Showing 1 - 20 results of 330 for search '"МНОЖЕСТВЕННАЯ ЛЕКАРСТВЕННАЯ УСТОЙЧИВОСТЬ"', query time: 1.02s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: Исследование не имело спонсорской поддержки

    Source: Pharmacogenetics and Pharmacogenomics; № 2 (2025); 23-29 ; Фармакогенетика и фармакогеномика; № 2 (2025); 23-29 ; 2686-8849 ; 2588-0527

    File Description: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/330/287; WHO. Global Tuberculosis Report 2024. – Geneva: World Health Organization, 2024. – P. 1-68. URL: https://worldhealthorg.shinyapps.io/tb_profiles/; Guglielmetti L, Panda S, Abubakirov A, et al. Equitable, personalised medicine for tuberculosis: treating patients, not diseases. Lancet Respir Med. 2025 May;13(5):382-385. doi:10.1016/S2213-2600(25)00080-3.; Thu VTA, Dat LD, Jayanti RP, et al. Advancing personalized medicine for tuberculosis through the application of immune profiling. Front Cell Infect Microbiol. 2023 Feb 10;13:1108155. doi:10.3389/fcimb.2023.1108155.; Клиническая фармакогенетика: учебное. пособие для студентов медицинских вузов / Д. А. Сычев [и др.]; под. ред. В. Г. Кукеса, Н. П. Бочкова. Москва: ГЭОТАР-Медиа, 2007. 245 с. ISBN 978-5-9704-0458-4.; Можокина Г.Н., Казаков А.В., Елистратова Н.А., Попов С.А. Ферменты биотрансформации ксенобиотиков и персонификация режимов лечения больных туберкулезом. Туберкулёз и болезни лёгких. 2016;94(4):6-12. doi:10.21292/2075-1230-2016-94-4-6-12.; Verma R, da Silva KE, Rockwood N, Wasmann RE, Yende N, Song T, Kim E, Denti P, Wilkinson RJ, Andrews JR. A Nanopore sequencing-based pharmacogenomic panel to personalize tuberculosis drug dosing. medRxiv. Am J Respir Crit Care Med. 2024 Jun 15;209(12):1486-1496. doi:10.1164/rccm.202309-1583OC.; Кантемирова Б.И., Галимзянов Х.М., Степанова Н.А., и др. Перспективы фармакогенетического тестирования для разработки алгоритмов персонализированного лечения тубекулёза органов дыхания в Астраханском регионе. Антибиотики и Химиотерапия. 2015;60(910):29-32.; Azuma J, Ohno M, Kubota R, et al; Pharmacogenetics-based tuberculosis therapy research group. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013 May;69(5):1091-101. doi:10.1007/s00228-012-1429-9.; Краснова Н.М., Евдокимова Н.Е., Егорова А.А., и др. Влияние типа ацетилирования на частоту гепатотоксичности изониазида у пациентов с впервые выявленным туберкулезом органов дыхания. Антибиотики и Химиотерапия. 2020;65(7-8):31-36. doi:10.37489/02352990-2020-65-7-8-31-36.; Yang S, Hwang SJ, Park JY, et al. Association of genetic polymorphisms of CYP2E1, NAT2, GST and SLCO1B1 with the risk of anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis. BMJ Open. 2019;9(8):e027940. doi:10.1136/bmjopen-2018-027940.; Иванова Д.А., Галкина К.Ю., Борисов С.Е., и др. Фармакогенетические методы в оценке риска гепатотоксических реакций при лечении впервые выявленных больных туберкулезом. Туберкулез и социально значимые заболевания. 2018;(3):43-48.; Проблемы лекарственной устойчивости микобактерий / под ред. Е.М. Богородской, Д.А. Кудлая, В.И. Литвинова. М.: МНПЦБТ. 2021. 504 с. ISBN 978-5-89180-134-9.; Haas DW, Abdelwahab MT, van Beek SW, et al. Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. J Infect Dis. 2022 Aug 12;226(1):147-156. doi:10.1093/infdis/jiac024.; Annisa N, Afifah NN, Santoso P, et al. Pharmacogenetics and Pharmacokinetics of Moxifloxacin in MDR-TB Patients in Indonesia: Analysis for ABCB1 and SLCO1B1. Antibiotics (Basel). 2025 Feb 16;14(2):204. doi:10.3390/antibiotics14020204.; Клинические рекомендации. Туберкулез у взрослых. 2024. Министерство здравоохранения Российской Федерации: официальный сайт. Доступно по: https://cr.minzdrav.gov.ru/recomend/16_3. Ссылка активна на 15.06.2025; Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Доступно по: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm. Дата обращения: Ссылка активна на 15.06.2025; Захаров А.В., Еремеев В.В., Чумоватов Н.В., и др. Клиникогенетические ассоциации полиморфных аллелей гена CYP3A4 у больных туберкулезом легких с лекарственной устойчивостью возбудителя. Вестник ЦНИИТ. 2024;8(4):17-30. doi:10.57014/2587-6678-2024-8-4-17-30.; Юнусбаева М.М., Бородина Л.Я., Билалов Ф.С. и др. Исследование влияния полиморфизма генов CYP3A5, CYP2B6 и NAT2 на эффективность лечения туберкулёза с множественной лекарственной устойчивостью. Фармакогенетика и фармакогеномика. 2020;(2):26-27. doi:10.37489/2588-0527-2020-2-26-27.; Wang N, Chen X, Hao Z, et al. Association of ABCG2 polymorphisms with susceptibility to anti-tuberculosis drug-induced hepatotoxicity in the Chinese population. Xenobiotica. 2022 May;52(5):527-533. doi:10.1080/00498254.2022.2093685.

  4. 4
    Academic Journal

    Source: HIV Infection and Immunosuppressive Disorders; Том 16, № 4 (2024); 81-89 ; ВИЧ-инфекция и иммуносупрессии; Том 16, № 4 (2024); 81-89 ; 2077-9828 ; 10.22328/2077-9828-2024-16-4

    File Description: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/966/617; Стародубов В.И., Цыбикова Э.Б., Котловский М.Ю., Лапшина И.С. Заболеваемость туберкулезом в России в период до и во время пандемии COVID-19 // Инфекционные болезни: новости, мнения, обучение. 2023. Т. 12, № 3. С. 18–25 doi: https://doi.org/10.33029/2305-3496-2023-12-3-18-25.; Цыбикова Э.Б. Заболеваемость туберкулезом в субъектах Российской Федерации в 2020 году // Социальные аспекты здоровья населения [сетевое издание]. 2022. Т. 68, № 2. С. 10. 2022, Vol. 68, No. 2, рp. 10. Available from: http://vestnik.mednet.ru/content/view/1364/30/lang,ru/ doi:10.21045/2071-5021-2022-68-2-10 (In Russ.)].; Ставицкая Н.В., Фелькер И.Г., Немкова Е.К. Диагностика лекарственной устойчивости M. tuberculosis в регионах Сибирского федерального округа // Туберкулез и болезни легких. 2024. Т. 102, № 3. С. 8–57. https://doi.org/10.58838/2075-1230-2024-102-3-48-57.; Цыбикова Э.Б. Туберкулез, сочетанный с ВИЧ-инфекцией, в России в период до и во время пандемии COVID-19 // ВИЧ-инфекция и иммуносупрессии. 2022. T. 14, № 4. С. 29–35.https://doi.org/10.22328/2077-9828-2022-14-4-29-35.; Боровицкий В.С., Синицын М.В. Клинические факторы, связанные с неблагоприятным исходом у больных туберкулезом с ВИЧ-инфекцией // Туберкулез и болезни легких. 2021. Т. 99, № 10. С. 28–34. doi:10.21292/2075-1230-2021-99-10-28-34.; Адгамов Р.Р., Антонова А.А., Огаркова Д.А., Кузнецова А.И., Почтовый А.А., Клейменов Д.А., Кузнецова Н.А., Синявин А.Э., Каминский Г.Д., Цыганова Е.В., Гущин В.А., Гинцбург А.Л., Мазус А.И. ВИЧ-инфекция в Российской Федерации: современные тенденции диагностики // ВИЧ-инфекция и иммуносупрессии. 2024. Т. 16, № 1. С. 45–59. http://dx.doi.org/10.22328/2077-9828-2024-16-1-45-59.; Попов С.А., Сабгайда Т.П., Радина Т.С. Оценка взаимосвязи ВИЧ-инфекции и туберкулеза с множественной лекарственной устойчивостью возбудителя // Туберкулез и болезни легких. 2018. Т. 96, № 7. С. 25–32. doi:10.21292/2075-1230-2018-96-7-25-32.; WHO (2023). Global tuberculosis report 2023. Available at: https://www.who.int/teams/global-tuberculosis-programme/tb-reports; Matulyte E., Davidaviciene E., Kancauskiene Z., Diktanas S., Kausas A., Velyvyte D., Urboniene J., Lipnickiene V., Laurencikaite M., Danila E., Costagliola D., Matulionyte R. The socio-demographic, clinical characteristics and outcomes of tuberculosis among HIV infected adults in Lithuania: A thirteen-year analysis // PLoS One. 2023. Mar 23. Vol. 18, No. 3. e0282046. doi:10.1371/journal.pone.0282046. PMID: 36952578; PMCID: PMC10035857.; Sultana Z.Z., Hoque F.U., Beyene J., Akhlak-Ul-Islam M., Khan M.H.R., Ahmed S., Hawlader D.H., Hossain A. HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis // BMC Infect. Dis. 2021. Jan 11. Vol. 21, No. 1. Р. 51. doi:10.1186/s12879-02005749-2. Erratum in: BMC Infect. Dis. 2021. Jan 20. Vol. 21, No. 1. Р. 86. doi:10.1186/s12879-021-05799-0. PMID: 33430786; PMCID: PMC7802168.; Singh A., Prasad R., Balasubramanian V., Gupta N. Drug-Resistant Tuberculosis and HIV Infection: Current Perspectives // HIV AIDS (Auckl). 2020. Jan 13. Vol. 12. Р. 9–31. doi:10.2147/HIV.S193059. PMID: 32021483; PMCID: PMC6968813.

