-
1Academic Journal
Source: Ползуновский вестник, Iss 4, Pp 159-165 (2023)
Subject Terms: пряные травы, полуфабрикат, Technology, срок хранения, микробиологические показатели, высокое давление
-
2Academic Journal
Authors: Seredin, Valery Viktorovich, Yadzinskaya, Marina Radikovna, Makovetskiy, Oleg Alexandrovich
Source: Известия Томского политехнического университета
Bulletin of the Tomsk Polytechnic UniversitySubject Terms: бентонитовые глины, монтмориллонит, bentonite clay, mineral, дефекты, агрегаты, химический состав, структуры, montmorillonite, минералы, defects of the structural package, pressure, ионные связи, ionic bonds, aggregate, chemical composition, коллоиды, colloid, высокое давление
File Description: application/pdf
Access URL: http://earchive.tpu.ru/handle/11683/74344
-
3Academic Journal
Authors: Matveykin, Valery Grigorievich, Krasnyansky, Mikhail Nikolaevich, Dmitrievsky, Boris Sergeevich, Vasilevskiy, Konstantin Sergeevich
Source: Известия Томского политехнического университета
Bulletin of the Tomsk Polytechnic UniversitySubject Terms: пароконденсатный баланс, high pressure steam, объекты управления, пароснабжение, steam supply system, нефтеперерабатывающие предприятия, control object, энергоэффективность, автоматизированные системы, пары, steam condensate balance, среднее давление, control system, высокое давление, medium pressure steam
File Description: application/pdf
Access URL: http://earchive.tpu.ru/handle/11683/73216
-
4Academic Journal
Authors: Владимир Валерьевич Лин, Алексей Анатольевич Чепуров, Егор Игоревич Жимулев, Александр Иванович Туркин
Source: Известия Алтайского государственного университета, Iss 1(129), Pp 44-48 (2023)
Subject Terms: гранат, редкоземельные элементы, высокое давление, кристаллизация, Physics, QC1-999, History (General), D1-2009
File Description: electronic resource
-
5Academic Journal
Authors: A. Hmelov V., А. Хмелёв В.
Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 12 (2023); 42-64 ; Новые огнеупоры; № 12 (2023); 42-64 ; 1683-4518 ; 10.17073/1683-4518-2023-12
Subject Terms: mullite‒c-ZrO2‒c-BC2 N‒NiCr‒V‒Mo‒Zr‒W, mullite‒c-ZrO2‒c-BC2N‒NiCr‒Cr‒Mo‒Nb‒Ta, ultra-high pressing loading, spark plasma sintering, high pressure compaction, explosion sintering, properties, муллит‒c-ZrO2‒c-BC2N‒NiCr‒V‒Mo‒Zr‒W, муллит‒c-ZrO2‒c-BC2N‒NiCr‒Cr‒Mo‒ Nb‒Ta, верхвысокая нагрузка прессования, плазменно-искровое спекание, высокое давление сжатия, взрывное спекание
File Description: application/pdf
Relation: https://newogneup.elpub.ru/jour/article/view/2110/1697; Kim, J.-H. Microstructures and properties of ultra fine grained W‒ZrC composites / J.-H. Kim, C. Park, J. Lim, S. Kong // J. All. Comp. ― 2015. ― Vol. 623. ― P. 282‒289.; Yung, D.-L. Ultra high-pressure spark plasma sintered ZrC‒Mo and ZrC‒TiC composites / D.