Showing 1 - 20 results of 253 for search '"Гипертрофическая кардиомиопатия"', query time: 0.95s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 70, № 1 (2025); 32-41 ; Российский вестник перинатологии и педиатрии; Том 70, № 1 (2025); 32-41 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2137/1564; Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P. еt al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014; 35(39): 2733–2779. DOI:10.1093/eurheartj/ehu284; Ommen S.R., Mital S., Burke M.A., Day S.M., Deswal A., Elliott P. et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2020; 76: e159–e240. DOI:10.1016/j.jacc.020.08.045; Maron B.J., Rowin E.J., Casey S.A., Maron M.S. How Hypertrophic Cardiomyopathy Became a Contemporary Treatable Genetic Disease With Low Mortality: Shaped by 50 Years of Clinical Research and Practice. JAMA Cardiol 2016; 1(1): 98–105. DOI:10.1001/jamacardio.2015.0354; Maron B., Rowin E., Casey S., Lesser J., Garberich R., Mc-Griff D.M. et al. Hypertrophic Cardiomyopathy in Children, Adolescents, and Young Adults Associated With Low Cardiovascular Mortality With Contemporary Management Strategies. Circulation 2016; 133(1): 62–73. DOI:10.1161/CIRCULATIONAHA.115.017633; Ostman-Smith I., Wettrell G., Keeton B., Holmgren D., Ergander U., Gould S. et al. Age- and gender-specific mortality rates in childhood hypertrophic cardiomyopathy. Eur Heart J 2008; 29(9): 1160–1167. DOI:10.1093/eurheartj/ehn122; Marston N. A., Han L., Olivotto I., Day S.M., Ashley E.A., Michels M. et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur Heart J 2021; 42: 1988–1996. DOI:10.1093/eurheartj/ehab14; Maurizi N., Passantino S., Spaziani G., Girolami F., Arretini A., Targetti M. et al. Long-term outcomes of pediatric-onset hypertrophic cardiomyopathy and age-specific risk factors forlethal arrhythmic events. JAMA Cardiol 2018; 3: 520–525. DOI:10.1001/jamacardio.2018.0789; Norrish G., Cantarutti N., Pissaridou E., Ridout D., Limongell G., Elliott P. et al. Risk factors for sudden cardiac death in childhood hypertrophic cardiomyopathy: A systematic review and meta-analysis. Eur J Prev Cardiol 2017; 24(11): 1220–1230. DOI:10.1177/2047487317702519; Maron B.J., Spirito P., Ackerman M.J., Casey S.A., Semsarian C., Estes N.A. et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol 2013; 61(14): 1527–1535. DOI:10.1016/j.jacc.2013.01.037; Arbelo E., Protonotarios A., Gimeno J.R., Arbustini E., Barriales-Villa R., Basso C. et al. ESC Scientific Document Group2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44(37): 3503–3626. DOI:10.1093/eurheartj/ehad194; Norrish G., Ding T., Field E., Ziólkowska L., Olivotto I., Limongelli G. et al. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM risk-kids). JAMA Cardiol 2019; 4: 918–927. DOI:10.1001/jamacardio.2019.2861; Kaski J.P., Tomé Esteban M.T., Lowe M., Sporton S., Rees P., Deanfield J.E. et al. Outcomes after implantable cardioverter-defibrillator treatment in children with hypertrophic cardiomyopathy. Heart (British Cardiac Society) 2007; 93(3): 372–374. DOI:10.1136/hrt.2006.094730; Norrish G., Chubb H., Field E., McLeod K., Ilina M., Spentzou G. et al. Clinical outcomes and programming strategies of implantable cardioverter-defibrillator devices in paediatric hypertrophic cardiomyopathy: a UK National Cohort Study. Europace 2021; 23(3): 400–408. DOI:10.1093/europace/euaa307; Miron A., Lafreniere-Roula M., Steve Fan C.P., Armstrong K. R., Dragulescu A., Papaz T. et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation 2020; 142: 217–229. DOI:10.1161/circulationaha.120.047235; Tsuda E., Ito Y., Kato Y., Sakaguchi H., Ohuchi H., Kurosaki K. Thirty-year outcome in children with hypertrophic cardiomyopathy based on the type. J Cardiol 2022; 80(6): 557–562. DOI:10.1016/j.jjcc.2022.07.016; Norrish G., Ding T., Field E., McLeod K., Ilina M., Stuart G. et al. A validation study of the European Society of Cardiology guidelines for risk stratification of sudden cardiac death in childhood hypertrophic cardiomyopathy. Europace 2019; 21(10): 1559–1565. DOI:10.1093/europace/euz118; Östman-Smith I., Sjöberg G., Alenius Dahlqvist J., Larsson P., Fernlund E. Sudden cardiac death in childhood hypertrophic cardiomyopathy is best predicted by a combination of electrocardiogram risk-score and HCM Risk-Kids score. Acta Paediatr 2021; 110(11): 3105–3115. DOI:10.1111/apa.16045; Ziółkowska L., Mazurkiewicz Ł., Petryka J., Kowalczyk-Domagała M., Boruc A., Bieganowska K. et al. The Indices of Cardiovascular Magnetic Resonance Derived Atrial Dynamics May Improve the Contemporary Risk Stratification Algorithms in Children with Hypertrophic Cardiomyopathy. Journal of clinical medicine 2021; 10(4): 650. DOI:10.3390/jcm10040650; Ардашев А.В., Джанджгава А.О., Желяков Е.Г., Шаваров А.А.; под общей редакцией А.Ш. Ревишвили. Постоянная электрокардиостимуляция и дефибрилляция в клинической практике. М.: Медпрактика-М, 2007; 224 с.; Thuraiaiyah J., Philbert B. T., Jensen A. S., Xing L. Y., Joergensen T.H., Lim C.W. et al. Implantable cardioverter defibrillator therapy in paediatric patients for primary vs. secondary prevention. Europace 2024; 26(9): euae245. DOI:10.1093/europace/euae245; Fontanges P.A., Marquie C., Houeijeh A., Baudelet J.B., Richard A., Amenyah C. et al. Evaluation of new predictive scores for sudden cardiac death in childhood hypertrophic cardiomyopathy in a French cohort. Arch Cardiovasc Dis 2024; 117(6–7): 402–408. DOI:10.1016/j.acvd.2024.03.003

