-
1Academic Journal
Authors: С. У. Эшбадалов
Source: Современные инновации, системы и технологии, Vol 5, Iss 3 (2025)
Subject Terms: несбалансированные классы, NLP, классификация текстов, токенизация, лемматизация, стемминг, стоп-слова, Bag of Words, TF–IDF, логистическая регрессия, SVM., Technology (General), T1-995
File Description: electronic resource
-
2Academic Journal
Authors: Denis Yu. Bolshakov, Денис Юрьевич Большаков
Source: Science Editor and Publisher; Vol 10, No 1 (2025); 32-49 ; Научный редактор и издатель; Vol 10, No 1 (2025); 32-49 ; 2541-8122 ; 2542-0267
Subject Terms: обработка естественного языка, cosine distance, bag-of-words model, TF-IDF model, machine learning, lemmatization, regular expressions, natural language processing, косинусное расстояние, мешок слов, TF-IDF, машинное обучение, лемматизация, регулярные выражения
File Description: application/pdf
Relation: https://www.scieditor.ru/jour/article/view/448/298; Turing A. Computing Machinery and Intelligence. Mind. 1950;59(236):433–460. https://doi.org/10.1093/mind/LIX.236.433; Goldberg Y. Neural Network Methods for Natural Language Processing. Cham: Springer; 2017. 312 p. (Synthesis Lectures on Human Language Technologies). https://doi.org/10.1007/978-3-031-02165-7; Devlin J., Chang M.-W., Lee K., Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805v2 [cs.CL]. 2019 May 24. https://doi.org/10.48550/arXiv.1810.04805; Zhu X., Zhang M., Hong Y., He R., editos. Natural Language Processing and Chinese Computing. Proceedings of the 9th CCF International Conference, NLPCC 2020, (Zhengzhou, October 14–18, 2020). Cham: Springer; 2020. 857 p. (Lecture Notes in Computer Science. Vol. 12430). https://doi.org/10.1007/978-3-030-60450-9; Jia J., Liang W., Liang Y. A review of hybrid and ensemble in deep learning for natural language processing. arXiv preprint arXiv:2312.05589. 2023. https://doi.org/10.48550/arXiv.2312.05589; Jurafsky D., Martin J.H., Kehler A., Linden K. V., Ward N. Speech and language processing: An introduction to natural language processing, computational linguistics and speech recognition. Upper Saddle River, NJ: Prentice-Hall; 2000. 934 p.; Большакова Е. И., Воронцов К. В., Ефремова Н. Э., Клышинский Э. С., Лукашевич Н. В., Сапин А. С. Автоматическая обработка текстов на естественном языке и анализ данных. М.: Изд-во НИУ ВШЭ; 2017. 269 c.; Bhattacharya S., Mazumder A., Banerjee A., Bandyopadhyay C., Nandi S. Automated Reviewer Assignment Process Using Machine Learning Technique. In: Patel A., Kesswani N., Mishra M., Meher P., editos. Advances in Machine Learning and Big Data Analytics (ICMLBDA 2023). Cham: Springer; 2025, pp. 87–99. (Springer Proceedings in Mathematics & Statistics. Vol. 441). https://doi.org/10.1007/978-3-031-51338-1_7; Tan S., Duan Z., Zhao S., Chen J., Zhang Y. Improved Reviewer Assignment Based on Both Word and Semantic Features. Information Retrieval Journal. 2021;24(2):175–204. https://doi.org/10.1007/s10791-021-09390-8; Adebiyi A., Ogunleye O., Adebiyi M., Okesola O. A Comparative Analysis of TF-IDF, LSI and LDA in Semantic Information Retrieval Approach for Paper-Reviewer Assignment. ARPN Journal of Engineering and Applied Sciences. 2019;14(10):3378–3382. https://doi.org/10.36478/jeasci.2019.3378.3382; Anjum O., Gong H., Bhat S., Hwu W.M., Xiong J. PaRe: A Paper-Reviewer Matching Approach Using a Common Topic Space. arXiv preprint arXiv:1909.11258. 