-L. Yung, M. Antonov, L. Jaworska, I. Hussainova // J. Refract. Metals hard Mater. ― 2015. ― Vol. 61, № 2. ― P. 201‒206.; Хмелёв А. В. Встраивание металлических компонентов в структуру карбонитрида титана при сверхвысоких нагрузках плазменно-искрового и взрывного спекания / А. В. Хмелев, Ли Цзиньпин // Новые огнеупоры. ― 2023. ― № 2. ― С. 38‒56. doi:10.1007/s11148-023-00808-y.; Хмелёв, А. В. Плазменно-искровое спекание оксидно-безоксидных компонентов с добавкой твердого раствора TiC‒ZrC и разных смесей порошков металлов / А. В. Хмелёв // Новые огнеупоры. ― 2020. ― № 10. ― С. 27‒38. doi:10.1007/s11148-021-00522-7.; Хмелёв, А. В. Стимулирование плазменно-искрового спекания смесей оксидно-безоксидных компонентов добавкой твердого раствора TaB 2 ‒NbC и через расплав никеля в смесях порошков металлов / А. В. Хмелёв // Новые огнеупоры. ― 2021. ― № 2. ― С. 14‒29. doi:10.1007/s11148-021-00563-y.; Хмелёв, А. В. Разработка плотных и твердых материалов на основе оксидно-безоксидных соединений с добавками интерметаллических компонентов в ходе плазменно-искрового спекания / А. В. Хмелёв // Новые огнеупоры. ― 2021. ― № 10. ― С. 26‒41. doi:10.1007/s11148-022-00645-5.; Хмелёв, А. В. Уплотнение и укрепление керамометаллических материалов четверными твердыми растворами металлических фаз в ходе плазменно-искрового спекания / А. В. Хмелёв // Новые огнеупоры. ― 2022. ― № 8. ― С. 35‒52. doi:10.1007/s11148-023-00746-9.; Wang B. Microstructure and properties of the Ti/Al 2 O 3 /NiCr composites fabricated by explosive compaction / B. Wang, F. Xie, X. Luo // Mat. Sci. Eng. ― 2015. ― Vol. 50, № 1. ― P. 324‒331.; Toropov, N. A. Phase diagrams of silicate systems / N. A. Toropov, V. P. Barzakovskii, R. V. Lapin. ― Nauka, 1979. ― Р. 437‒439.; Seifert H. J. Phase equilibria in the Si‒B‒C‒N system / H. J. Seifert, F. Aldinger // High-performance non-oxide ceramics. ― 2021. ― Vol. 101. ― P. 1‒58.; Solozhenko V. L. Prediction of novel ultra hard phases in the B‒C‒N system from first principles: progress and problems / V. L. Solozhenko, S. Matar // Materials. ― 2023. ― Vol. 16, № 2. ― P. 886‒902.; Vorozhtsov, A. Structural and mechanical properties of aluminium-based composites processed by explosive compaction / A. Vorozhtsov, I. Zukov, V. Promakhov // Powder Techn. ― 2017. ― Vol. 313, № 1. ― P. 251‒259.; Krokhalev A. V. Explosive compaction of chromium carbide powders with a metallic binder / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // Comb. Expl. Shock wave. ― 2019. ― Vol. 55, № 4. ― P. 491‒499.; Vorozhtcov V. A. Phase equilibriums in the Al 2 O 3 ‒SiO 2 ‒ZrO 2 system: Calculation and Experiment / V. A. Vorozhtcov, D. A. Yurchenko, V. I. Almjashev, V. L. Stolyarova // Glass Phys. Chem. ― 2021. ― Vol. 47, № 5. ― P. 417‒426.; Phillips, B. Phase equilibria in the system NiO‒Al 2 O 3 ‒SiO 3 / B. Phillips, J. J. Hutta, I. Warshaw // J. Am. Ceram. Soc. ― 2006. ― Vol. 46, № 12. ― P. 579‒583.; Besmann, T. M. Thermochemical analysis and modeling of the Al 2 O 3 ‒Cr 2 O 3 , Cr 2 O 3 ‒SiO 2 and Al 2 O 3 ‒Cr 2 O 3 ‒SiO 2 systems relevant to refractories / T. M. Besmann, N. S. Kulkarni // J. Am. Ceram. Soc. ― 2006. ― Vol. 89, № 2. ― P. 638‒644.; Zygmuntowicz, J. Fabrication and characterization of ZrO 2 /Ni composites / J. Zygmuntowicz, P. Falkowski, A. Miazga, K. Konopka // J. Aust. Ceram. Soc. ― 2018. ― Vol. 54, № 4. ― P. 655‒662.; Jerebtsov, D. A. Phase diagram of the