Showing 1 - 20 results of 129 for search '"КИНЕМАТИЧЕСКАЯ ВЯЗКОСТЬ"', query time: 0.80s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: The article was prepared in pursuance of the following documents: 1) Agreement on the provision of subsidies for reimbursement of costs associated with the implementation of measures in the field of ensuring the uniformity of measurements No. 172-11-008 dated 07.06.2017, 2) Additional agreement No. 172–11–008/2 dated 03.04.2018, 3) Additional agreement 172–11–008/3 dated 21.06.2018. 5) Additional agreement No. 172– 11–008/4 dated 03.10.2018 on Appendix No. 4 «Development, improvement and maintenance of State primary standards of units of quantities, as well as development and improvement of State reference measurement procedures (methods)». The author expresses their gratitude to Vladimir Sh. Sulaberidze, Dr. Sci. (Eng.), Senior Researcher, for advice and valuable comments during the preparation of the article., Статья подготовлена во исполнение следующих документов: 1) Соглашения о предоставлении субсидий на возмещение затрат, связанных с осуществлением мероприятий в области обеспечения единства измерений № 172-11-008 от 07.06.2017, 2) Дополнительного соглашения № 1 72–11–008/2 от 03.04.2018, 3) Дополнительного соглашения 172–11–008/3 от 21.06.2018, 4) Дополнительного соглашения № 172–11–008/4 от 03.10.2018 по Приложению № 4 «Разработка, совершенствование и содержание Государственных первичных эталонов единиц величин, а также разработка и совершенствование Государственных референтных методик (методов) измерений». Автор выражает глубокую признательность д-ру техн. наук, старшему научному сотруднику Владимиру Шалвовичу Сулаберидзе за советы и ценные замечания при подготовке статьи. Автор благодарит рецензентов за экспертное мнение и конструктивный подход.

    Source: Measurement Standards. Reference Materials; Том 20, № 1 (2024); 17-30 ; Эталоны. Стандартные образцы; Том 20, № 1 (2024); 17-30