2019 Sep. https://doi.org/10.48550/arXiv.1909.11258; Peng H., Hu H., Wang K., Wang X. Time-Aware and Topic-Based Reviewer Assignment. In: Bao Z., Trajcevski G., Chang L., Hua W., editos. Database Systems for Advanced Applications (DASFAA 2017). Cham: Springer; 2017:145-157. (Lecture Notes in Computer Science. Vol. 10179). https://doi.org/10.1007/978-3-319-55705-2_11; Li C. L., Hu X., Xu M. H., Li K. , Zhang Y., Cheng X. Z. Can Large Language Models Be Trusted Paper Reviewers? A Feasibility Study. arXiv:2506.17311v1 [cs.CY]. 2025 June 18. https://doi.org/10.48550/arXiv.2506.17311; Liang W. X., Zhang Y. H., Cao H. C., Wang B., Ding D., Yang X. et al. Can Large Language Models Provide Useful Feedback on Research Papers? A Large-Scale Empirical Analysis. arXiv:2310.01783v1 [cs.LG]. 2023 Oct 3. https://doi.org/10.48550/arXiv.2310.01783; Lee J., Lee J., Yoo J.-J. The Role of Large Language Models in the Peer-Review Process: Opportunities and Challenges for Medical Journal Reviewers and Editors. Journal of Educational Evaluation for Health Professions. 2025;22:4. https://doi.org/10.3352/jeehp.2025.22.4; Vasiliev Yu. Natural language processing with python and spaCy: A practical introduction. San Francisco, CA: No Starch Press; 2020. 217 p.; Lane H., Howard C., Hapke H. M. Natural language processing in action: understanding, analyzing, and generating text with python. 1st ed. Shelter Island, NY: Manning Publications Co.; 2019. 544 p.; Bengfort B., Bilbro R., Ojeda T. Applied text analysis with python: enabling language-aware data products with machine learning. 1st ed. Sebastopol, CA: O’Reilly Media; 2018. 330 p.; Kiela D., Clark S. A Systematic Study of Semantic Vector Space Model Parameters. In: Proceedings of the 2nd Workshop on Continuous Vector Space Models and Their Compositionality (CVSC). Kerrville, TX: Association for Computational Linguistics; 2014, pp. 21–30. https://doi.org/10.3115/v1/W14-1503; Пугачёв В. С. Теория вероятностей и математическая статистика. М.: Физматлит; 2002. 496 с.; Большаков Д. Ю. О связях в науке на примере редакционной коллегии научного журнала. Наука и научная информация. 2021;4(1-2):23–32. https://doi.org/10.24108/2658-3143-2021-4-1-2-23-32; Большаков Д. Ю. Дополнение к статье «О связях в науке на примере редакционной коллегии научного журнала». Наука и научная информация. 2022;5(1):8–10. https://doi.org/10.24108/2658-3143-2022-5-1-2; Diestel R. Graph theory. 6th ed. Berlin, Heidelberg: Springer; 2025. 455 p. https://doi.org/10.1007/978-3-662-70107-2; van der Maaten L. J. P., Hinton G. E. Visualizing data using t-SNE. Journal of Machine Learning Research. 2008;9(86):2579–2605. Available from: https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf (accessed: 13.02.2025).; Brezina V., Gablasova D. A frequency dictionary of British English: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2024. 340 p.; Davies M., Gardner D. A frequency dictionary of contemporary American English: Word sketches, collocates, and thematic lists. 1st ed. London, New York: Routledge; 2010. 368 p.; Buckwalter T., Parkinson D. A frequency dictionary of Arabic: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2011. 578 p.; Tiberius C., Schoonheim T. A frequency dictionary of Dutch: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2014. 320 p.; Davies M. H., Davies K. H. A frequency dictionary of Spanish: Core vocabulary for learners. 2nd ed. London, New York: Routledge; 2018. 