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Contributors: The study was carried out with the support of the Russian Science Foundation (RSF) (grant No. 20-15-00001) and was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan (Volga Region) Federal University, Исследование выполнено при поддержке Российского научного фонда (грант № 20-15-00001) и проведено в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)

    Source: Advances in Molecular Oncology; Vol 11, No 2 (2024); 130-146 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 130-146 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

  10. 10
  11. 11
    Academic Journal

    Contributors: The study was carried out with the support of the Russian Science Foundation (grant No. 20-15-00001). The study was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan Federal University, Исследование выполнено при поддержке Российского научного фонда (РНФ) (грант № 20-15-00001) и в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)

    Source: Advances in Molecular Oncology; Том 11, № 1 (2024); 8-21 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 8-21 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/645/334; Housman G., Byler S., Heerboth S. et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6(3):1769–92. DOI:10.3390/cancers6031769; Rueff J., Rodrigues A.S. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol 2016;1395:1–18. DOI:10.1007/978-1-4939-3347-1_1; Ставровская А.А., Генс Г.П. Новое в изучении множественной лекарственной устойчивости клеток рака молочной железы. Успехи молекулярной онкологии 2015;2(1):39–51. DOI:10.17650/2313-805X.2015.2.1.039–051; Deng J., Bai X., Feng X. et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 2019;19(1):618. DOI:10.1186/s12885-019-5824-9; Stefan S.M. Multi-target ABC transporter modulators: what next and where to go? Future Med Chem 2019;11(18):2353–8. DOI:10.4155/fmc-2019-0185; Juan-Carlos P.M., Perla-Lidia P.P., Stephanie-Talia M.M. et al. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep 2021;48(2):1883–901. DOI:10.1007/s11033-021-06155-w; Robey R.W., Pluchino K.M., Hall M.D. et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18(7):452–64. DOI:10.1038/s41568-018-0005-8; Смирнов Л.П. АТФ-связывающие транспортные белки семейства abc (ATP-binding cassette transporters, abc). Номенклатура, структура, молекулярное разнообразие, функция, участие в функционировании системы биотрансформации ксенобиотиков. Труды Карельского научного центра РАН 2020;3:5–19. DOI:10.17076/eb1044; Alam A., Locher K.P. Structure and mechanism of human ABC transporters. Annu Rev Biophys 2023;52:275–300. DOI:10.1146/annurev-biophys-111622-091232; Thomas C., Tampé R. Structural and mechanistic principles of ABC transporters. Annu Rev Biochem 2020;89:605–36. DOI:10.1146/annurev-biochem-011520-105201; Rees D.C., Johnson E., Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol 2009;10(3):218–27. DOI:10.1038/nrm2646; Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep 2015;7:14. DOI:10.12703/P7-14; Fitzgerald M.L., Mujawar Z., Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis 2010;211(2):361–70. DOI:10.1016/j.atherosclerosis.2010.01.011; Yvan-Charvet L., Wang N., Tall A.R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2010;30(2):139–43. DOI:10.1161/ATVBAHA.108.179283; Davis W. Jr. The ATP-binding cassette transporter-2 (ABCA2) overexpression modulates sphingosine levels and transcription of the amyloid precursor protein (APP) Gene. Curr Alzheimer Res 2015;12(9):847–59. DOI:10.2174/156720501209151019105834; Michaki V., Guix F.X., Vennekens K. et al. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-β production by altering Nicastrin maturation and intracellular localization. J Biol Chem 2012;287(2):1100–11. DOI:10.1074/jbc.M111.288258; Hovnanian A. Harlequin ichthyosis unmasked: a defect of lipid transport. J Clin Invest 2005;115(7):1708–10. DOI:10.1172/JCI25736; Thomas A.C., Cullup T., Norgett E.E. et al. ABCA12 is the major harlequin ichthyosis gene. J Invest Dermatol 2006;126(11):2408–13. DOI:10.1038/sj.jid.5700455; de Vree J.M., Jacquemin E., Sturm E. et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA 1998;95(1):282–7. DOI:10.1073/pnas.95.1.282; Zhang Y., Li F., Patterson A.D. et al. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice. J Biol Chem 2012;287(29):24784–94. DOI:10.1074/jbc.M111.329318; Zhang C., Li D., Zhang J. et al. Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Invest Dermatol 2013;133(9):2221–8. DOI:10.1038/jid.2013.145; Helias V., Saison C., Ballif B.A. et al. ABCB6 is dispensable for eryth- ropoiesis and specifies the new blood group system Langereis. Nat Genet 2012;44(2):170–3. DOI:10.1038/ng.1069; Bekri S., Kispal G., Lange H. et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 2000;96(9):3256–64.; Maguire A., Hellier K., Hammans S. et al. X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br J Haematol 2001;115(4):910–7. DOI:10.1046/j.1365-2141.2001.03015.x; Leslie E.M., Deeley R.G., Cole S.P. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005;204(3):216–37. DOI:10.1016/j.taap.2004.10.012; Bienengraeber M., Olson T.M., Selivanov V.A. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 2004;36(4):382–7. DOI:10.1038/ng1329; Singareddy S.S., Roessler H.I., McClenaghan C. et al. ATP-sensitive potassium channels in zebrafish cardiac and vascular smooth muscle. J Physiol 2022;600(2):299–312. DOI:10.1113/JP282157.; van Bon B.W., Gilissen C., Grange D.K. et al. Cantú syndrome is caused by mutations in ABCC9. Am J Hum Genet 2012;90(6):1094–101. DOI:10.1016/j.ajhg.2012.04.014; Engelen M., Kemp S., de Visser M. et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 2012;7:51. DOI:10.1186/1750-1172-7-51; Kemp S., Wanders R.J. X-linked adrenoleukodystrophy: very longchain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol Genet Metab 2007;90(3):268–76. DOI:10.1016/j.ymgme.2006.10.001; Ferdinandusse S., Jimenez-Sanchez G., Koster J. et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 2015;24(2):361–70. DOI:10.1093/hmg/ddu448; Coelho D., Kim J.C., Miousse I.R. et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet 2012;44(10):1152–5. DOI:10.1038/ng.2386; Deme J.C., Hancock M.A., Xia X. et al. Purification and interaction analyses of two human lysosomal vitamin B12 transporters: LMBD1 and ABCD4. Mol Membr Biol 2014;31(7–8):250–61. DOI:10.3109/09687688.2014.990998; Lu K., Lee M.H., Hazard S. et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 2001;69(2):278–90. DOI:10.1086/321294; Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R. et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012;27(2):187–96. DOI:10.1093/mutage/ger075; Mohelnikova-Duchonova B., Brynychova V., Oliverius M. et al. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas 2013;42(4):707–16. DOI:10.1097/MPA.0b013e318279b861; Moore J.M., Bell E.L., Hughes R.O. et al. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023;29(2):152–72. DOI:10.1016/j.molmed.2022.11.001; Zhao X., Guo Y., Yue W. et al. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. Onco Targets Ther 2014;7:343–51. DOI:10.2147/OTT.S56029; Zheng S., Liu D., Wang F. et al. ABCA12 promotes proliferation and migration and inhibits apoptosis of pancreatic cancer cells through the AKT signaling pathway. Front Genet 2022;13:906326. DOI:10.3389/fgene.2022.906326; Demidenko R., Razanauskas D., Daniunaite K. et al. Frequent down-regulation of ABC transporter genes in prostate cancer. BMC Cancer. 2015;15:683. DOI:10.1186/s12885-015-1689-8; Andersen V., Svenningsen K., Knudsen L.A. et al. Novel understanding of ABC transporters ABCB1/ MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J Gastroenterol 2015;21(41):11862–76. DOI:10.3748/wjg.v21.i41.11862; Begicevic R.R., Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017;18(11):2362. DOI:10.3390/ijms18112362; Bradley G., Sharma R., Rajalakshmi S. et al. P-glycoprotein expression during tumor progression in the rat liver. Cancer Res 1992;52(19):5154–61.; Skinner K.T., Palkar A.M., Hong A.L. Genetics of ABCB1 in Cancer. Cancers (Basel). 2023;15(17):4236. DOI:10.3390/cancers15174236.; Abe T., Mori T., Wakabayashi Y. et al. Expression of multidrug resistance protein gene in patients with glioma after chemotherapy. J Neurooncol 1998;40(1):11–8. DOI:10.1023/a:1005954406809; Kunická T., Souček P. Importance of ABCC1 for cancer therapy and prognosis. Drug Metab Rev 2014;46(3):325–42. DOI:10.3109/03602532.2014.901348; Andersen V., Vogel L.K., Kopp T.I. et al. High ABCC2 and low ABCG2 gene expression are early events in the colorectal adenomacarcinoma sequence. PLoS One 2015;10(3):e0119255. DOI:10.1371/journal.pone.0119255; Cervenkova L., Vycital O., Bruha J. et al. Protein expression of ABCC2 and SLC22A3 associates with prognosis of pancreatic adenocarcinoma. Sci Rep 2019;9(1):19782. DOI:10.1038/s41598-019-56059-w; Chen Y., Zhou H., Yang S. et al. Increased ABCC2 expression predicts cisplatin resistance in non-small cell lung cancer. Cell Biochem Funct 2021;39(2):277–86. DOI:10.1002/cbf.3577; Li J., Zhang J.T., Jiang X. et al. The cystic fibrosis transmembrane conductance regulator as a biomarker in non-small cell lung cancer. Int J Oncol 2015;46(5):2107–15. DOI:10.3892/ijo.2015.2921; Wu Z., Peng X., Li J. et al. Constitutive activation of nuclear factor κB contributes to cystic fibrosis transmembrane conductance regulator expression and promotes human cervical cancer progression and poor prognosis. Int J Gynecol Cancer 2013;23(5):906–15. DOI:10.1097/IGC.0b013e318292da82; Xu J., Yong M., Li J. et al. High level of CFTR expression is associated with tumor aggression and knockdown of CFTR suppresses proliferation of ovarian cancer in vitro and in vivo. Oncol Rep 2015;33(5):2227–34. DOI:10.3892/or.2015.3829; Zhang J.T., Jiang X.H., Xie C. et al. Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochim Biophys Acta 2013;1833(12):2961–9. DOI:10.1016/j.bbamcr.2013.07.021; Theodoulou F.L., Kerr I.D. ABC transporter research: going strong 40 years on. Biochem Soc Trans 2015;43(5):1033–40. DOI:10.1042/BST20150139; Linton K.J. Structure and function of ABC transporters. Physiology (Bethesda) 2007;22:122–30. DOI:10.1152/physiol.00046.2006; Литвяков Н.В., Цыганов М.М. Клинические исследования вклада ABC-транспортеров в реализацию фенотипа множественной лекарственной устойчивости рака молочной железы. Вопросы онкологии 2016;62(1):45–52.; Badiee S.A., Isu U.H., Khodadadi E. et al. The alternating access mechanism in mammalian multidrug resistance transporters and their bacterial homologs. Membranes 2023;13(6):568. DOI:10.3390/membranes13060568; Shaikh S., Wen P.C., Enkavi G. et al. Capturing functional motions of membrane channels and transporters with molecular dynamics simulation. J Comput Theor Nanosci 2010;7(12):2481–500. DOI:10.1166/jctn.2010.1636; George A.M., Jones P.M. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog Biophys Mol Biol 2012;109(3):95–107. DOI:10.1016/j.pbiomolbio.2012.06.003; Higgins C.F., Linton K.J. The ATP switch model for ABC transporters. Nat Struct Mol Biol 2004;11(10):918–26. DOI:10.1038/nsmb836; Jones P.M., George A.M. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 2013;48(1):39–50. DOI:10.3109/10409238.2012.735644; Mochida Y., Taguchi K., Taniguchi S. et al. The role of P-glycoprotein in intestinal tumorigenesis: disruption of mdr1a suppresses polyp formation in Apc(Min/+) mice. Carcinogenesis 2003;24(7):1219–24. DOI:10.1093/carcin/bgg073; Henderson M.J., Haber M., Porro A. et al. ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst 2011;103(16):1236–51. DOI:10.1093/jnci/djr256; Yamada A., Ishikawa T., Ota I. et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res Treat 2013;137(3):773–82. DOI:10.1007/s10549-012-2398-5; Omran O.M. The prognostic value of breast cancer resistance protein (BCRB/ABCG2) expression in breast carcinomas. J Environ Pathol Toxicol Oncol 2012;31(4):367–76. DOI:10.1615/jenvironpatholtoxicoloncol.2013006767; Xiang L., Su P., Xia S. et al. ABCG2 is associated with HER-2 expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma. Diagn Pathol 2011;6:90. DOI:10.1186/1746-1596-6-90; Liu T., Li Z., Zhang Q. et al. Targeting ABCB1 (MDR1) in multidrug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget 2016;7(50):83502–13. DOI:10.18632/oncotarget.13148; Serra M., Pasello M., Manara M.C. et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 2006;29(6):1459–68.; Nobili S., Lapucci A., Landini I. et al. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020;60:72–95. DOI:10.1016/j.semcancer.2019.08.006; Jiang Z.S., Sun Y.Z., Wang S.M. et al. Epithelial-mesenchymal transition: potential regulator of ABC transporters in tumor progression. J Cancer 2017;8(12):2319–27. DOI:10.7150/jca.19079; Stewart T.A., Azimi I., Thompson E.W. et al. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition. Biochem Biophys Res Commun 2015;458(3):509–14. DOI:10.1016/j.bbrc.2015.01.141; Tian Y., Tian X., Han X. et al. Expression of ATP binding cassette E1 enhances viability and invasiveness of lung adenocarcinoma cells in vitro. Mol Med Rep 2016;14(2):1345–50. DOI:10.3892/mmr.2016.5388; Цыганов М.