  4. 4
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 10, № 1 (2025); 50-58 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5209/2960; Sarate YuA, Hopkin RJ. Fabry’s disease. The Lancet. 2008; 372: 1427-1435. doi:10.1016/S0140-6736(08)61589-5; Моисеев С.В., Новиков П.И., Фомин В.В. Лечение болезни Фабри. Клиническая фармакология и терапия. 2016; 25(4): 63- 70.; Schiffmann R, Hughes DA, Linthorst GE, Ortiz A, Svarstad E, Warnock DG, et al. Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO). Controversies Conference. Kidney Int. 2017; 91(2): 284-293. doi:10.1016/j.kint.2016.10.004; Wanner C, Ortiz A, Wilcox WR, Hopkin RJ, Johnson J, Ponce E, et al. Global reach of over 20 years of experience in the patient-centered Fabry Registry: Advancement of Fabry disease expertise and dissemination of real-world evidence to the Fabry community. Mol Genet Metab. 2023; 139(3): 107603. doi:10.1016/j.ymgme.2023.107603; Ortiz A, Germain DP, Desnik RJ, Politei J, Mauer M, Burlina A, et al. Once again about Fabry’s disease: Recommendations for the management and treatment of adult patients. Mol Genet Metab. 2018; 123(4): 416-427. doi:10.1016/j.ymgme.2018.02.014; Ortiz A, Abioz A, Bichet DG, Cabrera G, Charrow J, Germain DP, et al. Time to start treatment in adult patients with Fabry’s disease receiving agalsidase β: Data from the Fabry Registry. JMed Genet. 2016; 53(7): 495-502. doi:10.1136/jmedgenet-2015-103486; Linhart A, Germain DP, Olivoto I, Akhtar MM, Anastasakis A, Hughes D, et al. Expert consensus document on the treatment of cardiovascular manifestations of Fabry disease. Eur J Heart Fail. 2020; 22(7): 1076-1096. doi:10.1002/ejhf.1960; Perry R, Shah R, Sayedi M, Patil S, Ganesan A, Linhart A, et al. The role of cardiac imaging in the diagnosis and treatment of Anderson – Fabry disease. J Am Coll Cardiol Img. 2019; 12(7): 1230-1242. doi:10.1016/j.jcmg.2018.11.039; Fuertes Kenneally L, García-Álvarez MI, Feliu Rey E, García Barrios A, Climent-Payá V. Fabry disease cardiomyopathy: A review of the role of cardiac imaging from diagnosis tot reatment. Rev Cardiovasc Med. 2022; 23(6): 192. doi:10.31083/j.rcm2306192; Niemann M, Liu D, Hu K, Herrmann S, Breinig F, Strotmann J, et al. Protruding papillary muscles in Fabry’s disease: A diagnostic marker? Ultrasound Med Biol. 2011; 37(1): 37-43. doi:10.1016/j.ultrasmedbio.2010.10.017; Marek J, Palecek T, Magne J, Lavergne D, Boulogne C, Fadel BM, et al. Comparison of echocardiographic parameters in Fabry cardiomyopathy and amyloidosis of the pulmonary circuits of the heart. Echocardiography. 2018; 35(11): 1755-1763. doi:10.1111/echo.14144; Weidemann F, Strotmann JM, Niemann M, Herrmann S, Wilke M, Beer M, et al. Heart valve damage in Fabry cardiomyopathy. Ultrasound Med Biol. 2009; 359(5): 730-735. doi:10.1016/j.ultrasmedbio.2008.10.010; Linhart A, Paleček T. Narrative review on Morbus Fabry: Diagnosis and management of cardiac manifestations. Cardiovasc Diagn Ther. 2021; 11(2): 650-660. doi:10.21037/cdt-20-593; Kozor R, Callaghan F, Chan M, Hamilton-Craig K, Figtree GA, Grieve SM. The disproportionate contribution of papillary muscles and trabeculae to the total mass of the left ventricle makes the choice of the method of analysis of cardiovascular magnetic resonance imaging critically important in Fabry’s disease. J Cardiovasc Magn Reson. 2015; 17(1): 22. doi:10.1186/s12968-015-0114-4; Sado DM, White SK, Piechnik SK, Banipersad SM, Treibel T, Kaptur G, et al. Detection and assessment of Anderson – Fabry disease using non-contrast T1-mapping of the myocardium using cardiovascular magnetic resonance imaging. Circ Cardiovasc Imaging. 2013; 6(3): 392-398. doi:10.1161/CIRCIMAGING.112.000070; Germain DP, Elliott PM, Falissard B, Fomin VV, Hilz MJ, Jovanovic A, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic review of the literature conducted by a European expert group. Mol Genet Metab Rep. 2019; 6(19): 100454. doi:10.1016/j.ymgmr.2019.100454; Lenders M, Brand E. Effects of enzyme replacement therapy and anti-drug antibodies in patients with Fabry’s disease. J Am Soc Nephrol. 2018; 29: 2265-2278. doi:10.1681/ASN.2018030329; Germain DP, Charrow J, Desnik RJ, Gouffon N, Kempf J, Lachmann RH, et al. A ten-year result of enzyme replacement therapy with agalsidase beta in patients with Fabry’s disease. Jay Med Genet. 2015; 52: 353-358. doi:10.1136/jmedgenet-2014-102797; Kampmann S, Perrin A, Beck M. The effectiveness of the replacement of the enzyme agalsidase alpha in Fabry disease: Cardiac consequences after 10 years of treatment. Orphanet J Rare Dis. 2015; 29(10): 125. doi:10.1186/s13023-015-0338-2; Schiffmann R, Swift S, Van H, Blankenship D, Rice M. A prospective 10-year study of individualized enhanced enzyme replacement therapy in advanced Fabry disease. JInherit Metab Dis. 2015; 38: 1129-1136. doi:10.1007/s10545-015-9845-5; Wang AY, Sharma V, Saini H, Tingen JN, Flores A, Liu D, et al. Quantitative assessment of amyloid deposits on histological images of the yellow ligament using machine learning. J Pathol Inform. 2022; 8(13): 100013. doi:10.1016/j.jpi.2022.100013; Barros-Gomes S, Williams B, Nhola LF, Grogan M, Maalouf JF, Dispenzieri A, et al. Prediction of light chain amyloidosis with preserved left ventricular ejection fraction: The added value of two-dimensional speckle-tracking echocardiography to the current prognostic staging system. JACC Cardiovasc. Imaging. 2017; 10: 398-407. doi:10.1016/j.jcmg.2016.04.008; Goto S, Solanki D, John JE, Yagi R, Homilius M, Ichihara G, et al. A multinational federated learning approach to train ECG and echocardiogram models for the detection of hypertrophic cardiomyopathy. Circulation. 2022; 146: 755-769. doi:10.1161/CIRCULATIONAHA.121.058696; Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial intelligence: A practical textbook on clinical research of cardiovascular diseases. J Am Heart Assoc. 2019; 8: e012788. doi:10.1161/ JAHA.119.012788; Fabregat-Andrés O, Pina-Buded S, Valverde-Navarro AA. Feasibility and diagnostic effectiveness of including ultrasound at the place of medical care (POCUS) in pre-match screening of young athletes. Cardiol. Young. 2020; 30: 1970-1972. doi:10.1017/S1047951120003145; Moulson N, Jaff Z, Wiltshire V, Taylor T, O’Connor HM, Hopman WM, et al. Feasibility and reliability of non-expert POCUS for pre-competitive screening of cardiovascular diseases in university team athletes: Protocol SHARP. Can J Cardiol. 2019; 35: 35-41. doi:10.1016/j.cjca.2018.11.003; Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, et al. Detection of hypertrophic cardiomyopathy using an electrocardiogram using a convolutional neural network. JAm Coll Cardiol. 2020; 75: 722-733. doi:10.1016/j.jacc.2019.12.030; Zhang J, Deo RC. Zhang and Deo’s response to a letter regarding the article “Fully automated interpretation of an echocardiogram in clinical practice: Feasibility and diagnostic accuracy”. Circulation. 2019; 139: 1648-1649. doi:10.1161/CIRCULATIONAHA.119.039291; Martini N, Aimo A, Barison A, Della Latta D, Vergaro G, Aquaro GD, et al. Deep learning for the diagnosis of cardiac amyloidosis using cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson. 2020; 22(1): 84. doi:10.1186/s12968-020-00690-4; Laney DA. Prime Minister Fernhoff diagnosis of Fabry’s disease by analyzing family history. J Genet Counters. 2008; 17(1): 79-83. doi:10.1007/s10897-007-9128-x; https://www.actabiomedica.ru/jour/article/view/5209

  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Contributors: The work was carried out with the financial support of the Russian Science Foundation (project No. 20-15-00271 P)., Работа выполнена при финансовой поддержке Российского научного фонда (проект № 20-15-00271П).