    File Description: application/pdf

    Relation: https://www.rmjournal.ru/jour/article/view/473/325; Elucidating the impact of ultrasonic treatment on bituminous oil properties: A comprehensive study of viscosity modification / A. R. Galimzyanova [et al.] // Geoenergy Science and Engineering. 2024. Vol. 233. P. 212487. https://doi.org/10.1016/j.geoen.2023.212487; Development of compositional-based models for prediction of heavy crude oil viscosity: Аpplication in reservoir simulations / Z. Liu [et al.] // Journal of Molecular Liquids. 2023. Vol. 389. P. 122918. https://doi.org/10.1016/j.molliq.2023.122918; Multiple machine learning models in estimating viscosity of crude oil: Comparisons and optimization for reservoir simulation / P. Sun [et al.] // Journal of Molecular Liquids. 2023. Vol. 384. P. 122251. https://doi.org/10.1016/j.molliq.2023.122251; Barateiro C. E. R. B., Emerik R. C. S. Liquid hydrocarbon flow meters calibration with high flow and viscosity: Conceptual design of a new facility // Flow Measurement and Instrumentation. 2020. Vol. 73. P. 101749. https://doi.org/10.1016/j.flowmeasinst.2020.101749; A study of kinematic viscosity approach with air as a gas medium for turbine flowmeter calibration / B. Rochmanto [et al.] // Flow Measurement and Instrumentation. 2024. Vol. 95. P. 102490. https://doi.org/10.1016/j.flowmeasinst.2023.102490; Correlations for prediction of hydrogen gas viscosity and density for production, transportation, storage, and utilization applications / C. Wei [et al.] // International Journal of Hydrogen Energy. 2023. Vol. 48, Iss. 89. P. 34930–34944. https://doi.org/10.1016/j.ijhydene.2023.05.202; Moisseyeva Y., Saitova A., Strokin S. Calculating densities and viscosities of natural gas with a high content of C2+ to predict twophase liquid-gas flow pattern // Petroleum. 2023. Vol. 9, Iss. 4. P. 579–591. https://doi.org/10.1016/j.petlm.2023.01.001; Functionality-driven food product formulation – An illustration on selecting sustainable ingredients building viscosity / A. LiePiang [et al.] // Food Research International. 2022. Vol. 152. P. 110889. https://doi.org/10.1016/j.foodres.2021.110889; Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study / G. D. O. Lowe [et al.] // British Journal of Hematology. 1997. Vol. 96. P. 168–173. https://doi.org/10.1046/j.1365–2141.1997.8532481.x; Çinar Y., Şenyol A. M., Duman K. Blood viscosity and blood pressure: role of temperature and hyperglycemia // American Journal of Hypertension. 2001. Vol. 14, Iss. 5. P. 433–438. https://doi.org/10.1016/S0895–7061(00)01260-7; A highly accurate and consistent microfluidic viscometer for continuous blood viscosity measurement / Y. J. Kang [et al.] // Artificial Organs. 2010. Vol. 34, Iss. 11. P. 944–949. https://doi.org/10.1111/j.1525–1594.2010.01078.x; Муратова Е. И., Смолихина П. М. Реология кондитерских масс : монография. Тамбов : Изд-во ФГБОУ ВПО ТГТУ, 2013. 188 с.; Реология : Теория и приложения : пер. с англ. Под ред. Ф. Эйриха; Под общ. ред. Ю. Н. Работнова и П. А. Ребиндера. М. : Изд-во иностр. лит., 1962. 824 с.; Павловский Н. Н. Гидравлический справочник. Л.; М.; ОНТИ НКТП СССР, главная редакция энергетической литературы, 1937. 890 с.; Рыбак Б. М. Анализ нефти и нефтепродуктов. М. : ГосТехИздат, 1962. 888 с.; Hameed D. K. Deterioration in physical engine oil properties after different trip length // Kurdistan Journal of Applied Research. 2021. Vol. 6, Iss. 1. P. 13–20. https://doi.org/10.24017/science.2021.1.2; Akyazi T., Basabe-Desmonts L., Benito-Lopez F. Review on microfluidic paper-based analytical devices towards commercialization // Analytica Chimica Acta. 2017. № 1001. https://doi.org/10.1016/j.aca.2017.11.010; From Newtonian to non-Newtonian fluid: insight into the impact of rheological characteristics on mineral deposition in urine collection and transportation / Z. Yan [et al.] // Sci Total Environment. 2022. Vol. 823. P. 153532. https://doi.org/10.1016/j.scitotenv.2022.153532; Rheological study of cowpea puree ‘adowè’ and the influence of saliva on the puree viscosity / E. Teko [et al.] // International Journal of Food Science & Technology. 2022. Vol. 57, Iss. 5. P. 3098–3105. https://doi.org/10.1111/ijfs.15640; A rapid label-free disposable electrochemical salivary point-of-care sensor for SARS-CoV-2 detection and quantification / N. Farsaeivahid [et al.] // Sensors. 2023. Vol. 23, Iss. 1. P. 433. https://doi.org/10.3390/s23010433; Viscosity of rice flour: a rheological and biological study / M. A. Fitzgerald [et al.] // Journal of Agricultural and Food Chemistry. 