system: ZrO 2 ‒Cr 2 O 3 / D. A. Jerebtsov, G. G. Mikhailov, S. V. Sverdina // Ceram. Inter. ― 2001. ― Vol. 27, № 3. ― P. 247‒250.; Kjellgust, L. Thermodynamic modeling of the Cr‒Fe‒Ni‒O system / L. Kjellgust, M. Selleby, B. Sundman // Calphad. ― 2008. ― Vol. 32, № 3. ― P. 577‒592.; Fang, L. Experimental study on the stability of graphitic C 3 N 4 under high pressure and high temperature / L. Fang, H. Ohfuji, T. Shinmei, T. Irifune // Diam. and related Mat. ― 2011. ― Vol. 20, № 5/6. ― P. 819‒825.; https://newogneup.elpub.ru/jour/article/view/2110
-
6Academic Journal
-
7Academic Journal
Source: Қарағанды университетінің хабаршысы. Физика сериясы, Vol 92, Iss 4 (2023)
-
8Academic Journal
Authors: V.V. Lin, A.A. Chepurov, E.I. Zhimulev
Source: Izvestiya of Altai State University; No 4(120) (2021): Известия Алтайского государственного университета; 43-46
Известия Алтайского государственного университета; № 4(120) (2021): Известия Алтайского государственного университета; 43-46
Известия Алтайского государственного университета, Iss 4(120), Pp 43-46 (2021)Subject Terms: experiment, Physics, QC1-999, sm, Sm, garnet, гранат, History (General), 01 natural sciences, high pressure, D1-2009, эксперимент, высокое давление, 0105 earth and related environmental sciences
File Description: application/pdf
Access URL: http://izvestiya.asu.ru/article/download/%282021%294-06/8350
http://izvestiya.asu.ru/article/view/(2021)4-06
https://doaj.org/article/edde439d5a8e451bb4412b70129cdac1
https://cyberleninka.ru/article/n/osobennosti-stroeniya-i-sostava-granatsoderzhaschih-obraztsov-sintezirovannyh-v-sisteme-s-samariem-pri-vysokom-davlenii-i
http://izvestiya.asu.ru/article/download/%282021%294-06/8350
https://cyberleninka.ru/article/n/osobennosti-stroeniya-i-sostava-granatsoderzhaschih-obraztsov-sintezirovannyh-v-sisteme-s-samariem-pri-vysokom-davlenii-i/pdf
http://izvestiya.asu.ru/article/view/%282021%294-06 -
9Academic Journal
Authors: Б.К. Хайдаров, В.П. Макаров, К. Хайдаров
Source: Қарағанды университетінің хабаршысы. Физика сериясы, Vol 92, Iss 4 (2023)
Subject Terms: высокое давление, контейнер аппарата высокого давления, синтез алмаза, карбонадо, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Thermodynamics, QC310.15-319
File Description: electronic resource
-
10Academic Journal
Source: Journal of Mechanical Engineering, Vol 23, Iss 4, Pp 63-71 (2020)
Проблемы машиностроения; Том 23, № 4 (2020); 63-71
Проблеми машинобудування; Том 23, № 4 (2020); 63-71
Journal of Mechanical Engineering; Том 23, № 4 (2020); 63-71Subject Terms: UDC 544.6.018.42, 0211 other engineering and technologies, електролізер, послідовне і паралельне з'єднання електродів, водень, кисень, високий тиск, 02 engineering and technology, electrolyzer, series and parallel connection of electrodes, hydrogen, oxygen, high pressure, электролизер, последовательное и параллельное соединение электродов, водород, кислород, высокое давление, 01 natural sciences, 7. Clean energy, 0201 civil engineering, 0104 chemical sciences, 3. Good health, TJ1-1570, УДК 544.6.018.42, Mechanical engineering and machinery, 0210 nano-technology