350 p.; Xiao R., Rayson P., McEnery T. A frequency dictionary of Mandarin Chinese: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2009. 390 p.; Lee S. H., Jang S. B., Seo S. K. A frequency dictionary of Korean: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2017. 358 p.; Tschirner E., Möhring J. A frequency dictionary of German: Core vocabulary for learners. 2nd ed. London, New York: Routledge; 2020. 304 p.; Davies M., Raposo Preto-Bay A. M. A frequency dictionary of Portuguese: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2008. 336 p.; Miller C., Aghajanian-Stewart K. A frequency dctionary of Persian: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2018. 366 p.; Sharoff S., Umanskaya E., Wilson J. A frequency dictionary of Russian: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2013. 400 p.; Aksan Y., Aksan M., Mersinli U. U., Demirhan U. U. A frequency dictionary of Turkish: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2017. 349 p.; Lonsdale D., Bras Y. L. A frequency dictionary of French: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2009. 320 p.; Cermák F., Kren M. A frequency dictionary of Czech: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2011. 296 p.; Tono Y., Yamazaki M., Maekawa K. A frequency dictionary of Japanese: Core vocabulary for learners. 1st ed. London, New York: Routledge; 2013. 384 p.; https://www.scieditor.ru/jour/article/view/448
-
3Academic Journal
Authors: B. N. Chigarev, Б. Н. Чигарев
Source: Information and Innovations; Том 19, № 3 (2024); 46-79 ; Информация и инновации; Том 19, № 3 (2024); 46-79 ; 2949-2157 ; 1994-2443
Subject Terms: цифровизация отрасли, keyword weight estimation, lemmatization, VOSviewer, Scimago Graphica, industry digitalization, оценка веса ключевых слов, лемматизация
File Description: application/pdf
Relation: https://journal.icsti.int/jour/article/view/275/260; Van Eck N. J., Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010;84:523–38. https://doi.org/10.1007/s11192–009–0146–3; Neylon C., Wu. S. Article–Level Metrics and the Evolution of Scientific Impact. PLoS Biol 2009;7: e1000242. https://doi.org/10.1371/journal.pbio.1000242.; Eyre–Walker A, Stoletzki N. The Assessment of Science: The Relative Merits of Post–Publication Review, the Impact Factor, and the Number of Citations. PLoS Biol 2013;11: e1001675. https://doi.org/10.1371/journal.pbio.1001675; McEvoy N.L., Latour J. M. From impact factors to Altmetrics: What numbers are important in publishing your paper? Nursing in Critical Care 2023;28:4–6. https://doi.org/10.1111/nicc.12925; DiBartola S.P., Hinchcliff K. W. Metrics and the Scientific Literature: Deciding What to Read. Veterinary Internal Medicne 2017;31:629–32. https://doi.org/10.1111/jvim.14732; Meng F., Zhou K., Bu Y., Huang W–B., Zhang P., Long F., et al. Keywords Extraction and Thesaurus Construction for Domain News. Procedia Computer Science 2022;214:837–44. https://doi.org/10.1016/j.procs.2022.11.249; Pavlova I. A. Building a keywords co-occurrence map on the topic «Health capital» in the vosviewer program Jwt 2023;49:38–54. In Russian. https://doi.org/10.18799/26584956/2023/2/1592; Hamdan W., Alsuqaih H. Research Output, Key Topics, and Trends in Productivity, Visibility, and Collaboration in Social Sciences Research on COVID-19: A Scientometric Analysis and Visualization. Sage Open 2024;14:21582440241286217. https://doi.org/10.1177/21582440241286217; Chigarev B. Analyzing the Possibilities of Using the Scilit Platform to Identify