Showing 1 - 20 results of 431 for search '"Магнитная проницаемость"', query time: 0.68s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Contributors: This research was funded by the Guangdong Provincial Science and Technology Program, Grant no. 2022A0505050082 (Study concept and design) and by the section 4.1.38 “Development and research of electrical insulating materials for stators of reversible electrical machines based on iron-containing encapsulated materials with a given direction of magnetic flux” of the State Scientific Research Program “Materials Science, New Materials and Technologies” for 2021–2025, subprogram “Multifunctional and composite materials” (Experimental investigations, Methodology, Data interpretation), Работа выполнена при поддержке программы науки и технологий провинции Гуандун, грант № 2022A0505050082 (концепция и дизайн исследования) и задания 4.1.38 «Разработка и исследование электроизоляционных материалов для статоров обратимых электрических машин на основе железосодержащих капсулированных материалов с заданным направлением магнитного потока» Государственной программы научных исследований «Материаловедение, новые материалы и технологии» на 2021–2025 гг. подпрограммы «Многофункциональные и композиционные материалы» (экспериментальные исследования, методология, интерпретация данных)

    Source: Doklady of the National Academy of Sciences of Belarus; Том 67, № 6 (2023); 508-516 ; Доклады Национальной академии наук Беларуси; Том 67, № 6 (2023); 508-516 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-6

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1167/1168; Peiseler L., Cabrera Serrenho A. How can current German and EU policies be improved to enhance the reduction of CO2 emissions of road transport? Revising policies on electric vehicles informed by stakeholder and technical assessments. Energy Policy, 2022, vol. 168, art. 113124. https://doi.org/10.1016/j.enpol.2022.113124; Chau K.-T., Li W., Lee C. H. T. Challenges and opportunities of electric machines for renewable energy. Progress in Electromagnetics Research B, 2012, vol. 42, pp. 45–74. https://doi.org/10.2528/pierb12052001; Fassbender D., Zakharov V., Minav T. Utilization of electric prime movers in hydraulic heavy-duty-mobile-machine implement systems. Automation in Construction, 2021, vol. 132, art. 103964. https://doi.org/10.1016/j.autcon.2021.103964; Shokrollahi H., Janghorban K. Soft magnetic composite materials (SMCs). Journal of Materials Processing Technology, 2007, vol. 189, no. 1–3, pp. 1–12. https://doi.org/10.1016/j.jmatprotec.2007.02.034; Birčáková Z., Kollár P., Weidenfeller B., Füzer J., Bureš R., Fáberová M. Reversible and irreversible magnetization processes along DC hysteresis loops of Fe-based composite materials. Journal of Magnetism and Magnetic Materials, 2019, vol. 483, pp. 183–190. https://doi.org/10.1016/j.jmmm.2019.03.115; Guan W. W., Shi X. Y., Xu T. T., Wan K., Zhang B. W., Liu W., Su H. L., Zou Z. Q., Du Y. W. Synthesis of wellinsulated Fe–Si–Al soft magnetic composites via a silane-assisted organic/inorganic composite coating route. Journal of Physics and Chemistry of Solids, 2021, vol. 150, art. 109841. https://doi.org/10.1016/j.jpcs.2020.109841; Zhang Y., Dong Y., Zhou B., Chi Q., Chang L., Gong M., Huang J., Pan Y., He A., Li J., Wang X. Poly-para-xylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition. Materials & Design, 2020, vol. 191, art. 108650. https://doi.org/10.1016/j.matdes.2020.108650; Wu C., Gao X., Zhao G., Jiang Y., Yan M. Two growth mechanisms in one-step fabrication of the oxide matrix for FeSiAl soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2018, vol. 452, pp. 114–119. https://doi.org/10.1016/j.jmmm.2017.12.032; Ashby M. F., Ferreira P., Schodek D. L. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects. Butterworth-Heinemann, 2009. 560 p. https://doi.org/10.1016/b978-0-7506-8149-0.x0001-3; Gheiratmand T., Madaah Hosseini H. R. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements. Journal of Magnetism and Magnetic Materials, 2016, vol. 408, pp. 177–192. https://doi.org/10.1016/j.jmmm.2016.02.057; Shokrollahi H., Janghorban K. Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2007, vol. 317, no. 1–2, pp. 61–67. https://doi.org/10.1016/j.jmmm.2007.04.011; Qian L., Peng J., Xiang Z., Pan Y., Lu W. Effect of annealing on magnetic properties of Fe/Fe3O4 soft magnetic composites prepared by in-situ oxidation and hydrogen reduction methods. Journal of Alloys and Compounds, 2019, vol. 778, pp. 712–720. https://doi.org/10.1016/j.jallcom.2018.11.184; Hsiang H.-I., Fan L.-F., Hung J.-J. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2018, vol. 447, pp. 1–8. https://doi.org/10.1016/j.jmmm.2017.08.096; Nakamura R., Matsubayashi G., Tsuchiya H., Fujimoto S., Nakajima H. Transition in the nanoporous structure of iron oxides during the oxidation of iron nanoparticles and nanowires. Acta Materialia, 2009, vol. 57, no. 14, pp. 4261–4266. https://doi.org/10.1016/j.actamat.2009.05.023; Taghvaei A. H., Shokrollahi H., Janghorban K. Properties of iron-based soft magnetic composite with iron phosphatesilane insulation coating. Journal of Alloys and Compounds, 2009, vol. 481, no. 1–2, pp. 681–686. https://doi.org/10.1016/j.jallcom.2009.03.074; https://doklady.belnauka.by/jour/article/view/1167