File Description: application/pdf
-
11Academic Journal
Authors: S.V. Banushkina, A.I. Chepurov
Source: Izvestiya of Altai State University; No 4(114) (2020): Izvestiya of Altai State University; 17-20
Известия Алтайского государственного университета; № 4(114) (2020): Известия Алтайского государственного университета; 17-20
Известия Алтайского государственного университета, Iss 4(114), Pp 17-20 (2020)Subject Terms: метод стокса, Physics, QC1-999, Stokes' Law, History (General), melt, 01 natural sciences, расплав, метод Стокса, high pressure, диопсид, вязкость, D1-2009, 0103 physical sciences, viscosity, diopside, оливин, olivine, split sphere, высокое давление, «разрезная сфера», 0105 earth and related environmental sciences
File Description: application/pdf
-
12Academic Journal
Source: Известия Томского политехнического университета
Bulletin of the Tomsk Polytechnic UniversitySubject Terms: analysis of amplitude attenuation, месторождения, углеводороды, seismic attributes, Gilbert transform attribute, скважины, abnormally high formation pressure, пластовые давления, преобразование Гильберта, well logging, зоны, геофизические исследования, сейсмические атрибуты, Западная Сибирь, pseudo-acoustic impedance cube, высокое давление, instantaneous phase, мгновенные фазы, амплитуды, instantaneous frequency, импеданс, instantaneous quality, instantaneous amplitude, средняя энергия, average energy, first derivative, производные, затухание, сейсмические поля
File Description: application/pdf
Access URL: http://izvestiya.tpu.ru/archive/article/download/2635/2219
http://izvestiya-tpu.ru/archive/article/download/2635/2219
http://izvestiya.tpu.ru/archive/article/view/2635
http://izvestiya-tpu.ru/archive/article/view/2635
https://cyberleninka.ru/article/n/izuchenie-zon-anomalnogo-plastovogo-davleniya-s-pomoschyu-analiza-atributov-seysmicheskih-poley-na-primere-mestorozhdeniy-zapadnoy
http://izvestiya.tpu.ru/archive/article/download/2635/2219
http://earchive.tpu.ru/handle/11683/62015 -
13
-
14
-
15Academic Journal
Authors: A. N. Alipbayev, M. SH. Suleimenova, S. . Boloskhan
Source: Алматы технологиялық университетінің хабаршысы, Vol 0, Iss 1, Pp 68-72 (2021)
Subject Terms: magnesium diboride, self-propagating high-temperature synthesis (shs), boron oxide, thermal explosion, high pressure, магний дибориді, өжс- өздігінен тұтанатын жоғары температуралық синтез, бор оксиді, жылулық жарылыс, жоғары қысым, диборид магния, самораспространяющийся высокотемпературный синтез свс, оксид бора, тепловой взрыв, высокое давление, Technology (General), T1-995
File Description: electronic resource
-
16
-
17Academic Journal
Authors: N. E. Posokina, A. I. Zakharova, Н. Е. Посокина, А. И. Захарова
Contributors: The article was published as part of the research topic No. FNEN-2019–00011 of the state assignment of the V. M. Gorbatov Federal Research Center for Food Systems of RAS., Статья подготовлена в рамках выполнения исследований по государственному заданию № FNEN-2019–00011 Федерального научного центра пищевых систем им. В. М. Горбатова Российской академии наук.
