Showing 1 - 20 results of 31 for search '"ИДЕНТИФИКАЦИЯ МИКРООРГАНИЗМОВ"', query time: 0.62s Refine Results
  1. 1
    Academic Journal

    Source: Школа-конференция молодых ученых, аспирантов и студентов «Генетические технологии в микробиологии и микробное разнообразие».

  2. 2
    Academic Journal

    Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 78-84 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 78-84

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907561-33-5; https://phsreda.com/e-articles/10364/Action10364-102477.pdf; Белова И.В. Видовой состав микробиоты автобусов внутригородских маршрутов [Текст] / И.В. Белова, А.Г. Точилина, И.В. Соловьева, Д.Б. Гелашвили, Н.И. Зазнобина, В.А. Жирнов, С.Б. Молодцова // Здоровье населения и среда обитания. – 2021. – №4. – С. 10–17 [Электронный ресурс]. – Режим доступа: https://doi.org/10.35627/2219-5238/2021-337-4-10-17; Техника сбора и транспортирования биоматериалов в микробиологические лаборатории: методические указания МУ 4.2.2039-05 от 23 декабря 2005 г. – М., 2005.; Тихонов В.В. Оценка численности микроорганизмов в воздухе общественного транспорта Москвы в зимний период [Текст] / В.В. Тихонов, О.В. Николаева, П.А. Пильгун // Городские исследования и практики. – 2018. – Т. 3, №3. – С. 36–40.; Шмакова М.А. Бактерии рода Acinetobacter как внутрибольничные патогены: эпидемиологические особенности / М.А. Шмакова // Фундаментальная и клиническая медицина. – 2019. – Т. 4, №1. – С. 66–72.; Becker K., Rutsch F., Uekoetter A., Kipp F., König J., Marquardt T., Peters G., von Eiff C. Kocuria rhizophila Adds to the Emerging Spectrum of Micrococcal Species Involved in Human Infections [Текст] // Journal of Clinical Microbiology. – 2008. – No 46. – Pp. 3537–3539.; [Электронный ресурс]. – Режим доступа: https://bacdive.dsmz.de/; https://phsreda.com/files/Books/62b19487cf261.jpg?req=102477; https://phsreda.com/article/102477/discussion_platform

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Contributors: грант № 14.512.11.0057 Министерства образования и науки Российской Федерации

    Source: Vavilov Journal of Genetics and Breeding; Том 17, № 4/1 (2013); 748-757 ; Вавиловский журнал генетики и селекции; Том 17, № 4/1 (2013); 748-757 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/198/200; Böhme K., Fernández-No I.C., Pazos M. et al. Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting // Electrophoresis. 2013. V. 34. No. 6. P. 877–887.; Cripps R.E., Elay K., Leak D.J. et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production // Metab. Eng. 2009. V. 11. No. 6. P. 398–408.; Dickinson D.N., La Duc M.T., Satomi M. et al. MALDI-TOFMS compared with other polyphasic taxonomy approaches for the identification and classification of Bacillus pumilus spores // J. Microbiol. Meth. 2004. V. 58. No. 1. P. 1–12.; Freiwald A., Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry // Nat. Protoc. 2009. V. 4. No. 5. P. 732–742.; Mellmann A., Cloud J., Maier T. et al. Evaluation of matrixassisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria // J. Clin. Microbiol. 2008. V. 46. No. 6. P. 1946–54.; Nazina T.N., Tourova T.P., Poltaraus A.B. et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans // Intern. J. Syst. Evol. Microbiol. 2001. V. 51. No. 2. P. 433–446.; Ruelle V., El Moualij B., Zorzi W. et al. Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry // Rapid Commun. in Mass Spectrometry: RCM. 2004. V. 18. No. 18. P. 2013–9.; Ryzhov V., Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells // Analyt. Chem. 2001. V. 73. No. 4. P. 746–50.; Valentine N., Wunschel D., Petersen C., Wahl K. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry // Appl. Environmental Microbiol. 2005. V. 71. No. 1. P. 58–64.; https://vavilov.elpub.ru/jour/article/view/198

  9. 9
    Academic Journal

    Contributors: Государственный контракт № 14.512.11.0050 «Создание методов метаболической инженерии термофильных микроорганизмов для получения штаммов-продуцентов молочной кислоты»