М., Цыденова И.А., Маркович В.А. и др. Экспрессионная гетерогенность генов семейства ABC-транспортеров и генов химиочувствительности в опухоли желудка, канцероматозе и метастазах в лимфатические узлы. Успехи молекулярной онкологии 2022;9(4):78–88. DOI:10.17650/2313-805X-2022-9-4-78-88; Цыганов М.М., Ибрагимова М.К., Певзнер А.М. и др. Анализ экспрессии генов семейства ABC-транспортеров в опухоли молочной железы: связь с эффективностью химиотерапии и прогнозом заболевания. Успехи молекулярной онкологии 2020;7(2):29–38. DOI:10.17650/2313-805X-2020-7-2-29-38; Durmus S., Hendrikx J.J., Schinkel A.H. Apical ABC transporters and cancer chemotherapeutic drug disposition. Adv Cancer Res 2015;125:1–41. DOI:10.1016/bs.acr.2014.10.001; Leonard G.D., Fojo T., Bates S.E. The role of ABC transporters in clinical practice. Oncologist 2003;8(5):411–24. DOI:10.1634/theoncologist.8-5-411; Mo W., Zhang J.T. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 2012;3(1):1–27.; Xiao H., Zheng Y., Ma L. et al. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 2021;12:648407. DOI:10.3389/fphar.2021.648407; Lhommé C., Joly F., Walker J.L. et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol 2008;26(16):2674–82. DOI:10.1200/JCO.2007.14.9807; Adamska A., Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018;24(29):3222–38. DOI:10.3748/wjg.v24.i29.3222; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a Pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Tamaki A., Ierano C., Szakacs G. et al. The controversial role of ABC transporters in clinical oncology. Essays Biochem 2011;50(1):209–32. DOI:10.1042/bse0500209; Cripe L.D., Uno H., Paietta E.M. et al. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood 2010;116(20):4077–85. DOI:10.1182/blood-2010-04-277269; Xu T., Guo P., He Y. et al. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020;34(10): 2438–58. DOI:10.1002/ptr.6694; Gonçalves B.M.F., Cardoso D.S.P., Ferreira U.M.J. Overcoming multidrug resistance: flavonoid and terpenoid nitrogen-containing derivatives as ABC transporter modulators. Molecules 2020;25(15):3364. DOI:10.3390/molecules25153364; Kelly R.J., Draper D., Chen C.C. et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin Cancer Res 2011;17(3):569–80. DOI:10.1158/1078-0432.CCR-10-1725; Palmeira A., Sousa E., Vasconcelos M.H. et al. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 2012;19(13):1946–2025. DOI:10.2174/092986712800167392; Dury L., Nasr R., Lorendeau D. et al. Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1. Biochem Pharmacol 2017;124:10–8. DOI:10.1016/j.bcp.2016.10.013; Ni K., Yang L., Wan C. et al. Flavonostilbenes from Sophora alopecuroides L. as multidrug resistance associated protein 1 (MRP1) inhibitors. Nat Prod Res 2014;28(23):2195–8. DOI:10.1080/14786419.2014.930856; Chen J.R., Jia X.H., Wang H. et al. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int J Oncol 2016;48(5):2063–70. DOI:10.3892/ijo.2016.3423; Ji L., Liu X., Zhang S. et al. The Novel triazolonaphthalimide derivative LSS-11 synergizes the anti-proliferative effect of paclitaxel via STAT3-dependent MDR1 and MRP1 downregulation in chemo- resistant lung cancer cells. Molecules 2017;22(11):1822. DOI:10.3390/molecules22111822; Antoni F., Bause M., Scholler M. et al. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). Eur J Med Chem 2020;191:112133. DOI:10.1016/j.ejmech.2020.112133; Weidner L.D., Zoghbi S.S., Lu S. et al. The inhibitor Ko143 is not specific for ABCG2. J Pharmacol Exp Ther 2015;354(3):384–93. DOI:10.1124/jpet.115.225482; Tsuruo T., Iida H., Tsukagoshi S. et al. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981;41(5):1967–72.; Wang L., Sun Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch Biochem Biophys 2020;696:108675. DOI:10.1016/j.abb.2020.108675; Borska S., Chmielewska M., Wysocka T. et al. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem Toxicol 2012;50(9):3375–83. DOI:10.1016/j.fct.2012.06.035; Chen Y.Y., Chang Y.M., Wang K.Y. et al. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ Toxicol 2019;34(3):233–9. DOI:10.1002/tox.22677; Eid S.Y., El-Readi M.Z., Wink M. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. Phytomedicine 2012;19(14):1288–97. DOI:10.1016/j.phymed.2012.08.010; Jain S., Laphookhieo S., Shi Z. et al. Reversal of P-glycoproteinmediated multidrug resistance by sipholane triterpenoids. J Nat Prod 2007;70(6):928–31. DOI:10.1021/np0605889; Pires M.M., Emmert D., Hrycyna C.A. et al. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol Pharmacol 2009;75(1):92–100. DOI:10.1124/mol.108.050492; Zhang Y., Guo L., Huang J. et al. Inhibitory effect of berberine on broiler P-glycoprotein expression and function: in situ and in vitro studies. Int J Mol Sci 2019;20(8):1966. DOI:10.3390/ijms20081966; Choi Y.H., Yu A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 2014;20(5):793–807. DOI:10.2174/138161282005140214165212; Beretta G.L., Cassinelli G., Pennati M. et al. Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017;142:271–89. DOI:10.1016/j.ejmech.2017.07.062; Kathawala R.J., Gupta P., Ashby C.R. Jr. et al. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2015;18:1–17. DOI:10.1016/j.drup.2014.11.002; Callaghan R., Higgins C.F. Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer 1995;71(2):294–9. DOI:10.1038/bjc.1995.59; Liu Z.H., Ma Y.L., He Y.P. et al. Tamoxifen reverses the multi-drugresistance of an established human cholangiocarcinoma cell line in combined chemotherapeutics. Mol Biol Rep 2011;38(3):1769–75. DOI:10.1007/s11033-010-0291-z; Богуш Т.А., Дудко Е.А., Богуш Е.А. и др. Молекулярные мишени тамоксифена, отличные от эстрогеновых рецепторов. Антибиотики и химиотерапия 2012;57(1–2):50–8.; Bakadlag R., Limniatis G., Georges G. et al. The anti-estrogen receptor drug, tamoxifen, is selectively lethal to P-glycoprotein expressing multidrug resistant tumor cells. BMC Cancer 2023;23(1):24. DOI:10.1186/s12885-022-10474-x; Shen L.Z., Hua Y.B., Yu X.M. et al. Tamoxifen can reverse multidrug resistance of colorectal carcinoma in vivo. World J Gastroenterol 2005;11(7):1060–4. DOI:10.3748/wjg.v11.i7.1060; Wen S., Fu X., Li G. et al. Efficacy of tamoxifen in combination with docetaxel in patients with advanced non-small-cell lung cancer pretreated with platinum-based chemotherapy. Anticancer Drugs 2016;27(5):447–56. DOI:10.1097/CAD.0000000000000350; https://umo.abvpress.ru/jour/article/view/645