2003. Vol. 51, Iss. 8. P. 2295–2299. https://doi.org/10.1021/jf020574i; Миргородская А. В. История развития капиллярного метода измерений кинематической вязкости: от вискозиметра Ломоносова до информационно-измерительной системы // Измерительная техника. 2023. № 8. С. 53–59. https://doi.org/10.32446/0368–1025it.2023-8-53-59; McKennell R. Cone-Plate Viscometer // Analytical Chemistry. 1956. Vol. 28, Iss. 11. P. 1710–1714. https://doi.org/10.1021/ac60119a021; Lee E., Kim B., Choi S. Hand-held, automatic capillary viscometer for analysis of Newtonian and non-Newtonian fluids // Sensors and Actuators A: Physical. Vol. 313. P. 112176. https://doi.org/10.1016/j.sna.2020.112176; Development of an improved falling ball viscometer for high-pressure measurements with supercritical CO2 / B. Calvignac [et al.] // The Journal of Supercritical Fluids. 2010. Vol. 55, Iss. 1. P. 96–106. https://doi.org/10.1016/j.supflu.2010.07.012; New design of the falling-body rheoviscometer for high and extra-high viscous liquid measurements. viscosity of vacuum oils / D. Sagdeev [et al.] // Journal of Chemical & Engineering Data. 2020. Vol. 65, Iss. 4. P. 1773–1786. https://doi.org/10.1021/acs.jced.9b01071; Evaluation of the metrological performance of two kinds of rotational viscometers by means of viscosity reference materials / C. S. C. de Castro [et al.] // Journal of Petroleum Science and Engineering. 2016. Vol. 138. P. 292–297. https://doi.org/10.1016/j.petrol.2015.12.003; Investigation of rheological properties of blended cement pastes using rotational viscometer and dynamic shear rheometer / Y. J. Kim [et al.] // Advances in Materials Science and Engineering. 2018. Vol. 17. P. 1–6. https://doi.org/10.1155/2018/6303681; Yabuno H. Review of applications of self-excited oscillations to highly sensitive vibrational sensors ZAMM // Journal of Applied Mathematics and Mechanics. 2021. Vol. 101, Iss. 7. Special Issue: 4th International Conference on Vibro-Impact Systems (ICoVIS2018). https://doi.org/10.1002/zamm.201900009; The Rheology Handbook // Pigment & Resin Technology. 2009. Vol. 38, № . 5. https://doi.org/10.1108/prt.2009.12938eac.006; Гребенникова Н. М. Аэрогидродинамический метод и устройство контроля вязкости жидких веществ : спец. 05.11.13 «Приборы и методы контроля природной среды, веществ, материалов и изделий» : дисс. канд. техн. наук / Н. М. Гребенникова; Тамб. гос. техн. ун-т. Тамбов, 2008. 16 с. Место защиты: Тамб. гос. техн. ун-т. URL: https://viewer.rsl.ru/ru/rsl01003459748?page=1&rotate=0&theme=white (дата обращения: 17.10.2023).; Демьянов А. А., Цурко А. А. Государственный первичный эталон единицы кинематической вязкости жидкости в диапазоне от 4 · 10–7 ÷ 1 · 10–1 м2/с (ГЭТ 17–96). В кн.: Российская метрологическая энциклопедия. Т. 1. СПб. : Гуманистика, 2015. С. 380–382.; Степанов Л. П. Измерение вязкости жидкостей. М. : [б. и.], 1966. 43 с.; Демьянов А. А., Неклюдова А. А. Государственный первичный эталон единицы кинематической вязкости жидкости ГЭТ 17–96 // Материалы 28 симпозиума по реологии, Москва, 28 сентября – 02 октября 2016 г. М. : Институт нефтехимического синтеза им. А. В. Топчиева РАН, 2016. С. 74–75.; Marvin R. S. The Accuracy Measurements Viscosity Liquids // Journal of research of the National Bureau of Standards – A . Physics and Chemistry. 1975. Vol. 75A, № 6. P. 535–540. https://doi.org/10.6028/jres.075A.041; Цурко А. А., Демьянов А. А. Состояние метрологического обеспечения измерений вязкости нефтепродуктов // Измерительная техника. 2014. № 4. С. 65–66. https://doi.org/10.1007/s11018–014–0479-z; История создания и модернизация государственных первичных эталонов единиц динамической, кинематической вязкости жидкости и плотности / К. В. Чекирда [и др.] // Измерительная техника. 2022. № 7. С. 24–29. https://doi.org/10.32446/0368–1025it.2022-7-24-29; Klingenberg G., Bauer H. CCM.V-K1 intercomparison in capillary viscometry / Published under licence by IOP Publishing Ltd // Metrologia. 2004. Vol. 41, № 1A. P. 07001. https://doi.org/10.1088/0026–1394/41/1A/07001; Maggi C. P., Trowbridge D., Zubler M. T. Final report on CCM.V-K2 comparison / Published under licence by IOP Publishing Ltd // Metrologia. 2009. Vol. 46. № 1A. P. 07003. https://doi.org/10.1088/0026–1394/46/1A/07003; CCM.V-K3: CCM Key Comparison of Viscosity / Y. Fujita [et al.] // Metrologia. 2018. Vol. 55. № 1A. P. 07010. https://doi.org/10.1088/0026–1394/55/1A/07010; Неклюдова А. А., Сулаберидзе В. Ш. Научно-методические основы метрологического обеспечения современных методов измерений вязкости жидких сред: монография. СПб. : Издательско-полиграфическая компания КОСТА, 2023. 232 с.; https://www.rmjournal.ru/jour/article/view/473