    Source: Translational Medicine; Том 11, № 2 (2024); 170-180 ; Трансляционная медицина; Том 11, № 2 (2024); 170-180 ; 2410-5155 ; 2311-4495

    File Description: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/889/569; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/889/1986; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/889/2003; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/889/2004; Devi S, Kim JJ, Singh AP, et al. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med. 2021;11(2):69. DOI:10.3390/jpm11020069.; Schreiber A, Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim Biophys Acta. 2014;1843(1):163–81. DOI:10.1016/j.bbamcr.2013.03.019.; Castets P, Frank S, Sinnreich M, Ruegg MA. “Get the Balance Right”: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis. 2016;3(2):127–55. DOI:10.3233/JND-160153; Bonuccelli G, Sotgia F, Schubert W, et al. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol. 2003;163(4):1663–75. DOI:10.1016/S0002-9440(10)63523-7.; Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):E469–84. DOI:10.1152/ajpendo.00204.2014.; Tannous P, Zhu H, Johnstone JL, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A. 2008;105(28):9745–9750. DOI:10.1073/pnas.0706802105.; Carmignac V, Svensson M, Korner Z, et al. Autophagy is increased in laminin alpha2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum Mol Genet. 2011;20(24):4891–902. DOI:10.1093/hmg/ddr427.; Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle. 2011;1(1):9. DOI:10.1186/2044-5040-1-9.; Malicdan MC, Nishino I. Autophagy in lysosomal myopathies. Brain Pathol. 2012;22(1):82–88. DOI:10.1111/j.1750-3639.2011.00543.x.; Al-Qusairi L, Prokic I, Amoasii L, et al. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J. 2013;27(8):3384–94. DOI:10.1096/fj.12-220947.; Claeys KG, Fardeau M. Myofibrillar myopathies. Handb Clin Neurol. 2013;113:1337–42. DOI:10.1016/B978-0-444-59565-2.00005-8.; Fetalvero KM, Yu Y, Goetschkes M, et al. Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol Cell Biol. 2013;33(1):98–110. DOI:10.1128/MCB.01075-12.; Zech ATL, Singh SR, Schlossarek S, Carrier L. Autophagy in cardiomyopathies. Biochim Biophys Acta Mol Cell Res. 2020;1867(3):118432. DOI:10.1016/j.bbamcr.2019.01.013.; Sandri M, Robbins J. Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol. 2014;71:3–10. DOI:10.1016/j.yjmcc.2013.12.015.; Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat. 2020;41(6):1091–1111. DOI:10.1002/humu.24004.; Cassandrini D, Merlini L, Pilla F, et al. Protein aggregates and autophagy involvement in a family with a mutation in Z-band alternatively spliced PDZ-motif protein. Neuromuscul Disord. 2021;31(1):44–51. DOI:10.1016/j.nmd.2020.11.008.; Bhuiyan MS, Pattison JS, Osinska H, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest. 2013;123(12):5284–97. DOI:10.1172/JCI70877.; Pattison JS, Osinska H, Robbins J. Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes. Circ Res. 2011;109(2):151– 60. DOI:10.1161/CIRCRESAHA.110.237339; Song L, Su M, Wang S, et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med. 2014;18(11):2266–2274. DOI:10.1111/jcmm.12380.; Singh SR, Zech ATL, Geertz B, et al. Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circ Heart Fail. 2017;10(10). DOI:10.1161/CIRCHEARTFAILURE.117.004140.; Iskratsch T, Lange S, Dwyer J, et al. Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. Journal of Cell Biology. 2010;191(6):1159–72. DOI:10.1083/jcb.201005060.; Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25(11):2131–2142. DOI:10.1093/hmg/ddw080.; McNamara JW, Parker BL, Voges HK, et al. Alpha kinase 3 signaling at the M-band maintains sarcomere integrity and proteostasis in striated muscle. Nature Cardiovascular Research. 2023;2(2):159–173. DOI: https://doi.org/10.1038/s44161-023-00219-9.; Kumar V, Kumar P, Chauhan L, et al. Novel combination of FLNC (c.5707G>A; p. Glu1903Lys) and BAG3 (c.610G>A; p.Gly204Arg) genetic variant expressing restrictive cardiomyopathy phenotype in an adolescent girl. J Genet. 2022;101:54.; Teixeira CA, Almeida Mdo R, Saraiva MJ. Impairment of autophagy by TTR V30M aggregates: in vivo reversal by TUDCA and curcumin. Clin Sci (Lond). 2016;130(18):1665–75. DOI:10.1042/CS20160075.; Yanagisawa H, Hossain MA, Miyajima T, et al. Dysregulated DNA methylation of GLA gene was associated with dysfunction of autophagy. Mol Genet Metab. 2019;126(4):460–465. DOI:10.1016/j.ymgme.2019.03.003.; https://transmed.almazovcentre.ru/jour/article/view/889