Current Energy Efficiency and Conservation Issues 2024. https://doi.org/10.20944/preprints202404.0744.v1.; Hassan–Montero Y., De–Moya–Anegón F., Guerrero–Bote V.P. S. CImago Graphica: a new tool for exploring and visually communicating data. EPI 2022: e310502. https://doi.org/10.3145/epi.2022.sep.02; Wang Y., Shi J., Qu G. Research on collaborative innovation cooperation strategies of manufacturing digital ecosystem from the perspective of multiple stakeholders. Computers & Industrial Engineering 2024;190:110003. https://doi.org/10.1016/j.cie.2024.110003; Neef T., Müller S., Mechtcherine V. Integrating continuous mineral–impregnated carbon fibers into digital fabrication with concrete. Materials & Design 2024;239:112794. https://doi.org/10.1016/j.matdes.2024.112794; Zheng M., Wong C. Y. The impact of digital economy on renewable energy development in China. Innovation and Green Development 2024;3:100094. https://doi.org/10.1016/j.igd.2023.100094; Yi J., Dai S., Li L., Cheng J. How does digital economy development affect renewable energy innovation? Renewable and Sustainable Energy Reviews 2024;192:114221. https://doi.org/10.1016/j.rser.2023.114221; Bhatti G., Mohan H., Raja Singh R. Towards the future of smart electric vehicles: Digital twin technology. Renewable and Sustainable Energy Reviews 2021;141:110801. https://doi.org/10.1016/j.rser.2021.110801; Kumar N., Bhavsar H., Mahesh P. V.S., Srivastava A. K., Bora B. J., Saxena A., et al. Wire Arc Additive Manufacturing — A revolutionary method in additive manufacturing. Materials Chemistry and Physics 2022;285:126144. https://doi.org/10.1016/j.matchemphys.2022.126144; Li H., Shi X., Wu B., Corradi D. R., Pan Z., Li H. Wire arc additive manufacturing: A review on digital twinning and visualization process. Journal of Manufacturing Processes 2024;116:293–305. https://doi.org/10.1016/j.jmapro.2024.03.001; Schamne A. N., Nagalli A., Soeiro A. A.V., Poças Martins J.P.D.S. BIM in construction waste management: A conceptual model based on the industry foundation classes standard. Automation in Construction 2024;159:105283. https://doi.org/10.1016/j.autcon.2024.105283; Zhang., Zhang S., Wang C., Zhu G., Liu H., Wang X. Extended IFC–based information exchange for construction management of roller–compacted concrete dam. Automation in Construction 2024;163:105427. https://doi.org/10.1016/j.autcon.2024.105427; Nikseresht A., Shokouhyar S., Tirkolaee E. B., Pishva N. Applications and emerging trends of blockchain technology in marketing to develop Industry 5.0 Businesses: A comprehensive survey and network analysis. Internet of Things 2024;28:101401. https://doi.org/10.1016/j.iot.2024.101401; Singh S. K., Lee C., Park J. H. CoVAC: A P2P smart contract–based intelligent smart city architecture for vaccine manufacturing. Computers & Industrial Engineering 2022;166:107967. https://doi.org/10.1016/j.cie.2022.107967; Toufaily E. An integrative model of trust toward crypto–tokens applications: A customer perspective approach. Digital Business 2022;2:100041. https://doi.org/10.1016/j.digbus.2022.100041; Rajak M., Shaw K. An extension of technology acceptance model for mHealth user adoption. Technology in Society 2021;67:101800. https://doi.org/10.1016/j.techsoc.2021.101800; Mao S., Han X., Lu Y., Wang D., Su A., Lu L. et al. Multi sensor fusion methods for state of charge estimation of smart lithium–ion batteries. Journal of Energy Storage 2023;72:108736. https://doi.org/10.1016/j.est.2023.108736; Guo