  3. 3
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 68, № 4 (2024); 296-304 ; Доклады Национальной академии наук Беларуси; Том 68, № 4 (2024); 296-304 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-4

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1203/1204; Фукс, Г. И. Вязкость и пластичность нефтепродуктов / Г. И. Фукс. – М.; Ижевск, 2003. – 327 с.; Souas, F. A review on the rheology of heavy crude oil for pipeline transportation / F. Souas, A. Safri, A. Benmounah // Petroleum Research. – 2021. – Vol. 6, N 2. – P. 116–136. https://doi.org/10.1016/j.ptlrs.2020.11.001; Дияров, И. Н. Композиционные неионогенные ПАВ для комплексной интенсификации процессов добычи, подготовки и транспортировки высоковязких нефтей / И. Н. Дияров, Н. Ю. Башкирцева // Вестн. Казанского технолог. ун-та. – 2010. – № 4. – C. 141–157.; Потенциал высоковязкой нефти Ашальчинского месторождения как сырья для нефтепереработки / С. М. Петров [и др.] // Вестн. Казанского технолог. ун-та. – 2013. – Т. 16, № 18. – С. 261–265.; Физико-химические основы улучшения реологических свойств нефти месторождений Южный Кум / М. Р. Усманова [и др.] // Докл. Акад. наук Респ. Таджикистан. – 2007. – Т. 50, № 4. – C. 349–353.; Shadi, W. H. Heavy crude oil viscosity reduction and rheology for pipeline transportation / W. H. Shadi, T. G. Mamdouh, N. Esmail // Fuel. – 2010. – Vol. 89, N 5. – P. 1095–1100. https://doi.org/10.1016/j.fuel.2009.12.021; Петрухина, Н. Н. Регулирование превращений компонентов высоковязких нефтей при их подготовке к транспорту и переработке: дис. … канд. техн. наук / Н. Н. Петрухина. – М., 2014. – 205 л.; Application of surfactant in oilfield development / Shizhang Cui [et al.] // IOP Conf. Series: Earth and Environmental Science. – 2020. – Vol. 565. – Art. 012044. https://doi.org/10.1088/1755-1315/565/1/012044; Исследование реологических свойств высоковязких и высокопарафинистых нефтей месторождений Самарской области / П. В. Рощин [и др.] // Нефтегазовая геология. Теория и практика. – 2013. – Т. 8, № 1 [Электронный ресурс]. – Режим доступа: https://www.ngtp.ru/rub/9/12_2013.pdf. – Дата доступа: 25.06.2023.; Иванова, Ю. В. Химия нефти / Ю. В. Иванова, Р. И. Кузьмина, И. В. Кожемякин. – Саратов, 2010. – Ч. 1. – 56 с.; Разработка технологии подбора депрессорно-реологических присадок для парафинистых нефтей на основе принципов межмолекулярных взаимодействий в нефтяных дисперсных системах / Е. А. Чернышева [и др.] // Технология нефти и газа. – 2010. – № 6. – С. 40–43.; Rheological properties and viscosity reduction of South China Sea crude oil / H. Sun [et al.] // Journal of Energy Chemistry. – 2018. – Vol. 27, N 4. – P. 1198–1207. https://doi.org/10.1016/j.jechem.2017.07.023; Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow / M. H. Hassanean [et al.] // Egyptian J. Petroleum. – 2016. – Vol. 25, N 1. – P. 39–44. https://doi.org/10.1016/j.ejpe.2015.02.013; Фахретдинов, П. С. Новые регуляторы реологических свойств высокосмолистой нефти / П. С. Фахретдинов, Д. Н. Борисов, Г. В. Романов // Нефтегазовое дело. – 2007. – № 2 [Электронный ресурс]. – Режим доступа: http://ogbus. ru/files/ogbus/authors/Fahretdinov/Fahretdinov_1.pdf. – Дата доступа: 26.06.2023.; Опанасенко, О. Н. Флокуляция и седиментация нефтяных дисперсных систем в присутствии добавок, содержащих амино- и фосфатные группы / О. Н. Опанасенко, Н. В. Яковец, Н. П. Крутько // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. – 2017. – № 1. – С. 99–108.; https://doklady.belnauka.by/jour/article/view/1203