  9. 9
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 6-18 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 6-18 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1997/1489; Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P. еt al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014; 35(39): 2733–2779. DOI:10.1093/eurheartj/ehu284; Ommen S.R., Mital S., Burke M.A., Day S.M., Deswal A., Elliott P. et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2020; 76: e159–e240. DOI:10.1016/j.jacc.020.08.045; Arbelo E., Protonotarios A., Gimeno J.R., Arbustini E., Barriales-Villa R., Basso C. et al. ESC Scientific Document Group2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44(37): 3503–3626. DOI:10.1093/eurheartj/ehad194; Maron B., Rowin E., Casey S., Lesser J., Garberich R., McGriff D.M. et al. Hypertrophic Cardiomyopathy in Children, Adolescents, and Young Adults Associated With Low Cardiovascular Mortality With Contemporary Management Strategies. Circulation 2016; 133(1): 62–73. DOI:10.1161/CIRCULATIONAHA.115.017633; Norrish G., Field E., Mcleod K., Ilina M., Stuart G., Bhole V. et al. Clinical presentation and survival of childhood hypertrophic cardiomyopathy: a retrospective study in United Kingdom. Eur Heart J 2019; 40: 986–993. DOI:10.1093/eurheartj/ehy798.; Marston N. A., Han L., Olivotto I., Day S. M., Ashley E. A., Michels M. et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur Heart J 2021; 42: 1988–1996. DOI:10.1093/eurheartj/ehab14; Kaski J. P., Kammeraad J. A. E., Blom N. A., Happonen J. M., Janousek J., Klaassen S. et al. Indications and management of implantable cardioverter-defibrillator therapy in childhood hypertrophic cardiomyopathy: A position statement from the AEPC Working Group on Basic Science, Genetics and Myocardial Disease and the AEPC Working Group on Cardiac Dysrhythmias and Electrophysiology. Cardiol Young 2023; 33(5): 681–698. DOI:10.1017/S1047951123000872; Norrish G., Cleary A., Field E., Cervi E., Boleti O., Ziółkowska L. et al. Clinical features and natural history of pread olescent non-syndromic hypertrophic cardiomyopathy. J Am CollCardiol 2022; 79: 1986–1997. DOI:10.1016/j.jacc.2022.03.347; Norrish G., Cantarutti N., Pissaridou E., Ridout D, Limongell G., Elliott P. et al. Risk factors for sudden cardiac death in childhood hypertrophic cardiomyopathy: A systematic review and meta-analysis. Eur J Prev Cardiol 2017; 24(11): 1220–1230. DOI:10.1177/2047487317702519; Ostman-Smith I., Wettrell G., Keeton B., Holmgren D, Ergander U., Gould S. et al. Age-and gender-specific mortality rates in childhood hypertrophic cardiomyopathy. Eur Heart J 2008; 29(9): 1160–1167. DOI:10.1093/eurheartj/ehn122; Miron A., Lafreniere-Roula M., Steve Fan C. P., Armstrong K. R., Dragulescu A., Papaz T. et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation 2020; 142: 217–229. DOI:10.1161/CIRCULATIONAHA.120.047235; Norrish G., Ding T., Field E., Ziólkowska L., Olivotto I., Limongelli G. et al. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM risk-kids). JAMA Cardiol 2019; 4: 918–927. DOI:10.1001/jamacardio.2019.2861; Maurizi N., Passantino S., Spaziani G., Girolami F., Arretini A., Targetti M. et al. Long-term outcomes of pediatric-onset hypertrophic cardiomyopathy and age-specific risk factors forlethal arrhythmic events. JAMA Cardiol 2018; 3: 520–525. DOI:10.1001/jamacardio.2018.0789; Pettersen M.D., Du W., Skeens M.E., Humes, R.A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr 2008; 21(8): 922–934. DOI:10.1016/j.echo.2008.02.006; Lopez L., Frommelt P.C., Colan S.D., Trachtenberg F.L., Gongwer R., Stylianou M. et al. Pediatric Heart Network Echocardiographic Z Scores: Comparison with Other Published Models. J Am Soc Echocardiogr 2021; 34(2): 185–192. DOI:10.1016/j.echo.2020.09.019; Norrish G., Ding T., Field E., Cervi E., Ziółkowska L., Olivotto I. et al. Relationship Between Maximal Left Ventricular Wall Thickness and Sudden Cardiac Death in Childhood Onset Hypertrophic Cardiomyopathy. Circ Arrhythm Electrophysiol 2022; 15(5): e010075. DOI:10.1161/CIRCEP.121.010075; Ziolkowska L., Turska-Kmiec A., Petryka J., Kawalec W. Predictors of long-term outcome in children with hypertrophic cardiomyopathy. Pediatr Cardiol 2016; 37: 448–458. DOI:10.1007/s00246–015–1298-y; Balaji S., DiLorenzo M.P., Fish F.A., Etheridge S.P., Aziz P.F., Russell M.W. et al. Risk factors for lethal arrhythmicvents in children and adolescents with hypertrophic cardiomyopathy and an implantable defibrillator: an international multicenter study. Heart Rhythm 2019; 16: 1462–1467. DOI:10.1016/j.hrthm.2019.04.040; Ostman-Smith I., Sjoberg G., Rydberg A., Larsson P., Fernlund E. Predictors of risk for sudden death in childhood hypertrophic cardiomyopathy: the importance of the ECG risk score. Open Heart 2017; 4(2): e000658. Published 2017 Oct 21. DOI:10.1136/openhrt-2017–000658; Monserrat L., Elliott P.M., Gimeno J.R., Sharma S., PenasLado M., McKenna W.J. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J Am Coll Cardiol 2003; 42(5): 873–879. DOI:10.1016/s0735-1097(03)00827-1; Norrish G., Chubb H., Field E., McLeod K., Ilina M., Spentzou G. et al. Clinical outcomes and programming strategies of implantable cardioverter-defibrillator devices in paediatric hypertrophic cardiomyopathy: a UK National Cohort Study. Europace 2021; 23(3): 400–408. DOI:10.1093/europace/euaa307; Fancia P., Santini D., Musumeci B., Semprini L., Adduci C., Pagannone E. et al. Clinical impact of nonsustained ventricular tachycardia recorded by the implantable cardioverter-defibrillator in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol 2014; 25(11): 1180–1187. DOI:10.1111/jce.12492; Wang W., Lian Z., Rowin E.J., Maron B.J., Maron M.S., Link M.S. Prognostic Implications of Nonsustained Ventricular Tachycardia in High-Risk Patients With Hypertrophic Cardiomyopathy. Circ Arrhythm Electrophysiol 2017; 10(3): e004604. DOI:10.1161/CIRCEP.116.004604; Yang W.I., Shim C.Y., Kim Y.J., Kim S.A., Rhee S.J., Choi E.Y. et al. Left atrial volume index: a predictor of adverse outcome in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 2009; 22(12): 1338–1343. DOI:10.1016/j.echo.2009.09.016; Maskatia S.A., Decker J.A., Spinner J.A., Kim J.J., Price J.F., Jefferies J.L. et al. Restrictive physiology is associated with poor outcomes in children with hypertrophic cardiomyopathy. Pediatr Cardiol 2012; 33: 141–149. DOI:10.1007/ s00246-011-0106-6; Nguyen M.B., Venet M., Fan C.S., Dragulescu A., Rusin C.G., Mertens L.L. et al. Modeling the Relationship Between Diastolic Phenotype and Outcomes in Pediatric Hypertrophic Cardiomyopathy. J Am Soc Echocardiogr 2023: S0894-7317(23)00653-3. Online ahead of print DOI:10.1016/j.echo.2023.11.025; Topriceanu C.C., Field E., Boleti O., Cervi E., Kaski J.P., Norrish G. Disopyramide is a safe and effective treatment for children with obstructive hypertrophic cardiomyopathy. Int J Cardiol 2023; 371: 523–525. DOI:10.1016/j.ijcard.2022.09.044; Assaad I., Gauvreau K., Rizwan R., Margossian R., Colan S., Chen M.H. Value of Exercise Stress Echocardiography in Children with Hypertrophic Cardiomyopathy. J Am Soc Echocardiogr 2020; 33(7): 888–894.e2. DOI:10.1016/j.echo.2020.01.020; Xia K., Sun D., Wang R., Zhang Y. Factors associated with the risk of cardiac death in children with hypertrophic cardiomyopathy: a systematic review and meta-analysis. Heart Lung 2022; 52: 26–36. DOI:10.1016/j.hrtlng.2021.11.006; Östman-Smith I., Sjöberg G., Alenius Dahlqvist J., Larsson P., Fernlund E. Sudden cardiac death in childhood hypertrophic cardiomyopathy is best predicted by a combination of electrocardiogram risk-score and HCMRisk-Kids score. Acta Paediatr 2021; 110(11): 3105–3115. DOI:10.1111/apa.16045; Bonura E.D., Bos J.M., Abdelsalam M.A., Araoz P.A., Ommen S.R., Ackerman M.J. et al. Cardiac Magnetic Resonance Imaging Features in Hypertrophic Cardiomyopathy Diagnosed at; Ali L.A., Marrone C., Martins D.S., Khraiche D., Festa P., Martini N. et al. Prognostic factors in hypertrophic cardiomyopathy in children: An MRI based study. Int J Cardiol 2022; 364: 141–147. DOI:10.1016/j.ijcard.2022.06.043; Petryka-Mazurkiewicz J., Ziolkowska L., Kowalczyk-Domagala M., Mazurkiewicz L., Boruc A., Spiewak M. et al. LGE for Risk Stratification in Primary Prevention in Children With HCM. JACC Cardiovasc Imag. 2020; 13(12): 2684–2686. DOI:10.1016/j.jcmg.2020.06.009; Sedaghat-Hamedani F., Kayvanpour E., Tugrul O.F., Lai A., Amr A., Haas J. et al. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol 2018; 107(1): 30–41. DOI:10.1007/s00392-017-1155-5; Norrish G., Ding T., Field E., McLeod K., Ilina M., Stuart G. et al. A validation study of the European Society of Cardiology guidelines for risk stratification of sudden cardiac death in childhood hypertrophic cardiomyopathy. Europace 2019; 21(10): 1559–1565. DOI:10.1093/europace/euz118; Norrish G., Qu C., Field E., Cervi E., Khraiche D., Klaassen S. et al. External validation of the HCM Risk-Kids model for predicting sudden cardiac death in childhood hypertrophic cardiomyopathy. Eur J Prev Cardiol 2022; 29(4): 678–686. DOI:10.1093/eurjpc/zwab181; Norrish G., Protonotarios A., Stec M., Boleti O., Field E., Cervi E. Performance of the PRIMaCY sudden death risk prediction model for childhood hypertrophic cardiomyopathy: implications for implantable cardioverter-defibrillator decision-making. Europace 2023; 25(11): euad330. DOI:10.1093/europace/euad330; Kamp A.N., Von Bergen N.H., Henrikson C.A., Makhoul M., Saarel E.V., Lapage M.J. et al. Implanted defibrillatorsin young hypertrophic cardiomyopathy patients: a multicenter study. Pediatr Cardiol 2013; 34: 1620–1627. DOI:10.1007/s00246-013-0676-6; Krause U., Müller M.J., Wilberg Y., Pietzka M., Backhoff D., Ruschewski W. et al. Transvenous and non-transvenous implantable cardioverter-defibrillators in children, adolescents, and adults with congenital heart disease: who is at risk for appropriate and inappropriate shocks? Europace 2019; 21(1): 106–113. DOI:10.1093/europace/euy219

