // J. Photochem. Photobiol. B. - 2012. - Vol. 117. P. 115–125. DOI:10.1016/j.jphotobiol.2012.09.003.; Kleemann B., Loos B., Scriba T.J., Lang D., Davids L.M. St John’s Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death // PLoS One. - 2014. - Vol. 9, No.7. – P.e103762. DOI:10.1371/journal.pone.0103762.; Yi J., Yang X., Zheng L., Yang G., Sun L., Bao Y., Wu Y., Huang Y., Yu C., Yang S.N., Li Y. Photoactivation of hypericin decreases the viability of RINm5F insulinoma cells through reduction in JNK/ERK phosphorylation and elevation of caspase-9/caspase-3 cleavage and Bax-to-Bcl-2 ratio // Biosci. Rep. - 2015. - Vol. 35, No.3. - pii: e00195. DOI:10.1042/BSR20150028.; Sharma K.V., Davids L.M. Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment // Cell Biol. Int. - 2012. - Vol. 36, No.12. - P. 1261–1266. DOI:10.1042/CBI20120108.; Ritz R., Scheidle C., Noell S., Roser F., Schenk M., Dietz K., Strauss W.S. In vitro comparison of hypericin and 5-aminolevulinic acid-derived protoporphyrin IX for photodynamic inactivation of medulloblastoma cells // PLoS One. - 2012. - Vol. 7, No.12. – P.e51974. DOI:10.1371/journal.pone.0051974.; Kim H., Kim S.W., Seok K.H., Hwang C.W., Ahn J.C., Jin J.O., Kang H.W. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer // Photodiagnosis Photodyn. Ther. - 2018. – Vol.24. – P.15–21. DOI:10.1016/j.pdpdt.2018.08.008.; Valletta E., Rinaldi A., Marini M., Franzese O., Roscetti G. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells // Phytother. Res. - 2018. - Vol. 32, No.9. - P. 1803–1811. DOI:10.1002/ptr.6114.; You M.K., Kim H.J., Kook J.H., Kim H.A. St. John’s wort regulates proliferation and apoptosis in MCF-7 human breast cancer cells by inhibiting AMPK/mTOR and activating the mitochondrial pathway // Int. J. Mol. Sci. - 2018. - Vol. 19, No.4. - pii: E966. DOI:10.3390/ijms19040966.; Zaher M., Tang R., Bombarda I., Merhi F., Bauvois B., Billard C. Hyperforin induces apoptosis of chronic lymphocytic leukemia cells through upregulation of the BH3-only protein Noxa // Int. J. Oncol. - 2012. - Vol. 40, No.1. - P. 269–276. DOI:10.3892/ijo.2011.1206.; Mirmalek S.A., Azizi M.A., Jangholi E., Yadollah-Damavandi S., Javidi M.A., Parsa Y., Parsa T., Salimi-Tabatabaee S.A., Ghasemzadeh Kolagar H., Alizadeh-Navaei R. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line // Cancer Cell. Int. - 2017. - Vol. 16. – P. 3. DOI:10.1186/s12935-016-0279-4.; Ocak Z., Acar M., Gunduz E., Gunduz M., Demircan K., Uyeturk U., Ozlü T. Effect of hypericin on the ADAMTS-9 and ADAMTS-8 gene expression in MCF7 breast cancer cells // Eur. Rev. Med. Pharmacol. Sci. - 2013. - Vol. 17, No.9. - P. 1185–90.; Merhi F., Tang R., Piedfer M., Mathieu J., Bombarda I., Zaher M., Kolb J.P., Billard C., Bauvois B. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells // PLoS One. - 2011. - Vol. 6, No.10. – e25963. DOI:10.1371/journal.pone.0025963.; Kıyan H.T., Demirci B., Başer K.H., Demirci F. The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay // Pharm. Biol. - 2014. - Vol. 52, No.1. - P. 44–50. DOI:10.3109/13880209.2013.810647.; Raak C., Büssing A., Gassmann G., Boehm K., Ostermann T. A systematic review and meta-analysis on the use of Hypericum perforatum (St. John’s Wort) for pain conditions in dental practice // Homeopathy. - 2012. - Vol. 101, No.4. - P. 204–210. DOI:10.1016/j.homp.2012.08.001.; Melo M.S. de, Quintans J. de S., Araújo A.A., Duarte M.C., Bonjardim L.R., Nogueira P.C., Moraes V.R., de Araújo-Júnior J.X., Ribeiro E.A., Quintans-Júnior L.J. A systematic review for anti-inflammatory property of Clusiaceae family: a preclinical approach // Evid. Based Complement. Alternat. Med. - 2014. – P.960258. DOI:10.1155/2014/960258.; Hammer K.D., Birt D.F. Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum // Crit. Rev. Food Sci. Nutr. - 2014. - Vol. 54, No.6. - P. 781–789. DOI:10.1080/10408398.2011.607519.; Stojanović N.M., Radulović N.S., Randjelović P.J., Laketić D. Antinociceptive properties of St. John’s Wort (Hypericum perforatum) and other Hypericum species // Nat. Prod. Commun. - 2016. - Vol. 11, No.11. - P. 1741–1747.; Galeotti N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions // J. Ethnopharmacol. - 2017. - Vol. 200. - P. 136–146. DOI:10.1016/j.jep.2017.02.016.; Sanna M.D., Ghelardini C., Galeotti N. St. John’s Wort potentiates anti-nociceptive effects of morphine in mice models of neuropathic pain // Pain Med. - 2017. - Vol. 18, No.7. - P. 1334–1343. DOI:10.1093/pm/pnw241.; Dellafiora L., Galaverna G., Cruciani G., Dall’Asta C., Bruni R. On the mechanism of action of anti-inflammatory activity of hypericin: An in silico study pointing to the relevance of Janus kinases inhibition // Molecules. - 2018. - Vol. 23, No.12. - Pii: E3058. DOI:10.3390/molecules23123058.; Koeberle A., Rossi A., Bauer J., Dehm F., Verotta L., Northoff H., Sautebin L., Werz O. Hyperforin, an anti-inflammatory constituent from St. John’s Wort, inhibits microsomal prostaglandin E(2) synthase-1 and suppresses prostaglandin E(2) formation in vivo // Front. Pharmacol. - 2011. - Vol. 2. – P. 7. DOI:10.3389/fphar.2011.00007.; Hammer K.D., Yum M.Y., Dixon P.M., Birt D.F. Identification of JAK-STAT pathways as important for the anti-inflammatory activity of a Hypericum perforatum fraction and bioactive constituents in RAW 264.7 mouse macrophages // Phytochemistry. - 2010. - Vol. 71, No.7. - P. 716–725. DOI:10.1016/j.phytochem.2010.02.006.; Huang N., Rizshsky L., Hauck C., Nikolau B.J., Murphy P.A., Birt D.F. Identification of anti-inflammatory constituents in Hypericum perforatum and Hypericum gentianoides extracts using RAW 264.7 mouse macrophages // Phytochemistry. - 2011. - Vol. 72, No.16. - P. 2015–2023. DOI:10.1016/j.phytochem.2011.07.016.; Huang N., Rizshsky L., Hauck C.C., Nikolau B.J., Murphy P.A., Birt D.F. The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3 // Phytochemistry. - 2012. - Vol. 76. - P. 106–116. DOI:10.1016/j.phytochem.2011.12.001.; Hatano T., Sameshima Y., Kawabata M., Yamada S., Shinozuka K., Nakabayashi T., Mizuno H. St. John’s wort promotes adipocyte differentiation and modulates NF-κB activation in 3T3-L1 cells // Biol. Pharm. Bull. - 2014. - Vol. 37, No.7. - P. 1132–1138.; Samadi S., Khadivzadeh T., Emami A., Moosavi N.S., Tafaghodi M., Behnam H.R. The effect of Hypericum perforatum on the wound healing and scar of cesarean // J. Altern. Complement. Med. - 2010. - Vol. 16, No.1. - P. 113–117. DOI:10.1089/acm.2009.0317.; Mansouri P., Mirafzal S., Najafizadeh P., Safaei-Naraghi Z., Salehi-Surmaghi M.H., Hashemian F. The impact of topical Saint John’s Wort (Hypericum perforatum) treatment on tissue tumor necrosis