  12. 12
    Academic Journal

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 3 (2024); 410-418 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 3 (2024); 410-418 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1927/1483; https://www.jnmp.ru/jour/article/view/1927/1618; de Souza FHB, Couto BRGM, da Conceição FLA, da Silva GHS, Dias IG, Rigueira RVM, et al. Prediction of Occurrence for Surgical Site Infection in Infected Surgeries. Open Forum Infect Dis. 2020;7(Suppl 1):S482. Abstr. 895. https://doi.org/10.1093/ofid/ofaa439.1083; Ревишвили А.Ш., Сажин В.П., Оловянный В.Е., Захарова М.А. Современные тенденции в неотложной абдоминальной хирургии в Российской Федерации. Хирургия. Журнал им. Н.И. Пирогова. 2020;(7):6–11. https://doi.org/10.17116/hirurgia20200716; Danwang C, Bigna JJ, Tochie JN, Mbonda A, Mbanga CM, Nzalie RNT, et al. Global incidence of surgical site infection after appendectomy: a systematic review and meta-analysis. BMJ Open. 2020;10(2):e034266. PMID: 32075838 https://doi.org/10.1136/bmjopen-2019-034266; Чукина М.А., Вистовская Н.В., Лукина М.В., Журавлева М.В. Реализация программы Стратегии и контроля антимикробной терапии в Российском научном центре хирургии им. академика Б.В. Петровского. Антибиотики и химиотерапия. 2020;65(9–10):44–50. https://doi.org/10.37489/0235-2990-2020-65-9-10-44-50; Friedrichs J, Seide S, Vey J, Zimmermann S, Hardt J, Kleeff J, et al. Interventions to reduce the incidence of surgical site infection in colorectal resections: systematic review with multicomponent network meta-analysis (INTRISSI): study protocol. BMJ Open. 2021;11(11):e057226. PMID: 34824125 https://doi.org/10.1136/bmjopen-2021-057226; WHO/ECDC report: antimicrobial resistance threatens patient safety in European Region. Available at: https://www.ecdc.europa.eu/en/news-events/whoecdc-report-antimicrobial-resistance-threatens-patient-safety-european-region [Accessed 20.08.2024]; Medline A, Muralidharan VJ, Codner J, Sharma J. Organ-Space Surgical Site Infections: Consequences and Prediction Using ACS-NSQIP. Am Surg. 2022;88(8):1773–1782. PMID: 35438577 https://doi.org/10.1177/00031348221083944; Lawson EH, Hall BL, Ko CY. Risk factors for superficial vs deep/organspace surgical site infections: Implications for quality improvement initiatives. JAMA Surg. 2013;148(9):849–858. PMID: 23864108 https://doi.org/10.1001/jamasurg.2013.2925; van Walraven C, Musselman R. The Surgical Site Infection Risk Score (SSIRS): A Model to Predict the Risk of Surgical Site Infections. PLoS ONE. 2013;8(6):e67167. PMID: 23826224 https://doi.org/10.1371/journal.pone.0067167; Chong YY, Chan PK, Chan VWK, Cheung A, Luk MH, Cheung MH, et al. Application of machine learning in the prevention of periprosthetic joint infection following total knee arthroplasty: a systematic review. Arthroplasty. 2023;5(1):38. PMID: 37316877 https://doi.org/10.1186/s42836-023-00195-2; Ahmed S, Ahmed MZ, Rafique S, Almasoudi SE, Shah M, Jalil NAC, et al. Recent Approaches for Downplaying Antibiotic Resistance: Molecular Mechanisms. Biomed Res Int. 2023:5250040. https://doi.org/10.1155/2023/5250040 eCollection 2023.; Наумкина Е.В., Матущенко Е.В., Абросимова О.А., Калитина И.И., Соколова Т.Н., Иванова С.Ф. и др. Микробиологический мониторинг как основа эпидемиологического надзора и антимикробной терапии в условиях многопрофильного стационара. Клиническая лабораторная диагностика. 2018;63(2):113–118. https://doi.org/10.18821/0869-2084-2018-63-2-113-118; Bhat MJ, Al-Qahtani M, Badawi AS. Awareness and Knowledge of Antibiotic Resistance and Risks of Self-Medication with Antibiotics Among the Aseer Region Population, Saudi Arabia. Cureus. 2023;15(6):e40762. PMID: 37485193 https://doi.org/10.7759/cureus.40762 eCollection 2023 Jun.; Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel). 2022;12(1):67. PMID: 36671268 https://doi.org/10.3390/antibiotics12010067; Дибиров М.Д., Хачатрян Н.Н., Исаев А.И., Карсотьян Г.С., Алимова Э.Э., Костюк Е.А. Новые возможности антибактериальной терапии интраабдоминальных инфекций, вызванных полирезистентной микробной флорой. Хирургия. Журнал им. Н.И. Пирогова. 2019;(12):74–83. https://doi.org/10.17116/hirurgia201912174; Opatowski M, Brun-Buisson C, Touat M. Antibiotic prescriptions and risk factors for antimicrobial resistance in patients hospitalized with urinary tract infection: a matched case-control study using the French health insurance database (SNDS). BMC Infect Dis. 2021;21(1):571. PMID: 34126937 https://doi.org/10.1186/s12879-021-06287-1; Yang X, Guo R, Zhang B, Xie B, Zhou S, Zhang B. Retrospective analysis of drug resistance characteristics and infection related risk factors of multidrug-resistant organisms (MDROs) isolated from the orthopedics department of a tertiary hospital. Sci Rep. 2023;13(1):2199. PMID: 36750600 https://doi.org/10.1038/s41598-023-28270-3; Foschi D, Yakushkina A, Cammarata F, Lamperti G, Colombo F, Rimoldi S, et al. Surgical site infections caused by multi-drug resistant organisms: a case-control study in general surgery. Updates Surg. 2022;74(5):1763–1771. PMID: 35304900 https://doi.org/10.1007/s13304-022-01243-3; Дибиров М.Д., Исаев А.И., Джаджиев А.Б., Ашимова А.И., Атаев Т. Роль коррекции синдромов кишечной недостаточности и внутрибрюшной гипертензии в профилактике инфицирования панкреонекроза. Хирургия. Журнал им. Н.И. Пирогова. 2016;(8):67–72. https://doi.org/10.17116/hirurgia2016867-72; Hyoju SK, Keskey R, Castillo G, Machutta K, Zaborin A, Zaborina O, et al. Novel Nonantibiotic Gut-directed Strategy to Prevent Surgical Site Infections. Ann Surg. 2022;276(3):472–481. PMID: 35749750 https://doi.org/10.1097/SLA.0000000000005547; Чукарев В.С., Жидовинов А.А., Коханов А.В., Луцева О.А. Кишечный изофермент щелочной фосфатазы в диагностике абдоминальной хирургической патологии. Астраханский медицинский журнал. 2022;17(4):126–136. https://doi.org/10.48612/agmu/2022.17.4.126.136; Topchiev MA, Parshin DS, Misrikhanov M, Pyatakov S, Brusnev l, Chotchaev M. Intestinal alkaline phosphatase – a biomarker of the degree of acute enteral in sufficiency in urgent surgery. Archiv EuroMedica. 2022;12(2):91–93. https://doi.org/10.35630/2199-885X/2022/12/2.23; Parshin DS, Topchiev MA, Kupriyanov AV, Aliev M, Abdulaev F. Is it possible to Predict postoperative abdominal complications by laser Doppler flowmetry? Archiv EuroMedica. 2021;11(6):81–84. https://doi.org/10.35630/2199-885X/2021/11/6.19; Захаренко А.А., Беляев М.А., Трушин А.А., Зайцев Д.А., Курсенко Р. В., Сидоров В.В., и др. Комбинированная оценка жизнеспособности кишки методами лазерной допплеровской флоуметрии и лазерной флуоресцентной спектроскопии. Регионарное кровообращение и микроциркуляция. 2021;20(2):70–76. https://doi.org/10.24884/1682-6655-2021-20-2-70-76; Паршин Д.С., Топчиев М.А. Перитонеальная лазерная допплеровская флоуметрия в прогнозировании и диагностике третичного перитонита. Журнал им. Н.В. Склифосовского Неотложная медицинская помощь. 2020;9(3):410–416. https://doi.org/10.23934/2223-9022-2020-9-3-410-416; Тимербулатов В.М., Тимербулатов Ш.В., Сагитов Р.Б., Асманов Д.И., Султанбаев А.У. Диагностика ишемических повреждений кишечника при некоторых острых хирургических заболеваниях органов брюшной полости. Креативная хирургия и онкология. 2017;(3):12–19. https://doi.org/10.24060/2076-3093-2017-7-3-12-19; Топчиев М.А., Паршин Д.С., Кчибеков Э.А., Бирюков П.А., Мисриханов М.К. Дифференцированный подход к антигипоксической и эндопортальной терапии в лечении разлитого перитонита, осложненного синдромом энтеральной недостаточности. Медицинский вестник Северного Кавказа. 2018;13(4):619–623. https://doi.org/10.14300/mnnc.2018.13120; Шаврина Н.В., Ярцев П.А., Лебедев А.Г., Левитский В.Д., Драйер М. Н., Цулеискири Б.Т., и др. Значение ультразвукового исследования в диагностике острой странгуляционной тонкокишечной непроходимости. Медицинская визуализация. 2021;25(3):31–42. https://doi.org/10.24835/1607-0763-875; Маскин С.С., Александров В.В., Матюхин В.В., Дербенцева Т.В. Стандартизация лечебно-диагностического подхода при сочетанной закрытой травме кишечника. Политравма. 2020;(3):12–19. https://doi.org/10.24411/1819-1495-2020-10028; Gillespie B, Harbeck E, Rattray M, Liang R, Walker R, Latimer Sh, et al. Worldwide incidence of surgical site infections in general surgical patients: A systematic review and meta-analysis of 488,594 patients. Int J Surg. 2021;95:106136. PMID: 34655800 https://doi.org/10.1016/j.ijsu.2021.106136; McFarland AM, Manoukian S, Mason H, Reilly JS. Impact of surgicalsite infection on health utility values: a meta-analysis. Br J Surg. 2023;110(8):942–949. PMID: 37303251 https://doi.org/10.1093/bjs/znad144; Mengistu DA, Alemu A, Abdukadir AA, Mohammed HA, Ahmed F, Mohammed B, et al. Global Incidence of Surgical Site Infection Among Patients: Systematic Review and Meta-Analysis. Inquiry. 2023;60:469580231162549. PMID: 36964747 https://doi.org/10.1177/00469580231162549; https://www.jnmp.ru/jour/article/view/1927

  13. 13
    Academic Journal

    Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022200103-5), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР № 124022200103-5)

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 3 (2024); 322-334 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 3 (2024); 322-334 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-3