  10. 10
    Academic Journal

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 2 (2024); 183-189 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 2 (2024); 183-189 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2322/974; 2021 Рекомендации ESC/EACTS по ведению пациентов с клапанной болезнью сердца. Российский кардиологический журнал. 2022;27(7):5160. 2021 ESC/EACTS recommendations for the management of patients with valvular heart disease. Russian Journal of Cardiology. 2022;27(7):5160. (In Russ.). DOI:10.15829/1560-4071-2022-5160.; Arbelo E., Protonotarios A., Gimeno J.R., Arbustini E., Barriales-Villa R., Basso C. et al.; ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023;44(37):3503–3626. DOI:10.1093/eurheartj/ehad194.; Tasca G., Amaducci A., Parrella P.V., Troise G., Dalla Tomba M., Magna Z. et al. Myectomy-myotomy associated with aortic valve replacement for aortic stenosis: effects on left ventricular mass regression. Ital. Heart J. 2003;4(12):865–871.; Kayalar N., Schaff H.V., Daly R.C., Dearani J.A., Park S.J. Concomitant septal myectomy at the time of aortic valve replacement for severe aortic stenosis. Ann. Thorac. Surg. 2010;89(2):459–464. DOI:10.1016/j.athoracsur.2009.10.065.; Di Tommaso L., Stassano P., Mannacio V., Russolillo V., Monaco M., Pinna G. et al. Asymmetric septal hypertrophy in patients with severe aortic stenosis: the usefulness of associated septal myectomy. J. Thorac. Cardiovasc. Surg. 2013;145(1):171–175. DOI:10.1016/j. jtcvs.2011.10.096.; Lim J.Y., Choi J.O., Oh J.K., Li Z., Park S.J. Concomitant septal myectomy in patients undergoing aortic valve replacement for severe aortic stenosis. Circ J. 2015;79(2):375–380. DOI:10.1253/circj.CJ-14-0672.; Von Aspern K., Bianchi E., Haunschild J., Dahlenburg C., Misfeld M., Borger M.A. et al. Propensity score matched comparison of isolated, elective aortic valve replacement with and without concomitant septal myectomy: Is it worth it? J. Cardiovasc. Surg. (Torino). 2021:62(3):258– 267. DOI:10.23736/S0021-9509.20.11443-5.; Desai M.Y., Alashi A., Popovic Z.B., Wierup P., Griffin B.P., Thamilarasan M. et al. Outcomes in patients with obstructive hypertrophic cardiomyopathy and concomitant aortic stenosis undergoing surgical myectomy and aortic valve replacement. J. Am. Heart Assoc. 2021;10(18):e018435. DOI:10.1161/JAHA.120.018435.; Козлов Б.Н., Панфилов Д.С., Базарбекова Б.А., Сондуев Э.Л., Бойко А.М. Непосредственные результаты хирургического лечения аневризмы восходящей аорты в сочетании со стенотическим поражением аортального клапана. Сибирский журнал клинической и экспериментальной медицины. 2023;38(3):135–142. DOI:10.29001/2073-8552-2022-424.; Ozaki S., Kawase I., Yamashita H., Uchida S., Takatoh M., Kiyohara N. Midterm outcomes after aortic valve neocuspidization with glutaraldehyde-treated autologous pericardium. J. Thorac. Cardiovasc. Surg. 2018;155:2379–2387. DOI:10.1016/j.jtcvs.2018.01.087.; Базылев В.В., Кобзев Е.Е., Бабуков Р.М., Россейкин Е.В. Операция Ozaki при узком фиброзном кольце аортального клапана – новое решение старой проблемы? Грудная и сердечно-сосудистая хирургия. 2018;60(3):217–225. (In Russ.). DOI:10.24022/0236-2791-2018-60-3-217-225; Magro P.L., Sousa Uva M. What is the role of septal myectomy in aortic stenosis? Rev. Port. Cardiol. 2022;41(4):341–346. (In Portug., In Engl.). DOI:10.1016/j.repc.2021.02.022. 13. Schulte H.D., Bircks W., Horstkotte D., Kerstholt J., Preusse C.J., Winter J. Asymmetric septal hypertrophy (ASH) in valvular aortic stenosis should not be resected at the time of surgery. Z. Kardiol. 1986;75(Suppl_2):201–206.; Panza J.A., Maron B.J. Valvular aortic stenosis and asymmetric septal hypertrophy: Diagnostic considerations and clinical and therapeutic implications. Eur. Heart J. 1988;9(Suppl_E):71–76. DOI:10.1093/eurheartj/9.suppl_e.71.; López Ayerbe J., Evangelista Masip A., Armada Romero E., Mateos González M., González Alujas M.T., García Del Castillo H. et al. Aparición de gradiente dinámico intraventricular después de la sustitución valvular aórtica en pacientes con estenosis aórtica severa. [Predictive factors of abnormal dynamic intraventricular gradient after valve replacement in severe aortic stenosis]. Rev. Esp. Cardiol. 2002;55(2):127–134. (In Span.). DOI:10.1016/s0300-8932(02)76572-x.; Mathew J., Dearani J.A., Daly R.C., Schaff H.V. Management of subaortic left ventricular outflow tract obstruction after aortic valve replacement. Ann. Thorac. Surg. 2021;112(5):1468–1473. DOI:10.1016/j.athoracsur.2020.11.024; https://www.sibjcem.ru/jour/article/view/2322