C., Ke Y., Zhang J. Digital transformation along the supply chain. Pacific–Basin Finance Journal 2023;80:102088. https://doi.org/10.1016/j.pacfin.2023.102088; Dixit V. K., Malviya R. K., Kumar V., Shankar R. An analysis of the strategies for overcoming digital supply chain implementation barriers. Decision Analytics Journal 2024;10:100389. https://doi.org/10.1016/j.dajour.2023.100389; Thakur P., Kumar Sehgal V. Emerging architecture for heterogeneous smart cyber–physical systems for industry 5.0. Computers & Industrial Engineering 2021;162:107750. https://doi.org/10.1016/j.cie.2021.107750; Marinković M, Al–Tabbaa O., Khan Z., Wu J. Corporate foresight: A systematic literature review and future research trajectories. Journal of Business Research 2022;144:289– 311. https://doi.org/10.1016/j.jbusres.2022.01.097; Busboom A. Automated generation of OPC UA information models — A review and outlook. Journal of Industrial Information Integration 2024;39:100602. https://doi.org/10.1016/j.jii.2024.100602; Rathore R. K., Mishra D., Mehra P. S., Pal O., Hashim A. S., Shapi’i A., et al. Real–world model for bitcoin price prediction. Information Processing & Management 2022;59:102968. https://doi.org/10.1016/j.ipm.2022.102968; Noriega R., Pourrahimian Y. A systematic review of artificial intelligence and data–driven approaches in strategic open–pit mine planning. Resources Policy 2022;77:102727. https://doi.org/10.1016/j.resourpol.2022.102727; Wang J., Omar A. H., Alotaibi F. M., Daradkeh Y. I., Althubiti S. A. Business intelligence ability to enhance organizational performance and performance evaluation capabilities by improving data mining systems for competitive advantage. Information Processing & Management 2022;59:103075. https://doi.org/10.1016/j.ipm.2022.103075; Ran R, Wang X., Wang T., Hua L. The impact of the digital economy on the servitization of industrial structures: the moderating effect of human capital. Data Science and Management 2023;6:174–82. https://doi.org/10.1016/j.dsm.2023.06.003; Sasikumar A., Vairavasundaram S., Kotecha K., Indragandhi V., Ravi L., Selvachandran G., et al. Blockchain–based trust mechanism for digital twin empowered Industrial Internet of Things. Future Generation Computer Systems 2023;141:16–27. https://doi.org/10.1016/j.future.2022.11.002; Khan M., McNally C. Recent developments on low carbon 3D printing concrete: Revolutionizing construction through innovative technology. Cleaner Materials 2024;12:100251. https://doi.org/10.1016/j.clema.2024.100251; Lu Y., Xiao J., Li Y. 3D printing recycled concrete incorporating plant fibres: A comprehensive review. Construction and Building Materials 2024;425:135951. https://doi.org/10.1016/j.conbuildmat.2024.135951; Wang X., Li W., Guo Y., Kashani A., Wang K., Ferrara L., et al. Concrete 3D printing technology for sustainable construction: A review on raw material, concrete type and performance. Developments in the Built Environment 2024;17:100378. https://doi.org/10.1016/j.dibe.2024.100378; https://journal.icsti.int/jour/article/view/275
-
4Academic Journal
Subject Terms: PLAGIARISM, NLTK, CONFERENCE MANAGEMENT SYSTEM, PYTHON, TEXT ENCRYPTION, TEXT LEMMATIZATION, ЛЕММАТИЗАЦИЯ ТЕКСТА, WEB SERVICE, СИСТЕМА УПРАВЛЕНИЯ КОНФЕРЕНЦИЯМИ, API, ШИФРОВАНИЕ ТЕКСТА, ALGORITHM, ПЛАГИАТ, АЛГОРИТМ, ВЕБСЕРВИС
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/138871
-
5Dissertation/ Thesis
Authors: Trubaneva, Yu. V.