    Source: Vavilov Journal of Genetics and Breeding; Том 17, № 4/1 (2013); 758-764 ; Вавиловский журнал генетики и селекции; Том 17, № 4/1 (2013); 758-764 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/199/201; Anhalt J.P., Fenselau C. Identification of bacteria using mass spectrometry // Analyt. Chem. 1975. V. 500. Nо. 2. P. 219–225.; Barbuddhe S.B., Maier T., Schwarz G. et al. Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry // Appl. Environ. Microbiol. 2008. V. 74. Nо. 17. P. 5402–5407.; Becker K., Harmsen D., Mellmann A. et al. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species // J. Clin. Microbiol. 2004. V. 42. Nо. 11. P. 4988–4995.; Ben L.M., van Baar. Characterisation of bacteria by matrixassisted laser desorption/ionization and electrospray mass spectrometry // FEMS Microbiol. Rev. 2000. V. 24. Nо. 2. P. 193–219.; Böhme K., Fernández-No I.C., Pazos M. et al. Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting // Electrophoresis. 2013. V. 34. Nо. 6. P. 877–887.; Bosshard P.P., Zbinden R., Abels S. et al. 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting gramnegative bacteria in the clinical laboratory // J. Сlin. Microbiol. 2006. V. 44. Nо. 4. P. 1359–1366.; Cloud J.L., Conville P.S., Croft A. et al. Evaluation of partial 16S ribosomal DNA sequencing for identification of Nocardia species by using the MicroSeq 500 system with an expanded database // J. Сlin. Microbiol. 2004. V. 42. Nо. 2. P. 578–584.; Despeyroux D., Phillpotts R., Watts P. Electrospray mass spectrometry for detection and characterization of purified cricket paralysis virus (CrPV) // Rapid Commun. Mass Spectrom. 1996. V. 10. Nо. 8. P. 937–941.; Dickinson D.N., La Duc M.T., Satomi M. et al. MALDITOFMS compared with other polyphasic taxonomy; approaches for the identification and classification of Bacillus pumilus spores // J. Microbiol. Meth. 2004. V. 58. Nо. 1. P. 1–12.; Fenselau C., Russell S., Swatkoski S., Edwards N. Proteomic strategies for rapid characterization of micro-organisms // Eur. J. Mass Spectrom. 2007. V. 13. Nо. 1. P. 35–39.; Ghyselinck J., Van Hoorde K., Hoste B. et al. Evaluation of MALDI-TOF MS as a tool for high-throughput; dereplication // J. Microbiol. Meth. 2011. V. 86. Nо. 3. P. 327–336.; Heinzen R., Stiegler G.L., Whiting L.L. et al. Use of pulsed field gel electrophoresis to differentiate Coxiella burnetii strains // Ann. N.Y. Acad. Sci. 1990. V. 590. P. 504–513.; Karas M., Bachmann D., Bahr D., Hillenkamp F. Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds // Int. J. Mass Spectrom. Ion Proc. 1987. V. 78. P. 53–68.; Krishnamurthy T., Ross P.L., Rajamani U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry// Rapid Commun. Mass Spectrom. 1996. V. 10. Nо. 8. P. 883–888.; Maiden M.C. Multilocus sequence typing of bacteria // Annu. Rev. Microbiol. 2006. V. 60. P. 561–588.; Mellmann A., Bimet F., Bizet C. et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria // J. Clin. Microbiol. 2009. V. 47. Nо. 11. P. 3732–3734.; Mellmann A., Cloud J., Maier T. et al. Evaluation of matrixassisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria // J. Clin. Microbiol. 2008. V. 46. Nо. 6. P. 1946–1954.; Notermans S., Wernars K. Evaluation and interpretation of data obtained with immunoassays and DNA-DNA hybridization techniques // Intern. J. Food Microbiol. 1990. V. 11. Nо. 1. P. 35–49.; O’Hara C. Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gramnegative bacilli // Clin. Microbiol. Rev. 2005. V. 18. Nо. 1. P. 147–162.; Reiner E., Hicks J.J., Ball M.M., Martin W.J. Rapid characterization of salmonella organisms by means of pyrolysisgas-liquid chromatography // Analyt. Сhem. 1972. V. 44. Nо. 6. P. 1058–1061.; Ruelle V., El Moualij B., Zorzi W. et al. Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry // Rapid Commun. Mass Spectrom. 2004. V. 18. Nо. 18. P. 2013–2019.; Ryzhov V., Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells // Analyt. Chem. 2001. V. 73. Nо. 4. P. 746–750.; Sandrin T.R., Goldstein J.E., Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: A review // Mass Spectrom. Rev. 2013. V. 32. Nо. 3. P. 188–217.; Šedo O., Sedláček I., Zdráhal Z. Sample preparation methods for MALDI-MS profiling of bacteria // Mass Spectrom. Rev. 2011. V. 30. Nо. 3. P. 417–434.; Seibold E., Maier T., Kostrzewa M. et al. Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels // J. Clin. Microbiol. 2010. V. 48. Nо. 4. P. 1061–1069.; Turner K.M., Feil E.J. The secret life of the multilocus sequence type // Intern. J. Antimicrobial Agents. 2007. V. 29. P. 129–135.; Valentine N., Wunschel S., Wunschel D. et al. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry // Appl. Environ. Microbiol. 2005. V. 71. Nо. 1. P. 58–64.; https://vavilov.elpub.ru/jour/article/view/199

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20