Showing 1 - 1 results of 1 for search '"Колониеформирующие эндотелиальные клетки"', query time: 0.42s Refine Results
  1. 1
    Academic Journal

    Contributors: Работа выполнена при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0546-2019-0002 «Патогенетическое обоснование разработки имплантатов для сердечно-сосудистой хирургии на основе биосовместимых материалов, с реализацией пациент-ориентированного подхода с использованием математического моделирования, тканевой инженерии и геномных предикторов».

    Source: Complex Issues of Cardiovascular Diseases; Том 11, № 4 (2022); 90-97 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 4 (2022); 90-97 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1243/717; Melly L., Torregrossa G., Lee T., Jansens J., Puskas J. Fifty years of coronary artery bypass grafting. J Thorac Dis. 2018; 10(3): 1960–1967. doi:10.21037/jtd.2018.02.43; Ong C.S., Zhou X., Huang C.Y., Fukunishi T., Zhang H., Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices. 2017; 14(5): 383-392. doi:10.1080/17434440.2017.1324293.; Pashneh-Tala S., MacNeil S., Claeyssens F. The TissueEngineered Vascular Graft—Past, Present, and Future. Tissue Eng Part B Rev. 2016; 22(1): 68–100. doi:10.1089/ten.teb.2015.0100; Sanchez P.F., Brey E.M., Briceno J.C. Endothelialization Mechanisms in Vascular Grafts. J. Tissue Eng. Regen. Med. 2018; 12: 2164–2178. doi:10.1002/term.2747; Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M.R., Dehghani F., Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014; 10(1): 11-25. doi:10.1016/j.actbio.2013.08.022.; Dimitrievska S., Niklason L.E. Historical Perspective and Future Direction of Blood Vessel Developments. Cold Spring Harb Perspect Med. 2018; 8(2): a025742. doi:10.1101/cshperspect.a025742.; Peters E.B. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Eng Part B Rev. 2018; 24(1): 1–24. doi:10.1089/ten.teb.2017.0127; Matveeva V, Khanova M, Sardin E, Antonova L, Barbarash O. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018; 19(11): 3453. doi:10.3390/ijms19113453; Kolbe M., Dohle E., Katerla D., Kirkpatrick C.J., Fuchs S. Enrichment of outgrowth endothelial cells in high and low colony-forming cultures from peripheral blood progenitors. Tissue Eng Part C Methods. 2010; 16(5): 877-886; Fang Y., Wu D., Birukov K.G. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol. 2019; 9(2): 873–904. doi:10.1002/cphy.c180020; Yamamoto K., Takahashi T., Asahara T., Ohura N., Sokabe T., Kamiya A., Ando J. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 2003; 95(5): 2081–2088. doi:10.1152/japplphysiol.00232.2003; Fisher A.B., Chien S., Barakat A.I., Nerem R.M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell Mol. Physiol. 2001; 281(3): L529–L533. doi:10.1152/ajplung.2001.281.3.L529.; Roux E., Bougaran P., Dufourcq P., Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol. 2020; 11: 861. doi:10.3389/fphys.2020.00861; Liu H., Gong X., Jing X., Ding X., Yao Y., Huang Y., Fan Y. Shear stress with appropriate time-step and amplification enhances endothelial cell retention on vascular grafts. J Tissue Eng Regen Med. 2017; 11(11): 2965-2978. doi:10.1002/term.2196; Melchiorri A.J., Bracaglia L.G., Kimerer L.K., Hibino N., Fisher J.P. In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Eng Part C Methods. 2016; 22(7): 663-70. doi:10.1089/ten.tec.2015.0562; Obi S., Masuda H., Shizuno T., Sato A., Yamamoto K., Ando J., Abe Y., Asahara T. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol Cell Physiol. 2012; 303(6): C595-606. doi:10.1152/ajpcell.00133.2012; Egorova A.D., DeRuiter M.C., De Boer H.C., Van De Pas S., Gittenberger-De Groot A.C., Van Zonneveld A.J., Poelmann R.E., Hierck B.P. Endothelial colony-forming cells show a mature transcriptional response to shear stress . Vitr. Cell. Dev. Biol. - Anim. 2012; 48(1): 21.; Brown R.A., Shantsila E., Varma C., Lip G.Y. Current Understanding of Atherogenesis. Am J Med. 2017; 130 (3): 268-282; Choi S.J., Lillicrap D. A sticky proposition: The endothelial glycocalyx and von Willebrand factor. J Thromb Haemost. 2020; 18(4): 781-785. doi:10.1111/jth.14743.; Shim K., Anderson P.J., Tuley E.A., Wiswall E., Evan Sadler J. Platelet–VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood. 2008; 111(2): 651–657. doi:10.1182/blood-2007-05-093021; Starke R.D., Ferraro F., Paschalaki K.E., Dryden N.H., McKinnon T.A., Sutton R.E., Payne E.M., Haskard D.O., Hughes A.D., Cutler D.F., Laffan M.A., Randi A.M. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011; 117(3): 1071–1080. doi:10.1182/blood-2010-01-264507; Stratman A.N., Davis G.E. Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: Influence on vascular tube remodeling, maturation and stabilization. Microsc Microanal. 2012; 18(1): 68–80. doi:10.1017/S1431927611012402