  11. 11
    Academic Journal

    Source: Complex Issues of Cardiovascular Diseases; Том 13, № 4S (2024); 65-72 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4S (2024); 65-72 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1257/974; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1257/1265; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1257/1266; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1257/1267; Захарьян Е.А., Салиева Г.М., Терземан И.Е. Гипертрофическая кардиомиопатия: современный взгляд на вопросы диагностики и ведения пациентов (обзор). Сибирский журнал клинической и экспериментальной медицины. 2022; 37(2): 35–40. doi:10.29001/2073-8552-2022-37-2-35-40; Осиев А.Г., Мироненко С.П., Малетина И.П., Чернявский А.М. Клиническая оценка эффективности транскатетерной септальной аблации при гипертрофической кардиомиопатии. Патология кровообращения. 2007; 4: 66-68.; Будагаев С.А., Афанасьев А.В., Богачев-Прокофьев А.В., Залесов А.С., Овчаров М.А. Рекомендации Американской ассоциации сердца / Американского колледжа кардиологии 2020 года по диагностике и лечению пациентов с гипертрофической кардиомиопатией: что нового? Патология кровообращения и кардиохирургия. 2021; 25(2): 108-115. doi:10.21688/1681-3472-2021-2-108-115; Каштанов М.Г., Чернышев С.Д., Кардапольцев Л.В., Бердников С.В., Идов Э.М. Этаноловая септальная аблация в лечении обструктивной гипертрофической кардиомиопатии: отбор пациентов и рациональность ее применения. Патология кровообращения и кардиохирургия. 2017; 21(1): 104-116. doi:10.21688/1681-3472-2017-1-104-116.; Осиев А. Г., Гегенава Б. Б., Палеев Ф. Н., Григорьева Н. М. Спиртовая септальная аблация межжелудочковой перегородки с контрастным эхокардиографическим контролем. Российский кардиологический журнал 2017, 8 (148): 122–127. doi:10.15829/1560-4071-2017-8-122-1; Brugada P., de Swart H., Smeets J.L., Wellens H.J. Transcoronary chemical ablation of ventricular tachycardia. Circulation. 1989; 79: 475-482. doi:10.1161/01.cir.79.3.475.; Осиев А.Г., Верещагин М.А., Малетина И.В., Караськов А.М. Применение транскатетерной спиртовой редукции первой септальной ветви в лечении гипертрофической обструктивной кардиомиопатии. Интервенционная кардиология. 2006; 11: 48-51.; N Lakkis, N Kleiman, D Killip, W H Spencer 3rd. Hypertrophic obstructive cardiomyopathy: alternative therapeutic options. Clin Cardiol. 1997; 20(5): 417-418. doi:10.1002/clc.4960200503.; Алекян Б.Г. Рентгенэндоваскулярная диагностика и лечение заболеваний сердца и сосудов в Российской Федерации - 2021 год. Эндоваскулярная хирургия. 2022: 9. doi:10.24183/2409-4080; Каштанов М.Г., Чернышев С.Д., Кардапольцев Л.В., Бердников С.В., Идов Э.М. Этаноловая септальная аблация в лечении обструктивной гипертрофической кардиомиопатии: отбор пациентов и рациональность ее применения. Патология кровообращения и кардиохирургия. 2017; 21(1): 104-116. doi:10.21688/1681-3472-2017-1-104-116; Sorajja P., Binder J., Nishimura R.A., Holmes D.R. Jr., Rihal C.S., Gersh B.J., Bresnahan J.F., Ommen S.R. Predictors of an optimal clinical outcome with alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Catheter Cardiovasc Interv. 2013; 81(1): 58-67. doi:10.1002/ccd.24328; Lu M., Du H., Gao Z., Song L., Cheng H., Zhang Y., Yin G., Chen X., Ling J., Jiang Y., Wang H., Li J., Huang J., He Z., Zhao S. Predictors of outcome after alcohol septal ablation for hypertrophic obstructive cardiomyopathy: an echocardiography and cardiovascular magnetic resonance imaging study. Circ Cardiovasc Interv. 2016; 9(3). doi:10.1161/CIRCINTERVENTIONS.115.002675; Jensen M.K., Jacobsson L., Almaas V., van Buuren F., Hansen P.R., Hansen T.F., Aakhus S., Eriksson M.J., Bundgaard H., Faber L. Influence of septal thickness on the clinical outcome after alcohol septal alation in hypertrophic cardiomyopathy. Circ Cardiovasc Interv. 2016; 9(6). doi:10.1161/CIRCINTERVENTIONS.115.003214; Коротких А.В., Бабунашвили А.М. Дистальный лучевой доступ – современные тенденции. Эндоваскулярная хирургия. 2021; 8(2): 135–43. doi:10.24183/2409-4080-2021-8-2-135-143; Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U., Byrne R.A., Collet J.P., Falk V., Head S.J., Jüni P., Kastrati A., Koller A., Kristensen S.D., Niebauer J., Richter D.J., Seferovic P.M., Sibbing D., Stefanini G.G., Windecker S., Yadav R., Zembala M.O.; ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. doi:10.1093/eurheartj/ehy394.; Найденов Р.А., Кретов Е.И., Байструков В.И., Крестьянинов О.В., Ибрагимов Р.У., Прохорихин А.А., Нарышкин И.А., Зубарев Д.Д., Обединская Н.Р., Бирюков А.В., Покушалов Е.А., Романов А.Б. Оценка безопасности и эффективности миоэктомии по Morrow и спиртовой редукции миокарда у пациентов с обструктивной гипертрофической кардиомиопатией: пилотное рандомизированное контролируемое исследование. 2016; 20(3): 42-53. doi:10.21688-1681-3472-2016-3-42-53; Майстренко А.Д., Гурщенков А.В., Паскарь Н.С., А. В. Пахомов, Сухова И.В., Гордеев М.Л. Современное состояние проблемы хирургического лечения гипертрофической обструктивной кардиомиопатии. Вестник хирургии имени И.И. Грекова. 2013; 2(2): 82-87.