  4. 4
  5. 5
    Conference

    File Description: application/pdf

    Relation: Проблемы геологии и освоения недр : труды XXVII Международного молодежного научного симпозиума имени академика М.А. Усова, посвященного 160-летию со дня рождения академика В.А. Обручева и 140-летию академика М.А. Усова, основателям Сибирской горно-геологической школы, 3-7 апреля 2023 г., г. Томск. Т. 2; http://earchive.tpu.ru/handle/11683/77888

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Contributors: ELAKPI, This research was supported by the EU-financed project AMMODIT project reference: 645672, funded under: H2020-EU.1.3.3 – under the MSCA-RISE-2014 of Program Horizon 2020

    Source: Наукові вісті Національного технічного університету України "Київський політехнічний інститут", Iss 5, Pp 41-50 (2017)
    Наукові вісті КПІ; № 5 (2017): ; 41-50
    Научные вести КПИ; № 5 (2017): ; 41-50
    Research Bulletin of the National Technical University of Ukraine "Kyiv Politechnic Institute"; № 5 (2017): Engineering; 41-50

    File Description: application/pdf

  10. 10
  11. 11
    Academic Journal

    Source: Вісник Національного технічного університету «ХПІ». Серія: Хiмiя, хiмiчнi технологiї та екологiя; № 39 (2018): Вісник Національного технічного університету «ХПІ» Cерія: Хімія, хімічна технологія та екологія; 31-34
    Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology; № 39 (2018): Bulletin of the National Technical University «KhPI». Series: Chemistry, Chemical Technology and Ecology; 31-34
    Весник НТУ"ХПИ" серия "Химия, химическая технология и экология"; № 39 (2018): Вестник Национального технического университета "ХПИ". Серия: Химия, химическая технология и экология; 31-34

    File Description: application/pdf

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Contributors: This study was carried out under the state assignment of Sobolev Institute of Geology and Mineralogy SB RAS and financially supported by the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена по государственному заданию ИГМ СО РАН при финансовой поддержке Министерства науки и высшего образования Российской Федерации.

    Source: Geodynamics & Tectonophysics; Том 11, № 2 (2020); 397-416 ; Геодинамика и тектонофизика; Том 11, № 2 (2020); 397-416 ; 2078-502X