Contributors: Бурмашева, Н. В., Burmasheva, N. V., УрФУ. Уральский гуманитарный институт, Кафедра лингвистики и профессиональной коммуникации на иностранных языках
Subject Terms: ЛЕММАТИЗАЦИЯ, TEXT DATA, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, MASTER'S THESIS, AUTOMATED EXTRACTION, TEXT PROCESSING, АВТОМАТИЗИРОВАННАЯ ВЫГРУЗКА, ОБРАБОТКА ТЕКСТА, PYTHON, ТЕКСТОВЫЕ ДАННЫЕ, LEMMATIZATION
File Description: application/pdf
Access URL: https://elar.urfu.ru/handle/10995/145164
-
6Book
Authors: Јакић, Милена
Source: Српска лексикографија од Вука до данас : каталог изложбе/међународни тематски зборник
Subject Terms: лематизација, језички корпус, фреквенција лема, граматичка анотација, лемматизация, лингвистический корпус, частота лемм, грамматическая аннотация
Relation: info:eu-repo/grantAgreement/MESTD/inst-2020/200174/RS//; https://dais.sanu.ac.rs/123456789/16519; http://dais.sanu.ac.rs/bitstream/id/65656/bitstream_65656.pdf; https://hdl.handle.net/21.15107/rcub_dais_16519
-
7Academic Journal
Authors: Bocharov, V, de Chalendar, Gaël
Contributors: de Chalendar, Gaël
Source: Computational Linguistics and Intellectual Technologies. 19:93-105
Subject Terms: лемматизация, [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], dependency parsing, токенизация, 0202 electrical engineering, electronic engineering, information engineering, part of speech tagging, морфологический анализ, 02 engineering and technology, tokenization, lemmatization, синтаксический анализ
File Description: application/pdf
-
8
Subject Terms: лемматизация, llm, токенизация, ембеддер, wordpiece, sentencepiece, embedder, bpe, nlp, tokenization, аффиксы, lemmatization, affixes
-
9Book
Contributors: Зиманский, В. Э.
Subject Terms: лемматизация, моравизмы, старопечатные книги, лингвистическое источниковедение, письменные памятники, лингвистическая текстология, история языка, текстология, историческая лингвистика, электронные издания, палеография, лингвистические исследования, книжные издания
File Description: application/pdf
Access URL: https://lib.vsu.by/jspui/handle/123456789/26727
-
10Academic Journal
Authors: Barkovska, Olesia, Kholiev, Vladyslav, Pyvovarova, Daria, Ivaschenko , Georgiy, Rosinskiy, Dmytro
Source: Advanced Information Systems; Vol. 5 No. 1 (2021): Advanced Information Systems; 69-74 ; Современные информационные системы - Sučasnì ìnformacìjnì sistemi; Том 5 № 1 (2021): Современные информационные системы; 69-74 ; Сучасні інформаційні системи; Том 5 № 1 (2021): Сучасні інформаційні системи; 69-74 ; 2522-9052
Subject Terms: система, NLP, текст, обробка, прискорення, шингли, близькість, подібність, класифікація, попередня обробка, лематизація, стемінг, обработка, ускорение, шинглы, близость, сходство, классификация, предварительная обработка, лемматизация, стемминг, system, text, processing, acceleration, shingles, proximity, likeness, classification, preprocessing
File Description: application/pdf
Relation: http://ais.khpi.edu.ua/article/view/226836/226384; http://ais.khpi.edu.ua/article/view/226836
-
11Academic Journal
Source: Сучасні інформаційні системи; Том 5 № 1 (2021): Сучасні інформаційні системи; 69-74
Advanced Information Systems; Vol. 5 No. 1 (2021): Advanced Information Systems; 69-74
Современные информационные системы-Sučasnì ìnformacìjnì sistemi; Том 5 № 1 (2021): Современные информационные системы; 69-74Subject Terms: likeness, близькість, ускорение, классификация, стемінг, system, NLP, обробка, lemmatization, попередня обробка, stemming, класифікація, обработка, preprocessing, shingles, система, лемматизация, лематизація, прискорення, сходство, proximity, предварительная обработка, acceleration, шингли, близость, подібність, classification, стемминг, текст, шинглы, processing, text
File Description: application/pdf
Access URL: http://ais.khpi.edu.ua/article/view/226836
-
12Academic Journal
Authors: Куят, А. А., Гурин, И. А.