factor-alpha levels in plaque-type psoriasis: A pilot study // J. Postgrad. Med. - 2017. - Vol. 63, No.4. - P. 215–220. DOI:10.4103/0022-3859.201423.; Nazıroğlu M., Sahin M., Ciğ B., Aykur M., Erturan I., Ugan Y. Hypericum perforatum modulates apoptosis and calcium mobilization through voltage-gated and TRPM2 calcium channels in neutrophil of patients with Behcet’s disease // J. Membr. Biol. - 2014. - Vol. 247, No.3. - P. 253–262. DOI:10.1007/s00232-014-9630-7.; Yücel A., Kan Y., Yesilada E., Akın O. Effect of St.John’s wort (Hypericum perforatum) oily extract for the care and treatment of pressure sores; a case report // J. Ethnopharmacol. - 2017. – Vol.196. - P. 236–241. DOI:10.1016/j.jep.2016.12.030.; Paterniti I., Briguglio E., Mazzon E., Galuppo M., Oteri G., Cordasco G., Cuzzocrea S. Effects of Hypericum perforatum, in a rodent model of periodontitis // BMC Complement. Altern. Med. - 2010. - Vol. 10. – P. 73. DOI:10.1186/1472-6882-10-73.; Süntar I. P., Akkol E. K., Yilmazer D., Baykal T., Kirmizibekmez H., Alper M., Yeşilada E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. // J. Ethnopharmacol. - 2010. - Vol. 127. - P. 468–477.; Prisăcaru A.I., Andriţoiu C.V., Andriescu C., Hăvârneanu E.C., Popa M., Motoc A.G., Sava A. Evaluation of the wound-healing effect of a novel Hypericum perforatum ointment in skin injury // Rom. J. Morphol. Embryol. - 2013. - Vol. 54, No.4. - P. 1053–1059.; Orhan I.E., Kartal M., Gülpinar A.R., Yetkin G., Orlikova B., Diederich M., Tasdemir D. Inhibitory effect of St. John’s Wort oil macerates on TNFα-induced NF-κB activation and their fatty acid composition // J. Ethnopharmacol. - 2014. - Vol. 155, No.2. - P. 1086–1092. DOI:10.1016/j.jep.2014.06.030.; Tanideh N., Namazi F., Andisheh Tadbir A., Ebrahimi H., Koohi-Hosseinabadi O. Comparative assessment of the therapeutic effects of the topical and systemic forms of Hypericum perforatum extract on induced oral mucositis in golden hamsters // Int. J. Oral Maxillofac. Surg. - 2014. - Vol. 43, No.10. - P. 1286–1292. DOI:10.1016/j.ijom.2014.05.013.; Farsak M., Özdağli G., Özmüş D., Çömelekoğlu Ü., Yalın S., Bozdoğan Arpacı R., Gen R., Kanık A., Ümit Talas D. Effects of Hypericum perforatum on an experimentally induced diabetic wound in a rat model // Wounds. - 2017. - Vol. 29, No.2. - P. E10–E17.; Altan A., Aras M.H., Damlar İ., Gökçe H., Özcan O., Alpaslan C. The effect of Hypericum perforatum on wound healing of oral mucosa in diabetic rats // Eur. Oral Res. - 2018. - Vol. 52, No.3. - P. 143–149. DOI:10.26650/eor.2018.505.; Akay M.A., Akduman M., Tataroğlu A.Ç., Eraldemir C., Kum T., Vural Ç., Yıldız G.E. Evaluation of the efficacy of Hypericum perforatum (St. John’s wort) oil in the prevention of stricture due to esophageal corrosive burns // Esophagus. - 2019. - Vol. 16, No.4. - P. 352–361. DOI:10.1007/s10388-019-00671-2.; Yılmaz U., Kaya H., Turan M., Bir F., Şahin B. Investigation the effect of Hypericum perforatum on corneal alkali burns // Cutan. Ocul. Toxicol. - 2019. - Vol. 38, No.4. - P. 356–359. DOI:10.1080/15569527.2019.1622560.; Füller J., Müller-Goymann C. C. Anti-proliferative and anti-migratory effects of hyperforin in 2D and 3D artificial constructs of human dermal fibroblasts - A new option for hypertrophic scar treatment? // Eur. J. Pharm. Biopharm. - 2018. - Vol. 126. - P. 