    File Description: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1040/504; Atikinson E., Pryde R., 2006. Seismic Investigation of Selected Kimberlite Pipes in the Buffalo Head Hills Kimberlite Field, North-Central Alberta. Alberta Energy and Utilities Board, EUB/AGS Special Report 079, 1 p.; Burov E., Guillou-Frottier L., 2005. The Plume HeadContinental Lithosphere Interaction Using a Tectonically Realistic Formulation for the Lithosphere. Geophysical Journal International 161, 469–490. https://doi.org/10.1111/ j.1365-246X.2005.02588.x.; Camp V.E., Ross M.E., 2004. Mantle Dynamics and Genesis of Mafic Magmatism in the Intermontane Pacific Northwest. Journal of Geophysical Research 109 (B8), B08204. https:// doi.org/10.1029/2003JB002838.; Chalapathi Rao N.V., Lehmann B., 2011. Kimberlites, Flood Basalts and Mantle Plumes: New Insights from the Deccan Large Igneous Province. Earth-Science Reviews 107 (3–4), 315–324. https://doi.org/10.1016/j.earscirev.2011. 04.003.; Condie K.C., 2016. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 418 p. https://doi.org/10.1016/C20 15-0-00179-4.; Davaille A., Limare A., Touitou F., Kumagai I., Vatteville J., 2011. Anatomy of a Laminar Starting Thermal Plume at High Prandtl Number. Experiments in Fluids 50 (2), 285– 300. https://doi.org/10.1007/s00348-010-0924-y.; Davaille A., Vatteville J., 2005. On the Transient Nature of Mantle Plumes. Geophysical Research Letters 32 (14), L14309. https://doi.org/10.1029/2005GL023029.; Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2001. Deep-Level Geodynamics. Siberian Branch of RAS Publishing House, Geo Branch, Novosibirsk, 408 p. (in Russian) [Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Глубинная геодинамика. Новосибирск: Изд­во СО РАН, филиал «ГЕО», 2001. 408 с.].; Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N., 2008. Modelling of Thermochemical Plumes and Implications for the Origin of the Siberian Traps. Lithos 100 (1–4), 66–92. https://doi.org/10.1016/j. lithos.2007.06.025.; Farnetani C.G., Richards M.A., 1994. Numerical Investigations of the Mantle Plume Initiation Model for Flood Basalt Events. Journal of Geophysical Research 99 (B7), 13813–13833. https://doi.org/10.1029/94JB00649.; Field M., Stiefenhofer J., Robey J., Kurszlaukis S., 2008. Kimberlite-Hosted Diamond Deposits of Southern Africa: A Review. Ore Geology Reviews 34 (1–2), 33–75. https:// doi.org/10.1016/j.oregeorev.2007.11.002.; Gladkov I.N., Distanov V.E., Kirdyashkin A.A., Kirdyashkin A.G., 2012. Stability of a Melt/Solid Interface with Reference to a Plume Channel. Fluid Dynamics 47 (4), 433– 447. https://doi.org/10.1134/S0015462812040023.; Griffiths R.W., Campbell I.H., 1990. Stirring and Structure in Mantle Starting Plumes. Earth and Planetary Science Letters 99 (1–2), 66–78. https://doi.org/10.1016/0012-821X(90)90071-5.; Guillou L., Jaupart C., 1995. On the Effects of Continents on Mantle Convection. Journal of Geophysical Research 100 (B12), 24217–24238. https://doi.org/10.1029/95JB02518.; Guillou-Frottier L., Burov E., Nehlig P., Wyns R., 2007. Deciphering Plume–Lithosphere Interactions beneath Europe from Topographic Signatures // Global and Planetary Change 58 (1–4), 119–140. https://doi.org/10.1016/j.gloplacha.2006.10.003.; Haggerty S.E., 2011. Kimberlites, Supercontinents and Deep Earth Dynamics: Mid-Proterozoic India in Rodinia. In: J. Ray, G. Sen, B. Ghosh (Eds), Topics in Igneous Petrology. Springer, Dordrecht, p. 421–435. https://doi.org/10.1007/978-90-481-9600-5_16.; Herzberg C., Zhang J., 1996. Melting Experiments on Anhydrous Peridotite Klb-1: Compositions of Magmas in the Upper Mantle and Transition Zone. Journal of Geophysical Research 101 (B4), 8271 – 8275. https://doi.org/10.1029/96JB00170.; Hofmeister A.M., 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science 283 (5408), 1699–1706. https://doi.org/10.1126/science.283.5408.1699.; Jelsma H., Barnett W., Richards S., Lister G., 2009. Tectonic Setting of Kimberlites. Lithos 112S, 155–165. https://doi.org/10.1016/j.lithos.2009.06.030.; Kennedy