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/602/917; https://www.biopreparations.ru/jour/article/downloadSuppFile/602/1040; Cooper CJ, Khan Mirzaei M, Nilsson AS. Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol. 2016;7:1209. https://doi.org/10.3389/fmicb.2016.01209; Pirnay JP, Ferry T, Resch G. Recent progress toward the implementation of phage therapy in Western medicine. FEMS Microbiol Rev. 2022;46(1):fuab040 https://doi.org/10.1093/femsre/fuab040; Hall AR, Vos DD, Friman V-P, Pirnay J-P, Buckling A. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol. 2012;78(16):5646–52. https://doi.org/10.1128/aem.00757-12; Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017;61(10):e00954–17. https://doi.org/10.1128/AAC.00954-17; Verbeken G, Pirnay JP, Lavigne R, Jennes S, De Vos D, Casteels M, Huys I. Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp. 2014;62(2):117–29. https://doi.org/10.1007/s00005-014-0269-y; Pirnay JP, Verbeken G, Rose T, Jennes S, Zizi M, Huys I, et al. Introducing yesterday’s phage therapy in today’s medicine. Future Virol. 2012;7(4):379–90. https://doi.org/10.2217/fvl.12.24; Van Nieuwenhuyse B, Van der Linden D, Chatzis O, Lood C, Wagemans J, Lavigne R, et al. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat Commun. 2022;13(1):5725. https://doi.org/10.1038/s41467-022-33294-w; Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14. https://doi.org/10.2174/138920110790725311; Glonti T, Pirnay JP. In vitro techniques and measurements of phage characteristics that are important for phage therapy success. Viruses. 2022;14(7):1490. https://doi.org/10.3390/v14071490; Carlton RM. Phage therapy: past history and future prospects. Arch Immunol Ther Exp. 1999;47(5):267–74. PMID: 10604231; Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev. 2022;46(1):fuab048. https://doi.org/10.1093/femsre/fuab048; Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaniichoutte M, et al. The phage therapy paradigm: preˆt-a`-porter or sur-mesure? Pharm Res. 2011;28(4):934–7. https://doi.org/10.1007/s11095-010-0313-5; Mattey M, Spencer J. Bacteriophage therapy — cooked goose or phoenix rising? Curr Opin Biotechnol. 2008;19(6):608–12. https://doi.org/10.1016/j.copbio.2008.09.001; Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA. 2020;323(9):844–53. https://doi.org/10.1001/jama.2020.1166; Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19(1):35–45. https://doi.org/10.1016/S1473-3099(18)30482-1; Servick K. Drug development. Beleaguered phage therapy trial presses on. Science. 2016;352(6293):1506. https://doi.org/10.1126/science.352.6293.1506; Merabishvili M, De Vos D, Verbeken G, Kropinski AM, Vandenheuvel D, Lavigne R, et al. Selection and characterization of a candidate therapeutic that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany. PLoS One. 2012;7(12):e52709. https://doi.org/10.1371/journal.pone.0052709; Henein A. What are the limitations on the wider thera peutic use of phage? Bacteriophage. 2013;3(2):e24872. https://doi.org/10.4161/bact.24872; Verbeken G, Pirnay JP, De Vos D, Jennes S, Zizi M, Lavigne R, et al. Optimizing the European regulatory frame-work for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp (Warsz). 2012;60(3):161–72. https://doi.org/10.1007/s00005-012-0175-0; Fauconnier A. Regulating phage therapy: the biolog ical master file concept could help to overcome regulatory challenge of personalized medicines. EMBO Rep. 2017;18(2):198–200. https://doi.org/10.15252/embr.201643250; Shapiro SZ. The HIV/AIDS vaccine researchers’ orientation to the process of preparing a US FDA application for an investigational new drug (IND): what it is all about and how you start by preparing for your pre-IND meeting. Vaccine. 2002;20(9–10):1261–80. https://doi.org/10.1016/s0264-410x(01)00453-4; Aslam S, Yung G, Dan J, Reed S, LeFebvre M, Logan C, et al. Bacteriophage treatment in a lung transplant recipient. J Heart Lung Transplant. 2018;37(4):S155–6. https://doi.org/10.1016/j.healun.2018.01.376; Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018;(1):60–6. https://doi.org/10.1093/emph/eoy005; Furr CLL, Lehman SM, Morales SP, Rosas FX, Gaidamaka A, Bilinsky IP, et al. P084 bacteriophage treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia in a cystic fibrosis patient. J Cyst Fibros. 2018;17:S83. https://doi.org/10.1016/S1569-1993(18)30381-3; LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage therapy for a multidrugresistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis. 2018;5(4):ofy064. https://doi.org/10.1093/ofid/ofy064; Greene J, Goldberg RB. Isolation and preliminary characterization of lytic and lysogenic phages with wide host range within the streptomycetes. J Gen Microbiol. 1985;131(9):2459–65. https://doi.org/10.1099/00221287-131-9-2459; Harshey RK. Phage Mu. In: Calendar R, ed. The bacteriophages. Boston: Springer; 1988.; Yarmolinsky MB, Sternberg N. Bacteriophage P. In: Calen dar R, ed. The bacteriophages. Boston: Springer;1988.; Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA. Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol. 1998;64(2):575–80. https://doi.org/10.1128/AEM.64.2.575-580.1998; Pantucek R, Rosypalova A, Doskar J, Kailerova J, Ruzicko va V, Borecka P, et al. The polyvalent staphylococcal phage phi 812: its host-range mutants and related phages. Virology. 1998;246(2):241–52. https://doi.org/10.1006/viro.1998.9203; Khan MA, Satoh H, Katayama H, Kurisu F, Mino T. Bacteriophages isolated from activated sludge processes and their polyvalency. Water Res. 2002;36(13):3364–70. https://doi.org/10.1016/s0043-1354(02)00029-5; Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424(6952):1047–51. https://doi.org/10.1038/nature01929; O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol. 2005;71(4):1836–42. https://doi.org/10.1128/AEM.71.4.1836-1842.2005; El-Arabi TF, Griffiths MW, She YM, Villegas A, Lingohr EJ, Kropinski AM. Genome sequence and analysis of a broadhost range lytic bacteriophage that infects the Bacillus cereus group. Virol J. 2013;10:48. https://doi.org/10.1186/1743-422X-10-48; Mirzaei KM, Nilsson AS. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One. 2015;10(3):e0118557. https://doi.org/10.1371/journal.pone.0118557; DeWyngaert MA, Hinkle DC. Bacterial mutants affecting phage T7 DNA replication produce RNA polymerase resistant to inhibition by the T7 gene 2 protein. J Biol Chem. 1979;254(22):11247–53. PMID: 387768; Qimron U, Marintcheva B, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA. 2006;103(50):19039–44. https://doi.org/10.1073/pnas.0609428103; James TD, Cashel M, Hinton DM. A mutation within the beta subunit of Escherichia coli RNA polymerase impairs transcription from bacteriophage T4 middle promoters. J Bacteriol. 2010;192(21):5580–7. https://doi.org/10.1128/JB.00338-10; Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twortlike phages SA012 and SA039. Appl Microbiol Biotechnol. 2018;102(20):8963–77. https://doi.org/10.1007/s00253-018-9269-x; Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, Adhya S. Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA. 1996;93(8):3188–92. https://doi.org/10.1073/pnas.93.8.3188; Sander M, Schmieger H. Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol. 2001;67(4):1490–3. https://doi.org/10.1128/AEM.67.4.1490-1493.2001; Beumer A, Robinson JB. A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl Environ Microbiol. 2005;71(12):8301–4. https://doi.org/10.1128/AEM.71.12.8301-8304.2005; DelCasale A, Flanagan PV, Larkin MJ, Allen CC, Kulakov LA. Analysis of transduction in wastewater bacterial populations by targeting the phage-derived 16S rRNA gene sequences. FEMS Microbiol Ecol. 2011;76(1):100–8. https://doi.org/10.1111/j.1574-6941.2010.01034.x; Yen M, Camilli A. Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates. Int Microbiol. 2017;20(3):116–20. https://doi.org/10.2436/20.1501.01.292; Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016;6:26717. https://doi.org/10.1038/srep26717; Henry M, Biswas B, Vincent L, Mokashi V, Schuch R, Bishop-Lilly KA, Sozhamannan S. Development of a high throughput assay for indirectly measuring phage growth using the OmniLog(TM) system. Bacteriophage. 2012;2(3):159–67. https://doi.org/10.4161/bact.21440; Estrella LA, Quinones J, Henry M, Hannah RM, Pope RK, Hamilton T, et al. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog(R) system. Bacteriophage. 2016;6(3):e1219440. https://doi.org/10.1080/21597081.2016.1219440; Давыдов ДС, Парфенюк РЛ, Дурманова ЗВ, Меркулов ВА, Мовсесянц АА. Особенности государственной регистрации и обеспечения качества лекарственных препаратов бактериофагов в Российской Федерации. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(2):181–93. https://doi.org/10.30895/2221-996X-2023-431; https://www.biopreparations.ru/jour/article/view/602

  14. 14
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания № 121022500179-0.