  12. 12
  13. 13
    Academic Journal

    Source: Вестник Бурятской государственной сельскохозяйственной академии имени В. Р. Филиппова. :58-64

  14. 14
  15. 15
  16. 16
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 3 (2023); 83-91 ; Российский вестник перинатологии и педиатрии; Том 68, № 3 (2023); 83-91 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1830/1381; Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology. Eur Heart J 2014; 35: 2733–2779. DOI:10.1093/eurheartj/ehu284; Maron B., Rowin E., Casey S., Lesser J., Garberich R. Hypertrophic Cardiomyopathy in Children, Adolescents, and Young Adults Associated With Low Cardiovascular Mortality With Contemporary Management Strategies. Circulation 2016; 133(1): 62–73. DOI:10.1161/CIRCULATIONAHA.115.017633; Arad M., Maron B.J., Gorham J.M., Johnson W.H. Jr., Saul J.P., Perez-Atayde A.R. et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 2005; 352: 362–372. DOI:10.1056/NEJMoa033349; Леонтьева И.В. Дифференциальная диагностика гипертрофической кардиомиопатии. Российский вестник перинатологии и педиатрии 2017; 62(3): 20–31.; Lopez-Sainz A., Dominguez F., Lopes L.R., Ochoa J.P., Barriales-Villa R., Climent V. et al. Clinical Features and Natural History of PRKAG2 Variant Cardiac Glycogenosis J Am Coll Cardiol 2020; 76(2): 186–197. DOI:10.1016/j.jacc.2020.05.029; Cenacchi G., Papa V., Pegoraro V., Marozzo R., Fanin M., Angelini C. Danon disease: Review of natural history and recent advances. Neuropathol Appl Neurobiol 2020; 46(4): 303–322. DOI:10.1111/nan.12587; Llerena J.C., Nascimento O.J., Oliveira A.S., Dourado M.E., Marrone C.D., Siqueira H.H. et al. Guidelines for the diagnosis, treatment and clinical monitoring of patients with juvenile and adult Pompe disease Arq Neuropsiquiatr 2016; 74(2): 166–176. DOI:10.1590/0004–282X20150194; Taverna S., Cammarata G., Colomba P., Sciarrino S., Zizzo C., Francofonte D. et al. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging 2020; 15: 15856–15874. DOI:10.18632/aging.103794; Sun A. Lysosomal storage disease overview. Ann Transl Med 2018; 6: 476. DOI:10.21037/ATM.2018.11.39; Schoser B. Pompe disease: what are we missing? Ann Transl Med 2019; 7(13): 292. DOI:10.21037/atm.2019.05.29; Reuser A.J., van der Ploeg A.T., Chien Y.H., Llerena J. Jr., Abbott M.A., Clemens P.R. et al. GAA variants and phenotypes among 1,079 patients with Pompe disease: data from the Pompe registry. Hum Mutat 2019; 40: 2146–2164. DOI:10.1002/humu.23878; Болезнь Помпе у детей. Клинические рекомендации, 2019 год. Куцев С.И., Никитин С.С., Намазова-Баранова Л.С., Баранов А.А., Вашакмадзе Н.Д., Артемьева С.Б.; Dasouki M., Jawdat O., Almadhoun O., Pasnoor M., McVey A.L., Abuzinadah A. et al. Pompe disease: literature review and case series. Neurol Clin 2014; 32: 751–776. DOI:10.1016/j.ncl.2014.04; Lim J.A., Li L., Raben N. Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 2014; 6: 177. DOI:10.3389/fnagi.2014.00177; Kishnani P.S., Steiner R.D., Bali D., Berger K., Byrne B.J., Case L.E. et al. Pompe disease diagnosis and management guideline. DOI:10.1097/01.gim.0000218152.87434.f3; Toscano A., Rodolico C., Musumeci O. Multisystem late onset pompe disease (LOPD): an update on clinical aspects. Ann Transl Med 2019; 7(13): 284. DOI:10.21037/atm.2019.07.24; Preisler N., Lukacs Z., Vinge L., Madsen KL., Husu E., Hansen RS. et al. Late-onset pompe disease is prevalent in unclassified limb-girdle muscular dystrophies. Mol Genet Metab 2013; 110: 287–289. DOI:10.1016/j.ymgme.2013.08.005; Семячкина А.Н., Сухоруков В.С., Букина Т.М., Яблонская М.И., Меркурьева Е.С., Харабадзе М.Н. и др. Болезнь накопления гликогена, тип II (болезнь Помпе) у детей. Российский вестник перинатологии и педиатрии 2014; 4: 49–55.; Musumeci O., Marino S., Granata F., Morabito R., Bonanno L., Brizzi T. et al. Central nervous system involvement in late-onset pompe disease: clues from neuroimaging and neuropsychological analysis. Eur J Neurol 2019; 26: 442–e35. DOI:10.1111/ene.13835; Maron B.J., Roberts W.C., Ho C.Y., Kitner C., Haas T.S., Wright G.B. et al. Profound left ventricular remodeling associated with LAMP2 cardiomyopathy. Am J Cardiol 2010; 106: 1194–1196. DOI:10.1016/j.amjcard.2010.06.035; Sankaranarayanan R., Fleming E., Garratt C. Mimics of Hypertrophic Cardiomyopathy — Diagnostic Clues to Aid Early Identification of Phenocopies. Arrhythm Electrophysiol Rev 2013; 2(1): 36–40. DOI:10.15420/aer.2013.2.1.36; Angelini C., Semplicini C., Ravaglia S., Bembi B., Servidei S., Pegoraro E. et al. Italian GSDII Group Observational clinical study in juvenileadult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J Neurol 2012; 259: 952