108–114. DOI:10.1016/j.ejpb.2017.03.003.; Sharma K.V., Davids L.M. Depigmentation in melanomas increases the efficacy of hypericin-mediated photodynamic-induced cell death // Photodiagnosis Photodyn. Ther. - 2012. - Vol. 9, No.2. - P. 156–163. DOI:10.1016/j.pdpdt.2011.09.003.; Arokiyaraj S., Balamurugan R., Augustian P. Antihyperglycemic effect of Hypericum perforatum ethyl acetate extract on streptozotocin-induced diabetic rats // Asian Pac. J. Trop. Biomed. - 2011. – Vol.1, No.5. - P. 386–390. DOI:10.1016/S2221-1691(11)60085-3.; Can Ö.D., Öztürk Y., Öztürk N., Sagratini G., Ricciutelli M., Vittori S., Maggi F. Effects of treatment with St. John’s Wort on blood glucose levels and pain perceptions of streptozotocin-diabetic rats // Fitoterapia. - 2011. - Vol. 82, No.4. - P. 576–584. DOI:10.1016/j.fitote.2011.01.008.; You M.K., Rhuy J., Jeong K.S., Bang M.A., Kim M.S., Kim H.A. Effect of St. John’s Wort (Hypericum perforatum) on obesity, lipid metabolism and uterine epithelial proliferation in ovariectomized rats // Nutr. Res. Pract. - 2014. - Vol. 8, No.3. - P. 292–296. DOI:10.4162/nrp.2014.8.3.292.; Husain G.M., Chatterjee S.S., Singh P.N., Kumar V. Hypolipidemic and antiobesity-like activity of standardised extract of Hypericum perforatum L. in rats // ISRN Pharmacol. - 2011. – P. 505247. DOI:10.5402/2011/505247.; Moghaddam M.H.G., Roghani M., Maleki M. Effect of Hypericum perforatum aqueous extracts on serum lipids, aminotransferases, and lipid peroxidation in hyperlipidemic rats // Res. Cardiovasc. Med. - 2016. - Vol. 5, No.2. - e31326. DOI:10.5812/cardiovascmed.31326.; Novelli M., Beffy P., Menegazzi M., De Tata V., Martino L., Sgarbossa A., Porozov S., Pippa A., Masini M., Marchetti P., Masiello P. St. John’s wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity // Acta Diabetol. - 2014. - Vol. 51, No.1. - P. 113–121.; Richard A.J., Amini Z.J., Ribnicky D.M., Stephens J.M. St. John’s Wort inhibits insulin signaling in murine and human adipocytes // Biochim. Biophys. Acta. - 2012. - Vol. 1822, No.4. - P. 557–563. DOI:10.1016/j.bbadis.2011.12.005.; Abd El Motteleb D.M., Abd El Aleem D.I. Renoprotective effect of Hypericum perforatum against diabetic nephropathy in rats: Insights in the underlying mechanisms // Clin. Exp. Pharmacol. Physiol. - 2017. - Vol. 44, No.4. - P. 509–521. DOI:10.1111/1440-1681.12729.; Valeri A., Capasso R., Valoti M., Pessina F. Effects of St John’s wort and its active constituents, hypericin and hyperforin, on isolated rat urinary bladder // J. Pharm. Pharmacol. - 2012. - Vol. 64, No.12. - P. 1770–1776. DOI:10.1111/j.2042-7158.2012.01556.x.; Khalili M., Jalali M.R., Mirzaei-Azandaryani M. Effect of hydroalcoholic extract of Hypericum perforatum L. leaves on ethylene glycol-induced kidney calculi in rats // Urol. J. - 2012. - Vol. 9, No.2. - P. 472–479.; Eatemadnia A., Ansari S., Abedi P., Najar S. The effect of Hypericum perforatum on postmenopausal symptoms and depression: A randomized controlled trial // Complement. Ther. Med. - 2019. - Vol. 45. - P. 109–113. DOI:10.1016/j.ctim.2019.05.028.; Ghazanfarpour M., Kaviani M., Asadi N., Ghaffarpasand F., Ziyadlou S., Tabatabaee H.R., Dehghankhalili M. Hypericum perforatum for the treatment of premenstrual syndrome // Int. J. Gynaecol. Obstet. - 2011. - Vol. 113, No.1. - P. 84–85. DOI:10.1016/j.ijgo.2010.11.007.; Conceição