C.S., Kennedy G.C., 1976. The Equilibrium Boundary between Graphite and Diamond // Journal of Geophysical Research 81 (14), 2467–2470. https://doi.org/10.1029/JB081i014p02467.; Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2004. Thermochemical Plumes. Russian Geology and Geophysics 45 (9), 1005–1024.; Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2009. Heat Transfer between a Thermochemical Plume Channel and the Surrounding Mantle in the Presence of Horizontal Mantle Flow. Izvestiya, Physics of the Solid Earth 45 (8), 684– 700. https://doi.org/10.1134/S1069351309080084.; Kirdyashkin A.A., Kirdyashkin A.G., 2013. Interaction of a Thermochemical Plume with Free Convection Mantle Flows and Its Influence on Mantle Melting and Recrystallization. Russian Geology and Geophysics 54, 544–554. https://doi.org/10.1016/j.rgg.2013.04.006.; Kirdyashkin A.A., Kirdyashkin A.G., 2016. On Thermochemical Mantle Plumes with an Intermediate Thermal Power That Erupt on the Earth’s Surface. Geotectonics 50 (2), 209–222. https://doi.org/10.1134/S0016852116020059.; Kirdyashkin A.A., Kirdyashkin A.G., Surkov N.V., 2006. Thermal Gravitational Convection in the Asthenosphere beneath a Mid-Ocean Ridge and Stability of Main Mantle-Derived Parageneses. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (1), 76–94.; Kirdyashkin A.G., Kirdyashkin A.A., 2015. Mantle Thermochemical Plumes and Their Influence on the Formation of Highlands. Geotectonics 49 (4), 332–341. https://doi.org/10.1134/S0016852115040032.; Kirdyashkin A.G., Kirdyashkin A.A., 2016. Parameters of Plumes of North Asia. Russian Geology and Geophysics 57 (11), 1535–1550. https://doi.org/10.1016/j.rgg.2016.10.002.; Kirdyashkin A.G., Kirdyashkin A.A., Distanov V.E., Gladkov I.N., 2019. Experimental and Theoretical Modeling of Diamondiferous Plumes. Geodynamics & Tectonophysics 10 (2), 247–263 (in Russian) [Кирдяшкин А.Г., Кирдяшкин А.А., Дистанов В.Э., Гладков И.Н. Экспериментальное и теоретическое моделирование алмазоносных плюмов. Геодинамика и тектонофизика. 2019. Т. 10. № 2. С. 247– 263]. https://doi.org/10.5800/GT-2019-10-2-0413.; Lenardic A., Guillou-Frottier L., Mareschal J.-C., Jaupart C., Moresi L.-N., Kaula W.M., 2000. What the Mantle Sees: The Effects of Continents on Mantle Heat Flow. In: M.A. Richards, R.G. Gordon, R.D. van der Hilst (Eds), AGU Geophysical Monograph. Vol. 121. The History and Dynamics of Global Plate Motions. American Geophysical Union, p. 95–112. https://doi.org/10.1029/GM121p0095.; Li X., Kind R., Priestley K., Sobolev S.V., Tilmann F., Yuan X., Weber M., 2000. Mapping the Hawaiian Plume Conduit with Converted Seismic Waves. Nature 405, 938–941. https://doi.org/10.1038/35016054.; Lin S.-C., van Keken P.E., 2006. Dynamics of Thermochemical Plumes: 1. Plume Formation and Entrainment of a Dense Layer. Geochemistry, Geophysics, Geosystems 7 (2), Q02006. https://doi.org/10.1029/2005GC001071.; Maruyama S., Yuen D.A., Windley B.F., 2007. Dynamics of Plumes and Superplumes through Time. In: D.A. Yuen, S. Maruyama, S.-I. Karato, B.F. Windley (Eds), Superplumes: Beyond Plate Tectonics. Springer, Dordrecht, p. 441–502. https://doi.org/10.1007/978-1-4020-5750-2_15.; Mitchell R.H., 1986. Kimberlites: Mineralogy, Geochemistry, and Petrology. Plenum Press, New York, 442 p. https://doi.org/10.1007/978-1-4899-0568-0.; Montelli R., Nolet G., Dahlen F.A., Masters G., 2006. A Catalogue of Deep Mantle Plumes: New Results from FiniteFrequency Tomography. Geochemistry, Geophysics, Geosystems 7 (11), Q11007. https://doi.org/10.1029/2006 GC001248.; Nakagawa T., Tackley P.J., 2004. Thermo-Chemical Structure in the Mantle Arising from a Three-Component Convective System and Implications for Geochemistry. Physics of the Earth and Planetary Interiors 146 (1–2), 125–138. https://doi.org/10.1016/j.pepi.2003.05.006.; Nolet G., Karato S.