  8. 8
    Academic Journal
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Source: Science & Technique; Том 22, № 5 (2023); 428-432 ; НАУКА и ТЕХНИКА; Том 22, № 5 (2023); 428-432 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2023-22-5

    File Description: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2711/2291; Amirov S. F., Ataullaev A. O. (2019) Mathematical Models of Linear Magnetic Chains of Electromagnetic Converters of Flow with a Ring Channel. International Journal of Advanced Research in Science, Engineering and Technology, 6 (6), 9677–9682.; Amirov S. F. Ataullaev N. O. (2016) Performance of Magnitemodulying Carrent Sensor. International Journal of Advanced Research in Science, Engineering and Technology, 3 (7), 2337–2346.; Ataullaev N. O. (2014) Study of Measurements of Large Direct Currents in Chemical and Metallurgical Industries. Prospects for Science and Production of Chemical Technology in Uzbekistan. Proceedings of the Scientific and technical Conference. Navoi, 164–165 (in Russian).; Jumaev O. A., Karpovic D. S., Ismoilov M. T. (2022) Methods for Digital Signal Processing and Digital Filter Synthesis. AIP Conference Proceedings, 2656 (1), 020026. https://doi.org/10.1063/5.0106311.; Ataullaev N. O., Ataullaeva N. B. (2015) Study of Magnetic Modulation Sensors. Mining and Metallurgical Complex: Achievements, Problems and Modern Development Trends. Proceedings of the Scientific and Technical Conference. Navoi (in Russian).; Ripka P. (ed.) (2001) Magnetic Sensors and Magnetometers. Boston, Artech House.; Razin G. I., Shchelkin A. P. (1974) Non-Contact Measurement of Electric Currents. Moscow, Atomizdat Publ. 160 (in Russian).; Bronstein I. N., Semendyaev K. A. (1986) Handbook of Mathematics for Engineers and Students of Higher Education Institutions. 13th ed. Moscow, Nauka Publ. 544 (in Russian).; Lebedev V. D., Yablokov A. A., Lebedev D. A., Naumov A. V., Mironov S. V. (2017) High Voltage Digital Device for Measuring Current. Patent of Russia (RU) No 170116 (in Russian).; Novgorodtsev A. B. (2004) Calculation of Electrical Circuits in MATLAB: A Training Course. St. Petersburg, Peter Publ. 250 (in Russian).; Ataullaev N., Ataullaev A., Karimtoshovich S. M. (2021). Control and Management of the Operating Modes of Batteries with the use of Magnetic Modulation Converters. IOP Conference Series: Materials Science and Engineering, 1047 (1), 012030. https://doi.org/10.1088/1757-899x/1047/1/012030.; Ataullaev N. O., Nizomova D. F., Muxammadov B. Q. (2021) Mathematical Models of Magnetic Circuits of a Magnetomodulation DC Converter. Journal of Physics: Conference Series, 2094 (5), 052039. https://doi.org/10.1088/1742-6596/2094/5/052039.; https://sat.bntu.by/jour/article/view/2711

  14. 14
    Academic Journal

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 2 (2023); 110-121 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 2 (2023); 110-121 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-2