Subject Terms: АЛГОРИТМ, ПЛАГИАТ, ШИФРОВАНИЕ ТЕКСТА, NLTK, ЛЕММАТИЗАЦИЯ ТЕКСТА, СИСТЕМА УПРАВЛЕНИЯ КОНФЕРЕНЦИЯМИ, ВЕБСЕРВИС, API, PYTHON, ALGORITHM, PLAGIARISM, TEXT ENCRYPTION, TEXT LEMMATIZATION, CONFERENCE MANAGEMENT SYSTEM, WEB SERVICE
File Description: application/pdf
Relation: Теплотехника и информатика в образовании, науке и производстве (ТИМ'2024). — Екатеринбург, 2024; http://elar.urfu.ru/handle/10995/138871
Availability: http://elar.urfu.ru/handle/10995/138871
-
13Conference
Authors: Lavrentiev, Alexei, Heiden, Serge, Decorde, Matthieu
Contributors: Institut d’Histoire des Représentations et des Idées dans les Modernités (IHRIM), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Université Jean Monnet - Saint-Étienne (UJM)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS), St-Petersburg State University, Institute for Linguistic Studies (RAS), Herzen State Pedagogical University of Russia, ANR-14-FRAL-0006,PaLaFra,Le PAssage du LAtin au FRAnçais: constitution et analyse d'un corpus numérique latino-français(2014)
Source: Corpus linguistics - 2017 ; https://shs.hal.science/halshs-01591122 ; Corpus linguistics - 2017, St-Petersburg State University; Institute for Linguistic Studies (RAS); Herzen State Pedagogical University of Russia, Jun 2017, St-Pétersbourg, Russia. pp.48-52 ; https://events.spbu.ru/events/anons/corpora-2017
Subject Terms: TXM platform, Old French, lemmatization, open morphological lexicon, старофранцузский язык, лемматизация, открытый морфологический словарь, платформа TXM, [SHS.LANGUE]Humanities and Social Sciences/Linguistics
Subject Geographic: St-Pétersbourg, Russia
-
14Book
Source: Српска лексикографија од Вука до данас : каталог изложбе/међународни тематски зборник
Subject Terms: лемматизация, језички корпус, частота лемм, лематизација, граматичка анотација, лингвистический корпус, фреквенција лема, грамматическая аннотация
-
15Conference
Subject Terms: sentence alignment, sentence splitting, lemmatization, parallel corpus, Kazakh language, выравнивание по предложениям, разбивка по предложениям, лемматизация, параллельный корпус, казахский язык, Research Subject Categories::MATHEMATICS
Availability: http://nur.nu.edu.kz/handle/123456789/1694
-
16Academic Journal
Authors: Пичхадзе, Анна
Source: Filologija ; ISSN 1848-8919 (Online) ; ISSN 0449-363X (Print) ; ISSN-L 0449-363X ; Issue 68
Subject Terms: računalno obilježavanje, lematizacija, crkvenoslavenski jezik, staroruski jezik, Грамматическая разметка текстов, лемматизация, церковнославянский язык, древнерусский язык
File Description: application/pdf
-
17Academic Journal
-
18Academic Journal
Authors: Viktoria V. Kukanova
Source: Новые исследования Тувы, Vol 0, Iss 1 (2015)
Subject Terms: корпусная лингвистика, лингвистические базы данных, компьютерные технологии, архитектура систем обработки естественных языков, метаописание, токенизация, сегментация, лемматизация, морфологическая модель языка, калмыцкий язык, Communities. Classes. Races, HT51-1595
File Description: electronic resource
-
19Academic Journal
Authors: Леонтьев, Н.
Subject Terms: ЯКУТСКИЙ ЯЗЫКА, ЛЕММАТИЗАЦИЯ, ГАЗЕТНЫЙ КОРПУС
File Description: text/html
-
20Academic Journal
Authors: Баранов Виктор Аркадьевич
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: древнерусский язык, исторический корпус, лемматизация
Relation: Вызовы и тренды мировой лингвистики, т.1; http://dspace.kpfu.ru/xmlui/bitstream/net/173696/-1/kils_2020_11_14.pdf; https://dspace.kpfu.ru/xmlui/handle/net/173696; 519.2:801.82(045)
Availability: https://dspace.kpfu.ru/xmlui/handle/net/173696