-I., Montelli R., 2006. Plume Fluxes from Seismic Tomography. Earth and Planetary Science Letters 248, 685–699. https://doi.org/10.1016/j.epsl.2006.06.011.; Olson P., Singer H., 1985. Creeping Plumes. Journal of Fluid Mechanics 158, 511–531. https://doi.org/10.1017/S0022112085002749.; Perchuk L.L., Kushiro I., 1985. Experimental Study of the System Alkali Basalt-Water up to Pressure 20 Kbar in Respect of Estimation of H2O Content in the Original Magmas beneath the Island Arcs. Geologicky Zbornik–Geologica Carpathica 36 (3), 359–368. Puchkov V.N., 2016. Relationship between Plume and Plate Tectonics. Geotectonics 50, 425–438. https://doi.org/ 10.1134/S0016852116040075.; Rudnick R.L., Gao S., 2003. Composition of the Continental Crust. In: H.D. Holland, K.K. Turekian (Eds), Treatise on Geochemistry. Vol. 3. The Crust. Elsevier, Amsterdam, p. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.; Schlichting H., 1975. Boundary-layer theory. McGrawHill, New York, 817 p. Şengör A.M.C., 2001. Elevation as Indicator of MantlePlume Activity. In: R.E. Ernst, K.L. Buchan (Eds), GSA Special Papers. Vol. 352. Mantle Plumes: Their Identification through Time. Geological Society of America, p. 183–225. https://doi.org/10.1130/0-8137-2352-3.183.; Sparks R.S.J., 2013. Kimberlite Volcanism. Annual Review of Earth and Planetary Sciences 41, 497–528. https://doi.org/10.1146/annurev-earth-042711-105252.; Sparks R.S.J., Baker L., Brown R.J., Field M., Schumacher J., Stripp G., Walters A., 2006. Dynamical Constraints on Kimberlite Volcanism. Journal of Volcanology and Geothermal Research 155 (1-2), 18–48. https://doi.org/10.1016/j.jvolgeores.2006.02.010.; Spera F.J., 1984. Carbon Dioxide in Petrogenesis III: Role of Volatiles in the Ascent of Alkaline Magma with Special Reference to Xenolith-Bearing Mafic Lavas. Contributions to Mineralogy and Petrology 88 (3), 217–232. https://doi.org/10.1007/BF00380167.; Starostin V.I., Dergachev A.L., Seminskiy Zh.V., 2002. Structures of Ore Fields and Deposits. Moscow State University Publishing House, 352 p. (in Russian) [Старостин В.И., Дергачев А.Л., Семинский Ж.В. Структуры рудных полей и месторождений. М.: Изд­во МГУ, 2002. 352 с].; Surkov N.V., 2003. Lerzolite Paleogeotherm. In: A.D. Savko, N.N. Zinchuk (Eds), Problems of Forecasting, Exploration and Study of Mineral Deposits into the 21st Century. Voronezh State University Publishing House, Voronezh, p. 430– 433 (in Russian) [Сурков Н.В. Лерцолитовая палеогеотерма // Проблемы прогнозирования, поисков и изучения месторождений полезных ископаемых на пороге XXI века / А.Д. Савко, Н.Н. Зинчук (ред.). Воронеж: Издво Воронеж. гос. ун­та, 2003. С. 430–433].; Tan E., Gurnis M., 2007. Compressible Thermochemical Convection and Application to Lower Mantle Structures. Journal of Geophysical Research 112 (B6), B06304. https://doi.org/10.1029/2006JB004505.; Tappe S., Smart K., Torsvik T., Massuyeau M., de Wit M., 2018. Geodynamics of Kimberlites on a Cooling Earth: Clues to Plate Tectonic Evolution and Deep Volatile Cycles. Earth and Planetary Science Letters 484, 1–14. https://doi.org/10.1016/j.epsl.2017.12.013.; Torsvik T.H., Burke K., Steinberger B., Webb S.J., Ashwal L.D., 2010. Diamonds Sampled by Plumes from the Core– Mantle Boundary. Nature 466, 352–357. https://doi.org/10.1038/nature09216.; Trubitsyn V.P., 2010. Thermochemical Convection in the Mantle with Oceanic Crust Recirculation. Izvestiya, Physics of Solid Earth 46 (11), 922–930. https://doi.org/10.1134/S1069351310110029.; Walzer U., Hendel R., Baumgardner J., 2004. The Effects of a Variation of the Radial Viscosity Profile on Mantle Evolution. Tectonophysics. 384 (1–4), 55–90. https://doi.org/10.1016/j.tecto.2004.02.012.; White S.H., de Boorder H., Smith C.B., 1995. Structural Controls of Kimberlite and Lamproite Emplacement. Journal of Geochemical Exploration 53 (1–3), 245–264. https://doi.org/10.1016/0375-6742(94)00033-8.; Zhao D., 2004. Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics. Physics of the Earth and Planetary Interiors 146, 3–34. https://doi.org/10.1016/j.pepi.2003.07.032.; Zhao D., 2007. Seismic Images under 60 Hotspots: Search for Mantle Plumes. Gondwana Research 12, 335–355. https://doi.org/10.1016/j.gr.2007.03.001.

  19. 19
  20. 20