    Source: Acta Biomedica Scientifica; Том 9, № 4 (2024); 237-247 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4967/2849; Шугаева С.Н., Савилов Е.Д., Кошкина О.Г., Чемезова Н.Н. Коинфекция ВИЧ/туберкулёз на территории высокого риска распространения обеих инфекций. Тихоокеанский медицинский журнал. 2021; 1(83): 56-58. doi:10.34215/16091175-2021-1-56-58; Статистические данные о заболеваемости и смертности от туберкулёза за 2023 год в Иркутской области. 2024. URL: https://iopd.ru/smi/pokazateli-2023-goda [дата доступа: 03.05.2024].; Пашкевич В.А. Эпидемиология ВИЧ-инфекции на территории Иркутской области. 2024. URL: https://aids38.ru/wp-content/uploads/2024/04/Эпидемиология-ВИЧ-инфекциина-территории-ИО.pdf [дата доступа: 03.05.2024].; Филинюк О.В., Аллилуев А.С., Амичба Д.Э., Голубчиков П.Н., Попело Ю.С., Добкина М.Н. ВИЧ-инфекция и туберкулёз с множественной лекарственной устойчивостью: частота сочетания, эффективность лечения. Туберкулез и болезни легких. 2021; 99(2): 45-51. doi:10.21292/2075-1230-2021-99-2-45-51; Жданова С.Н., Огарков О.Б., Синьков В.В., Хромова П.А., Орлова Е.А., Кощеев М.Е., и др. Эпидемиологическое обоснование распространения основных клонов генотипа Beijing Mycobacterium tuberculosis в Иркутской области. Журнал микробиологии, эпидемиологии и иммунобиологии. 2017; 94(6): 88-94. doi:10.36233/0372-9311-2017-6-88-94; Жданова С.Н., Бадлеева М.В., Хромова П.А., Огарков О.Б., Орлова Е.А. Молекулярная эпидемиология туберкулёза c множественной лекарственной устойчивостью в Монголии и Восточной Сибири: два независимых процесса распространения доминирующих штаммов. Инфекция и иммунитет. 2021; 11(2): 337-348.; Merker M, Barbier M, Cox H, Rasigade JP, Feuerriegel S, Kohl TA, et al. Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. Elife. 2018; 7: e38200. doi:10.7554/ eLife.38200; Shitikov E, Vyazovaya A, Malakhova M, Guliaev A, Bespyatykh J, Proshina E, et al. Simple assay for detection of the Central Asia outbreak clade of the Mycobacterium tuberculosis Beijing genotype. J Clin Microbiol. 2019; 57(7): e00215-e002119. doi:10.1128/JCM.00215-19; Федеральные клинические рекомендации по организации и проведению микробиологической и молекулярно-генетической диагностике туберкулёза. 2014. URL: https://edu.nmrc.ru/library/clinical_recommendations/# [дата доступа: 03.05.2024].; Жданова С.Н., Огарков О.Б., Савилов Е.Д., Кондратов И.Г. Применение молекулярно-генетических инструментов для оценки трансграничной передачи туберкулёза в Иркутской области. Эпидемиология и вакцинопрофилактика. 2022; 2(21): 59-65. doi:10.31631/2073-3046-2022-21-2-59-65; Хромова П.А., Огарков О.Б., Жданова С.Н., Синьков В.В., Моисеева Е.Я., Цыренова Т.А., и др. Выявление высокотрансмиссивных генотипов возбудителя в клиническом материале для прогноза неблагоприятного течения туберкулёза. Клиническая лабораторная диагностика. 2017; 62(10): 622-627. doi:10.18821/0869-2084-201762-10-622-627; MIRU-VNTRplus web application. URL: https://www.miruvntrplus.org/MIRU/index.faces [date of access: 03.05.2024].; Цыбикова Э.Б. Туберкулез, сочетанный с ВИЧинфекцией, в России в период до и во время пандемии COVID-19. ВИЧ-инфекция и иммуносупрессии. 2022; 14(4): 29-35. doi:10.22328/2077-9828-2022-14-4-29-35; Туберкулез у взрослых: клинические рекомендации. 2022. URL: https://edu.nmrc.ru/wp-content/uploads/2023/07/%D0%9A%D0%A016.pdf [дата доступа: 24.03.2024].; Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2008; 46: 8. doi:10.1128/jcm.00540-08; Vyazovaya A, Gerasimova A, Mudarisova R, Terentieva D, Solovieva N, Zhuravlev V, et al. Genetic diversity and primary drug resistance of Mycobacterium tuberculosis Beijing genotype strains in Northwestern Russia. Microorganisms. 2023; 11(2): 255. doi:10.3390/microorganisms11020255; Shitikov E, Kolchenko S, Mokrousov I, Bespyatykh J, Ischenko D, Ilina E, et al. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep. 2017; 7(1): 9227. doi:10.1038/s41598-017-10018-5; Умпелева Т.В., Белоусова К.В., Голубева Л.А., Морозова И.М., Еремеева Н.И., Вахрушева Д.В. Генетический полиморфизм возбудителя туберкулёза на территории города с ограниченной миграцией населения и высоким уровнем заболеваемости ВИЧ инфекцией. Туберкулез и болезни легких. 2019; 97(3): 40-45. doi:10.21292/2075-1230-2019-97-3-40-45; Mokrousov I, Vyazovaya A, Pasechnik O, Gerasimova A, Dymova M, Chernyaeva E, et al. Early ancient sublineages of Mycobacterium tuberculosis Beijing genotype: Unexpected clues from phylogenomics of the pathogen and human history. Clin Microbiol Infect. 2019; 25(8): 1039.e1-1039.e6. doi:10.1016/j.cmi.2018.11.024; Вязовая А.А., Лебедева И.А., Ушакова Н.Б., Павлов В.В., Герасимова А.А., Соловьева Н.С., и др. Молекулярно-генетический анализ популяции Mycobacterium tuberculosis в Вологодской области – регионе с низкой заболеваемостью туберкулёзом. Инфекция и иммунитет. 2021; 11(3): 497-505. doi:10.15789/2220-7619-MAG-1545; Klotoe BJ, Kacimi S, Costa-Conceicão E, Gomes HM, Barcellos RB, Panaiotov S, et al. Genomic characterization of MDR/ XDR-TB in Kazakhstan by a combination of high-throughput methods predominantly shows the ongoing transmission of L2/Beijing 94-32 central Asian/Russian clusters. BMC Infect Dis. 2019; 19(1): 553. doi:10.1186/s12879-019-4201-2; Auganova D, Atavliyeva S, Amirgazin A, Akisheva A, Tsepke A, Tarlykov P. Genomic characterization of drug-resistant Mycobacterium tuberculosis L2/Beijing isolates from Astana, Kazakhstan. Antibiotics (Basel). 2023; 12(10): 1523. doi:10.3390/antibiotics12101523; Akhmetova A, Bismilda V, Chingissova L, Filipenko M, Akilzhanova A, Kozhamkulov U. Prevalence of Beijing Central Asian/Russian Cluster 94-32 among multidrug-resistant M. tuberculosis in Kazakhstan. Antibiotics. 2024; 13: 9. doi:10.3390/antibiotics13010009; Рязанцев С.В. Трудовая миграция в Россию: мифы и контраргументы. Вестник РУДН. Серия: Экономика. 2018; 4: 718-729. doi:10.22363/2313-2329-2018-26-4-718-729; Цыбикова Э.Б., Гадирова М.Э., Мидоренко Д.А. Заболеваемость туберкулёзом среди трудовых мигрантов в России. Туберкулез и болезни легких. 2021; 99(11): 35-41. doi:10.21292/2075-1230-2021-99-1135-41; https://www.actabiomedica.ru/jour/article/view/4967

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Contributors: The study was carried out with the support of the Russian Science Foundation (grant No. 21-75-00014) and was performed as a part of Russia Strategic Academic Leadership Program (PRIORITY-2030) of Kazan Federal University of Ministry of Health., Исследование выполнено при поддержке Российского научного фонда (грант № 21-75-00014) и в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета (ПРИОРИТЕТ-2030).