  17. 17
    Academic Journal

    Source: The Russian Archives of Internal Medicine; Том 13, № 3 (2023); 181-195 ; Архивъ внутренней медицины; Том 13, № 3 (2023); 181-195 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1613/1221; https://www.medarhive.ru/jour/article/view/1613/1229; Maron B.J. Clinical Course and Management of Hypertrophic Cardiomyopathy. N Engl J Med. 2018; 379: 655–68. doi:10.1056/NEJMra1710575; Резник Е.В., Степанова Е.А., Нгуен Т.Л., и др. Ретроспективный анализ поражения сердечно-сосудистой системы у больных системным амилоидозом. Кардиоваскулярная терапия и профилактика. 2021; 20(1): 2496. doi:10.15829/1728-8800-2021-2496; Резник Е.В., Нгуен Т.Л., Степанова Е.А., et al. Амилоидоз сердца: взгляд терапевта и кардиолога. Архивъ внутренней медицины. 2020; 10: 430–57. doi:10.20514/2226-6704-2020-10-6-430-457; Maron B.J., McKenna W.J., Danielson G.K., et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol. 2003; 42: 1687–713. doi:10.1016/s0735-1097(03)00941-0; Authors/Task Force members, Elliott P.M., Anastasakis A., et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). European Heart Journal. 2014; 35: 2733–79. doi:10.1093/eurheartj/ehu284; Masood M., Sherif A.A., Jaliparthy K., et al. Abstract 17019: Secular Trends in Dilated and Hypertrophic Cardiomyopathy in an Epidemiological Cohort in Olmsted County, Minnesota. Circulation. 2018; 138: A17019–A17019. doi:10.1161/circ.138.suppl_1.17019; Liu H., Bai P., Xu H-Y., et al. Distinguishing Cardiac Amyloidosis and Hypertrophic Cardiomyopathy by Thickness and Myocardial Deformation of the Right Ventricle. Cardiology Research and Practice. 2022; 2022:e4364279. doi:10.1155/2022/4364279; Hu K., Liu D., Salinger T., et al. Value of cardiac biomarker measurement in the differential diagnosis of infiltrative cardiomyopathy patients with preserved left ventricular systolic function. J Thorac Dis. 2018;10:4966–75. doi:10.21037/jtd.2018.07.56; Patten M., Pecha S., Aydin A. Atrial Fibrillation in Hypertrophic Cardiomyopathy: Diagnosis and Considerations for Management. J Atr Fibrillation. 2018; 10:1556. doi:10.4022/jafib.1556; Inamo J., Ozier-Lafontaine N., Atallah A., et al. Frequency of cardiac amyloidosis inpatients with unexplained left ventricular hypertrophy: The Caribbean Amyloidosis Study. Archives of Cardiovascular Diseases Supplements. 2018; 10:29. doi:10.1016/j.acvdsp.2017.11.055; Liu Q., Li D., Berger A.E., et al. Survival and prognostic factors in hypertrophic cardiomyopathy: a meta-analysis. Sci Rep 2017; 7:11957. doi:10.1038/s41598-017-12289-4; Lee C., Liu P., Lin L., et al. Clinical characteristics and outcomes of hypertrophic cardiomyopathy in Taiwan—a tertiary center experience. Clin Cardiol. 2007; 30:177–82. doi:10.1002/clc.20057; Puwanant S., Trongtorsak A., Wanlapakorn C., et al. Acute coronary syndrome with non-obstructive coronary arteries (ACS-NOCA) in patients with hypertrophic cardiomyopathy. BMC Cardiovascular Disorders. 2021; 21:556. doi:10.1186/s12872-021-02373-z; Wang A. Hypertension and Hypertrophic Cardiomyopathy. Hypertrophic Cardiomyopathy, ed. Naidu S.S. Springer, Cham. 2019; 221–30. doi:10.1007/978-3-319-92423-6_16; Резник Е.В., Нгуен Т.Л., Голухов Г.Н. Особенности ведения больных с хронической сердечной недостаточностью и сахарным диабетом. Рациональная Фармакотерапия в Кардиологии. 2021;17(2):341-350. doi:10.20996/1819-6446-2021-04-05.; Huang F-Y., Zhang J-L., Huang B-T., et al. Renal function as a predictor of outcomes in patients with hypertrophic cardiomyopathy: A cohort study of a hospitalized population. Clinica Chimica Acta. 2021; 512:92–9. doi:10.1016/j.cca.2020.11.022; https://www.medarhive.ru/jour/article/view/1613

  18. 18
    Academic Journal

    Contributors: The authors declare no funding for this study, Авторы заявляют об отсутствии финансирования при проведении исследования

    Source: The Russian Archives of Internal Medicine; Том 13, № 5 (2023); 360-370 ; Архивъ внутренней медицины; Том 13, № 5 (2023); 360-370 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1668/1255; https://www.medarhive.ru/jour/article/view/1668/1265; James C.A., Bhonsale A., Tichnell C. et al. Exercise increases age–related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy–associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62(14): 1290-1297. doi:10.1016/j.jacc.2013.06.033.; Semsarian C., Ingles J., Maron M.S. et al. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015; 65(12): 1249-1254. doi:10.1016/j.jacc.2015.01.019.; Габрусенко С.А., Гудкова А.Я., Козиолова Н.А. и др. Гипертрофическая кардиомиопатия. Клинические рекомендации 2020. Российский кардиологический журнал. 2021; 26(5): 4541. doi:10.15829/1560-4071-2021-4541; Falk R.H., Alexander K.M., Liao R. et al. AL (Light — Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J Am Coll Cardiol. 2016; 68(12): 1323-1341. doi:10.1016/j.jacc.2016.06.053.; Благова О.В., Недоступ А.В., Седов В.П. и др. Клинические маски амилоидоза с поражением сердца: особенности диагностики на современном этапе. Российский кардиологический журнал. 2017; (2): 68–79. doi:10.15829/1560–4071–2017–2–68–79.; Maurizi N., Rella V., Fumagalli C. et al. Prevalence of cardiac amyloidosis among adult patients referred to tertiary centres with an initial diagnosis of hypertrophic cardiomyopathy. Int J Cardiol. 2020; 300: 191-195. doi:10.1016/j.ijcard.2019.07.051.; Резник Е.В., Нгуен Т.Л., Степанова Е.А. и др. Амилоидоз сердца: взгляд терапевта и кардиолога. Архивъ внутренней медицины. 2020;10(6):430–457. doi:10.20514/2226–6704–2020–10–6–430–457.; Лысенко (Козловская) Л.В., Рамеев В.В., Моисеев С.В. и др. Клинические рекомендации по диагностике и лечению системного амилоидоза. Клин фармакол тер. 2020; 29(1): 13 — 24. doi:10.32756/0869-5490-2020-1-13-24.; Kapoor P, Thenappan T, Singh E et al. Cardiac amyloidosis: a practical approach to diagnosis and management. Am J Med. 2011;124(11):1006-1015. doi:10.1016/j.amjmed.2011.04.013.; Резник Е.В., Нгуен Т.Л., Борисовская С.В. и др. Клинический случай наследственного транстиретинового амилоидоза. Архивъ внутренней медицины. 2021; 11(3): 229–240. doi:10.20514/2226-6704-2021-11-3-229-240.; Дементьева Е.В., Вяткин Ю.В., Кретов Е.И. и др. ГЕНЕТИЧЕСКИЙ АНАЛИЗ ПАЦИЕНТОВ С ГИПЕРТРОФИЧЕСКОЙ КАРДИОМИОПАТИЕЙ. Гены и Клетки. 2020; 15 (3), 68–73. doi:10.23868/202011011; AN EDUCATIONAL TOOL TO ESTIMATE THE PROBABILITY OF WILD-TYPE TRANSTHYRETIN AMYLOID CARDIOMYOPATHY (wtATTR-CM). [Electronic resource]. URL: https://estimattr.com.hk/. (date of application: 01. 08. 2023).; Wang J, Marzolf A, Zhang J.C. et al. Cardiac Amyloidosis Masked as Hypertrophic Cardiomyopathy: A Case Report. Cardiol Res. 2016; 7(5): 178-180. doi:10.14740/cr496w.; https://www.medarhive.ru/jour/article/view/1668

  19. 19
  20. 20