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/520/421; Lu A.-H., Salabas Е.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007; 46(8): 1222—1244. https://doi.org/10.1002/anie.200602866; Gubin S.P., Spichkin Y.I., Yurkov G.Yu., Tishin A.M. Nanomaterial for high-density magnetic data storage. Russian Journal of Inorganic Chemistry. 2002; 47(1): S32—S67.; Xu Y.H., Bai J., Wang J.-P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. Journal of Magnetism and Magnetic Materials. 2007; 311(1): 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174; Khadzhiev S.N., Kulikova M.V., Ivantsov M.I., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Bondarenko G.N., Oknina N.V. Fischer-Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry. 2016; 56: 522—528. https://doi.org/10.1134/S0965544116060049; Qiu F., Dai Y., Li Li, Xu Ch., Huang Y., Chen Ch., Wang Y., Jiao L., Yuan H. Synthesis of Cu@FeCo core-shellnanoparticles for the catalytic hydrolysis of ammonia borane. International Jornal of Hydrogen Energy. 2014; 39(1): 436—441.; Xu M.H., Zhong W., Qi X.S., Au C.T., Deng Y., Du Y.W. Highly stable Fe-Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds. 2010; 495(1): 200—204. https://doi.org/10.1016/j.jallcom.2010.01.121; Bahgat M., Paek M.-K., Pak J.-J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCo1-xFe2O4. Journal of Alloys and Compounds. 2008; 466(1-2): 59—66. https://doi.org/10.1016/j.jallcom.2008.01.147; Azizi A., Yoozbashizadeh H., Sadrnezhaad S.K. Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe-16.5Ni-16.5Co nano-powder. Journal of Magnetism and Magnetic Materials. 2009; 321(18): 2729—2732. https://doi.org/10.1016/j.jmmm.2009.03.085; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203. https://doi.org/10.1016/S0304-8853(00)00081-0; Dalavi S.B., Theerthagiri J., Raja M.M., Panda R.N. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys. Journal of Magnetism and Magnetic Materials. 2013; 344: 30—34. https://doi.org/10.1016/j.jmmm.2013.05.026; Prasad N.Kr., Kumar V. Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. Journal of Materials Science: Materials in Electronics. 2015; 26(12): 10109—10118. https://doi.org/10.1007/s10854-015-3695-7; Zehani K., Bez R., Boutahar A., Hlil E.K., Lassri H., Moscovici J., Mliki N., Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticlesJ. Journal of Alloys and Compounds. 2014; 591: 58—64. https://doi.org/10.1016/j.jallcom.2013.11.208; Yang Y., Xu C., Xia Y., Wang T., Li F. Synthesis and microwave absorption properties of FECO nanoplates. Journal of Alloys and Compounds. 2010; 493(1-2): 549—552. https://doi.org/10.1016/j.jallcom.2009.12.153; Liu X.G., Ou Z.Q., Geng D.Y., Han Z., Jiang J.J., Liu W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203.; Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657—664. https://doi.org/10.1134/S1063739721080072; Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E.Yu., Popkova A.V., Novotortsev V.M. Synthesis, structure and electromagnetic properties of nanocomposites with threecomponent FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(10): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin E.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105; Mondal B.N., Basumallick A., Nath D.N., Cnattopaahyuy P.P. Phase evolution and magnetic, behavior of Сu-Ni-Co-Fe quaternary alloys synthesized by ball milling. Material Chemistry and Physics. 2009; 116(2): 358—362. https://doi.org/10.1016/j.matchemphys.2009.03.036; Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П. Формирование металл-углеродных нанокомпозитов на основе наночастиц сплава Cu-Fe и карбонизированного полиакрилонитрила. Физика и химия обработки материалов. 2021; (1): 58—66. https://doi.org/10.30791/0015-3214-2021-1-58-66; Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095—14107. https://doi.org/10.1103/physrevb.61.14095; Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007; 143(1-2): 47—57. https://doi.org/10.1016/j.ssc.2007.03.052; Afghahi S.S., Shokuhfar A. Two stepsinthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. Journal of Magnetism and Magnetic Materials. 2014; 370: 37—44. https://doi.org/10.1016/j.jmmm.2014.06.040; Родионов В.В. Механизмы взаимодействия СВЧ-излучения с наноструктурированными углеродсодержащими материалами. Дисс. … канд. физ.-мат. наук. Курск; 2015. 169 с.; https://met.misis.ru/jour/article/view/520

  15. 15
    Academic Journal
  16. 16
  17. 17
  18. 18
  19. 19
    Conference

    Relation: Osoba, D. Non-destructive testing of the part surface layer after grinding / D. Osoba; scientific director V. Larshin // Сучасні інформ. технології та телекомунікаційні мережі : тези доп. 56-ої наук. конф. молодих дослідників ДУОП-бакалаврів. - Одеса, 2021. - С. 121-128.; http://dspace.opu.ua/jspui/handle/123456789/11644

  20. 20