    Source: Advances in Molecular Oncology; Том 10, № 3 (2023); 59-71 ; Успехи молекулярной онкологии; Том 10, № 3 (2023); 59-71 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-3

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/571/312; Parker A.L., Kavallaris M., McCarroll J.A. Microtubules and their role in cellular stress in cancer. Front Oncol 2014;4:1–19. DOI:10.3389/fonc.2014.00153; Dumontet C., Jordan M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9(10): 790–803. DOI:10.1038/nrd3253; Gigant B., Wang C., Ravelli R.B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. DOI:10.1038/nature03566; Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathminlike domain. Nature 2004;428(6979):198–202. DOI:10.1038/nature02393; Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. DOI:10.1038/ncomms12103; Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. DOI:10.1016/j.jmb.2016.06.023; Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. DOI:10.1016/j.tcb.2018.05.001; Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015;2015:690916. DOI:10.1155/2015/690916; Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.; West L.M., Northcote P.T., Battershill C.N., Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. DOI:10.1021/jo991296y; Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. DOI:10.1002/anie.201307749; Munshi N., Jeay S., Li Y. et al. ARQ 197, a novel and selective inhibitor of the human c-met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther 2010;9(6):1544–53. DOI:10.1158/1535-7163.MCT-09-1173; Katayama R., Aoyama A., Yamori T. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res 2013;73(10):3087–96. DOI:10.1158/0008-5472.CAN-12-3256; Aoyama A., Katayama R., Oh-Hara T. et al. Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance. Mol Cancer Ther 2014;13(12):2978–90. DOI:10.1158/1535-7163.MCT-14-0462; Gumireddy K., Reddy M.V.R., Cosenza S.C. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 2005;7:275–86. DOI:10.1016/j.ccr.2005.02.009; Jost M., Chen Y., Gilbert L.A. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubuledestabilizing agent. Mol Cell 2017;68(1):210–23. DOI:10.1016/j.molcel.2017.09.012; Park H., Hong S., Hong S. Nocodazole is a high-affinity ligand for the cancer-related kinases ABL, c-KIT, BRAF, and MEK. Chem Med Chem 2012;7(1):53–6. DOI:10.1002/cmdc.201100410; Guo X., Zhang X., Li Y. et al. Nocodazole increases the ERK activity to enhance MKP-1 expression which inhibits p38 activation induced by TNF-α. Mol Cell Biochem 2012;364(1–2):373–80. DOI:10.1007/s11010-012-1239-5; Tanabe K. Microtubule depolymerization by kinase inhibitors: unexpected findings of dual inhibitors. Int J Mol Sci 2017;18(12):2508. DOI:10.3390/ijms18122508; Ramirez-Rios S., Michallet S., Peris L. et al. A new quantitative cell-based assay reveals unexpected microtubule stabilizing activity of certain kinase inhibitors, clinically approved or in the process of approval. Front Pharmacol 2020;11:543. DOI:10.3389/fphar.2020.00543; Krishna R., Mayer L.D. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265–83. DOI:10.1016/S0928-0987(00)00114-7; Mechetner E., Kyshtoobayeva A., Zonis S. et al. Levels of multidrug resistance (MDR1) P-glycoprotein expressing by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998;4(2):389–98.; Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5):1282– 93. DOI:10.1172/JCI119642; Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010;10(3):194–204. DOI:10.1038/nrc2803; Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42.; Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-aminopyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. DOI:10.1097/CAD.0000000000000372; Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-aminopyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. DOI:10.1097/CAD.0000000000000753; Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structureactivity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. DOI:10.1016/j.ejmech.2016.10.026; Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. DOI:10.1016/j.ejmech.2018.11.004; Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. DOI:10.3390/molecules26195780; Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. DOI:10.3892/ol.2017.6795; Zykova S., Kizimova I., Syutkina A. et al. Synthesis and cytostatic activity of (E)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden-4oxo-1-(2-phenylaminobenzamido)-4,5-dihydro-1Hpyrrol-3carboxylate. Pharm Chem J 2020;53:895–8. DOI:10.1007/s11094020-02096-z; Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics 2023;13:2646. DOI:10.3390/diagnostics13162646; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.; Pirol Ş.C., Çalışkan B., Durmaz I. et al. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3carboxylic acid amides with potent anti-proliferative activity on human cancer cell lines. Eur J Med Chem 2014;87:140–9. DOI:10.1016/j.ejmech.2014.09.056; Ke J., Lu Q., Wang X. et al. Discovery of 4,5-dihydro-1Hthieno[2’,3’:2,3]thiepino [4,5-c]pyrazole-3-carboxamide derivatives as the potential epidermal growth factor receptors for tyrosine kinase inhibitors. Molecules 2018;23:1980. DOI:10.3390/molecules23081980; Lin T., Li J., Liu L. et al. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur J Med Chem 2021;215:113281. DOI:10.1016/j.ejmech.2021.113281; Yasuda Y., Arakawa T., Nawata Y. et al. Design, synthesis, and structure-activity relationships of 1-ethylpyrazole-3-carboxamide compounds as novel hypoxia-inducible factor (HIF)-1 inhibitors. Bioorg Med Chem 2015;23(8):1776–87. DOI:10.1016/j.bmc.2015.02.038; Gul H.I., Mete E., Eren S.E. et al. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydropyrazol-1-yl]benzenesulfonamides. J Enzyme Inhib Med Chem 2017;32(1):169–75. DOI:10.1080/14756366.2016.1243536; Gul H.I., Yamali C., Bulbuller M. et al. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorg Chem 2018;78: 290–7. DOI:10.1016/j.bioorg.2018.03.027; Gul H.I., Yamali C., Sakagami H. et al. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg Chem 2018;77:411–9. DOI:10.1016/j.bioorg.2018.01.021; Yamali C., Sakagami H., Uesawa Y. et al. Comprehensive study on potent and selective carbonic anhydrase inhibitors: synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1Hpyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021;217:113351. DOI:10.1016/j.ejmech.2021.113351; Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. DOI:10.1124/mol.107.034876; Da C., Telang N., Barelli P. et al. Pyrrole-based antitubulin agents: two distinct binding modalities are predicted for C-2 analogues in the colchicine site. ACS Med Chem Lett 2012;3(1):53–7. DOI:10.1021/ml200217u; Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diary l pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. DOI:10.1016/j.ejmech.2021.113229; https://umo.abvpress.ru/jour/article/view/571

  20. 20
    Academic Journal

    Source: Tuberculosis and Lung Diseases; Том 101, № 1 (2023); 68-73 ; Туберкулез и болезни легких; Том 101, № 1 (2023); 68-73 ; 2542-1506 ; 2075-1230

    File Description: application/pdf

    Relation: https://www.tibl-journal.com/jour/article/view/1711/1720; Клинические рекомендации. Туберкулез у взрослых. МКБ 10: А15-А19. Год утверждения (частота пересмотра): 2022. М., 2022. ‒ С. 151. URL: https://cr.minzdrav.gov.ru/recomend/16_2; Российское общество фтизиатров. Федеральные клинические рекомендации по диагностике и лечению туберкулеза органов дыхания с множественной и широкой лекарственной устойчивостью возбудителя. – Тверь, 2014. – C. 72.; Филинюк О. В., Щегерцов Д. Ю., Кабанец Н. Н., Амичба Д. Э. Переносимость и эффективность химиотерапии у больных туберкулезом легких с множественной лекарственной устойчивостью с включением бедаквилина // Туб. и болезни лёгких. – 2022. – T. 100, № 9. – C. 40-45. https://doi.org/10.21292/2075-1230-2022-100-9-40-45; Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0; 2017. P. 155. Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm.; Global tuberculosis report 2017. Geneva: World Health Organization; 2017. P. 262. URL: https://reliefweb.int/sites/reliefweb.int/files/resources/9789241565516-eng.pdf.; Global tuberculosis report 2021. Geneva: World Health Organization; 2021. P. 43. URL: https://www.who.int/publications/i/item/9789240037021.; Ismail N. A., Omar S. V., Moultrie H. et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study // Lancet Infect. Dis. – 2022. – Vol. 22 № 4. – P. 496-506. Available from: http://dx.doi.org/10.1016/S1473-3099(21)00470-9.; Lan Z., Ahmad N., Baghaei P. et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis // Lancet Respir. Med. – 2020. – Vol. 8, № 4. – P. 383-394.; Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis. Geneva: World Health Organization; 2020. – P. 40. URL: https://www.who.int/publications/i/item/9789240018662.; Nasiri M. J., Zangiabadian M., Arabpour E. et al. Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis // Int. J. Infect Dis. – 2022. URL: https://doi.org/10.1016/j.ijid.2022.02.043.; von Groote-Bidlingmaier F., Patientia R., Sanchez E. et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial // Lancet Respir. Med. – 2019. – Vol. 7, № 3. – P. 249-259.; WHO consolidated guidelines on tuberculosis. Module 4: treatmentdrug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020. – Р. 146. URL: https://www.who.int/publications/i/item/9789240007048.; Wu S., Zhang Y., Sun F. et al. Adverse events associated with the treatment of multidrug-resistant tuberculosis: a systematic review and meta-analysis // Am. J. Ther. – 2016. - Vol. 23, № 2. - P. 521-530.