A.O. da, Takser L., Lafond J. Effect of St. John’s Wort standardized extract and hypericin on in vitro placental calcium transport // J. Med. Food. - 2010. - Vol. 13, No.4. - P. 934–942. DOI:10.1089/jmf.2009.0161.; Kahyaoğlu F., Gökçimen A., Demirci B. Investigation of the embryotoxic and teratogenic effect of Hypericum perforatum in pregnant rats // Turk. J. Obstet. Gynecol. - 2018. – Vol.15, No.2. – P.87–90. DOI:10.4274/tjod.84429.; Demirci B., Kahyaoğlu F., Atakul T., Yılmaz M., Özoran Y. Detrimental effect of Hypericum perforatum on ovarian functions // J. Turk. Ger. Gynecol. Assoc. - 2019. - Vol. 20, No.2. - P. 65–69. DOI:10.4274/jtgga.galenos.2018.2018.0041.; Halicioglu K., Çörekçi B., Akkaş İ., Irgin C., Özan F., Yilmaz F., Türker A. Effect of St John’s wort on bone formation in the orthopaedically expanded premaxillary suture in rats: a histological study // Eur. J. Orthod. - 2015. - Vol. 37, No.2. - P. 164–169. DOI:10.1093/ejo/cju028.; Seferos N., Petrokokkinos L., Kotsiou A., Rallis G., Tesseromatis C. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats // Stomatologija. - 2016. - Vol. 18, No.1. - P. 9–13.; Mendi A., Gökçınar Yağcı B., Saraç N., Kızıloğlu M., Uğur A., Uçkan D., Yılmaz D. The effects of Hypericum perforatum L. on the proliferation, osteogenic differentiation, and inflammatory response of mesenchymal stem cells from different niches // Cells Tissues. Organs. - 2018. - Vol. 205, No.4. - P. 208–216. DOI:10.1159/000491633.; Damlar I., Arpağ O.F., Tatli U., Altan A. Effects of Hypericum perforatum on the healing of xenografts: a histomorphometric study in rabbits // Br. J. Oral Maxillofac. Surg. - 2017. - Vol. 55, No.4. - P. 383–387. DOI:10.1016/j.bjoms.2016.12.003.; Aydin A., Sakrak O., Yilmaz T.U., Kerem M. The effects of Hypericum perforatum on hepatic ischemia-reperfusion injury in rats // Bratisl. Lek. Listy. - 2014. - Vol. 115, No.4. - P. 209–215.; Hohmann M.S., Cardoso R.D., Fattori V., Arakawa N.S., Tomaz J.C., Lopes N.P., Casagrande R., Verri W.A.Jr. Hypericum perforatum reduces paracetamol-induced hepatotoxicity and lethality in mice by modulating inflammation and oxidative stress // Phytother. Res. - 2015. - Vol. 29, No.7. - P. 1097–1101. DOI:10.1002/ptr.5350.; Bayramoglu G., Bayramoglu A., Engur S., Senturk H., Ozturk N., Colak S. The hepatoprotective effects of Hypericum perforatum L. on hepatic ischemia/reperfusion injury in rats // Cytotechnology. - 2014. - Vol. 66, No.3. - P. 443–448. DOI:10.1007/s10616-013-9595-x.; Mohammadinia S., Abedi S.M., Noaparast Z. St. John’s Wort accelerates the liver clearance of technetium-99-sestamibi in rats // Nucl. Med. Commun. - 2018. - Vol. 39, No.9. - P. 839–844. DOI:10.1097/MNM.0000000000000880.; Khan A.U., Gilani A.H., Najeeb-ur-Rehman. Pharmacological studies on Hypericum perforatum fractions and constituents // Pharm. Biol. - 2011. - Vol. 49, No.1. - P. 46–56. DOI:10.3109/13880209.2010.494307.; Heinrich M., Lorenz P., Daniels R., Stintzing F.C., Kammerer D.R. Lipid and phenolic constituents from seeds of Hypericum perforatum L. and Hypericum tetrapterum Fr. and their antioxidant activity // Chem. Biodivers. - 2017. - Vol. 14, No.8. - e1700100. DOI:10.1002/cbdv.201700100.; Heydarian M., Jooyandeh H., Nasehi B., Noshad M. Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling // Int. J. Biol. Macromol. - 2017. - Vol. 104, Pt A. - P. 287–293. DOI:10.1016/j.ijbiomac.2017.06.049.; Meinke M.C., Schanzer S., Haag S.F., Casetti F., Müller M.L., Wölfle U., Kleemann A., Lademann J., Schempp C.M. In vivo photoprotective and anti-inflammatory effect of hyperforin is associated with high antioxidant activity in vitro and ex vivo // Eur. J. Pharm. Biopharm. - 2012. - Vol. 81, No.2. - P. 346–350. DOI:10.1016/j.ejpb.2012.03.002.; Micioni Di Bonaventura MV, Vitale G, Massi M, Cifani C. Effect of Hypericum perforatum Extract in an Experimental Model of Binge Eating in Female Rats // J Obes. – 2012. Vol.2012. – P.956137. DOI:10.1155/2012/956137.; Peron A.P., Mariucci R.G., de Almeida I.V., Düsman E., Mantovani M.S., Vicentini V.E. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of a natural antidepressant, Hypericum perforatum L. (St. John’s wort), on vegetal and animal test systems // BMC Complement. Altern. Med. - 2013. - Vol. 13. – P. 97. Doi:10.1186/1472-6882-13-97.; Imreova P., Feruszova J., Kyzek S., Bodnarova K., Zduriencikova M., Kozics K., Mucaji P., Galova E., Sevcovicova A., Miadokova E., Chalupa I. Hyperforin exhibits antigenotoxic activity on human and bacterial cells // Molecules. - 2017. - Vol. 22, No.1. - Pii: E167. DOI:10.3390/molecules22010167.; Ševčovičová A., Šemeláková M., Plšíková J., Loderer D., Imreová P., Gálová E., Kožurková M., Miadoková E., Fedoročko P. DNA-protective activities of hyperforin and aristoforin // Toxicol. In Vitro. - 2015. - Vol. 29, No.3. - P. 631–637. DOI:10.1016/j.tiv.2015.01.016.; You M.K., Kim D.W., Jeong K.S., Bang M.A., Kim H.S., Rhuy J., Kim H.A. St. John’s Wort (Hypericum perforatum) stimulates human osteoblastic MG-63 cell proliferation and attenuates trabecular bone loss induced by ovariectomy // Nutr. Res. Pract. - 2015. - Vol. 9, No.5. - P. 459–465. DOI:10.4162/nrp.2015.9.5.459.; Abtahi Froushani S.M., Esmaili Gouvarchin Galee H., Khamisabadi M., Lotfallahzade B. Immunomudulatory effects of hydroalcoholic extract of Hypericum perforatum // Avicenna J. Phytomed. - 2015. - Vol. 5, No.1. - P. 62–68.; Eğilmez O.K., Kökten N., Ekici A.I., Kalcıoğlu M.T., Yesilada E., Tekin M. The effect of Hypericum perforatum L. (St. John’s Wort) on prevention of myringosclerosis after myringotomy in a rat model // Int. J. Pediatr. Otorhinolaryngol. - 2015. - Vol. 79, No.7. - P. 1128–1134. DOI:10.1016/j.ijporl.2015.05.009.; Radulović N.S., Genčić M.S., Stojanović N.M., Randjelović P.J., Baldovini N., Kurteva V. Prenylated β-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites // Food Chem. Toxicol. - 2018. - Vol. 118. - P. 505–513. DOI:10.1016/j.fct.2018.05.009.; Guo Y., Zhang N., Sun W., Duan X., Zhang Q., Zhou Q., Chen C., Zhu H., Luo Z., Liu J., Li X. N., Xue Y., Zhang Y. Bioactive polycyclic polyprenylated acylphloroglucinols from Hypericum perforatum // Org. Biomol. Chem. - 2018. - Vol. 16, No.43. - P. 8130–8143. DOI:10.1039/c8ob02067a.; Yang J.F., Liu Y.R., Huang C.C., Ueng Y.F. The time-dependent effects of St John’s wort on cytochrome P450, uridine diphosphate-glucuronosyltransferase, glutathione S-transferase, and NAD(P)H-quinone oxidoreductase in mice // J. Food Drug. Anal. - 2018. - Vol. 26, No.1. - P. 422–431. DOI:10.1016/j.jfda.2017.01.004.; https://www.pharmpharm.ru/jour/article/view/793

  3. 3
  4. 4