Source: Food systems; Vol 6, No 1 (2023); 4-10 ; Пищевые системы; Vol 6, No 1 (2023); 4-10 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-1
Subject Terms: УФИ, high pressure, pulsed electric fields, radioactive treatment, UV radiation, высокое давление, импульсные электрические поля, радиоактивная обработка
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/223/211; Jackson, L. S., AI-Taher, F. (2022). Processing issues: acrylamide, furan, and trans fatty acids. Chapter in a book: Ensuring Global Food Safety: Exploring Global Harmonization. Academic Press, 2022. https://doi.org/10.1016/B978–0–12–816011–4.00021–5; Chiozzi, V., Agriopoulou, S., Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences (Switzerland), 12(4), Article 2202. https://doi.org/10.3390/app12042202; Chacha, J.S., Zhang, L., Ofoedu, C.E., Suleiman, R.A., Dotto, J.M., Roobab, U. et al. (2021). Revisiting non-thermal food processing and preservation methods — action mechanisms, pros and cons: A technological update (2016–2021). Foods, 10(6), Article 1430 https://doi.org/10.3390/foods10061430; Pingen, S., Sudhaus, N., Becker, A., Krischek, C., Klein, G. (2016). High pressure as an alternative processing step for ham production. Meat Science, 118, 22–27. https://doi.org/10.1016/j.meatsci.2016.03.014; Tsevdou, M., Eleftheriou, E., Taoukis, P. (2013) Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt. Innovative Food Science and Emerging Technologies, 17, 144–152. https://doi.org/10.1016/j.ifset.2012.11.004; Marangoni Junior, L., Cristianini, M., Padula, M., Anjos, C.A.R. (2019). Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Research International, 119, 920–930. https://doi.org/10.1016/j.foodres.2018.10.078; Liu, H., Xu, Y., Zu, S., Wu, X., Shi, A., Zhang, J. et al. (2021). Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: A review. Foods, 10(8), Article 1872. https://doi.org/10.3390/foods10081872; Mahadevan, S., Karwe M. V. (2016). Effect of high-pressure processing on bioactive compounds. Food Engineering Series, 479–507. https://doi.org/10.1007/978–1–4939–3234–4_22; Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and- production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science and Technology, 80, 187–198. https://doi.org/10.1016/j.tifs.2018.08.013; Wang, B., Liu, F., Luo, S., Li, P., Mu, D., Zhao, Y. et al. (2019). Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels. Food and Bioprocess Technology, 12(2), 220–227. https://doi.org/10.1007/s11947–018–2205–3; O’Reilly, C., Kelly, L.A., Murphy, M.P., Beresford, P.T. (2001). High pressure treatment: Applications in cheese manufacture and ripening. Trends in Food Science and Technology, 12(2), 51–59. https://doi.org/10.1016/s0924–2244(01)00060–7; Oliveira, F.A.D, Neto, O.C., Santos, L.M.R.D., Ferreira, E.H.R., Rosenthal, A. (2017). Effect of high pressure on fish meat quality — A review. Trends in Food Science and Technology, 66, 1–19. https://doi.org/10.1016/jtifs.2017.04.014; Butz, P., Fernandez Garcıa, F., Lindauer, R., Dieterich, S., Bognar, A., Tauscher, B. (2003). Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, 56(2–3), 233–236. https://doi.org/10.1016/s0260–8774(02)00258–3; Lee, P. Y., Kebede, B. T., Lusk, K., Mirosa, M., Oey, I. (2017). Investigating consumers’ perception of apple juice as affected by novel and conventional processing technologies. International Journal of Food Science and Technology, 52(12), 2564–2571. https://doi.org/10.1111/ijfs.13542; Kim, Y.-S., Park, S.-J., Cho, Y.-H., Park, J. (2001). Effects of combined treatment of high hydrostatic pressure and mild heat on the quality of carrot juice. Journal of Food Science, 66(9), 1355–1360. https://doi.org/10.1111/j.1365–2621.2001.tb15214.x; Dede, S., Alpas, H., Bayındırlı, A. (2007). High hydrostatic pressure treatment and storage of carrot and tomato juices: Antioxidant activity and microbial safety. Journal of the Science of Food and Agriculture, 87(5), 773–782. https://doi.org/10.1002/jsfa.2758; Melse-Boonstra, A., Verhoef, P., Konings, E.J.M., Van Dusseldorp, M., Matser, A., Hollman, P.C.H. et al. (2002). Influence of processing on total, monoglutamate and polyglutamate folate contents of leeks, cauliflower, and green beans. Journal of Agricultural and Food Chemistry, 50(12), 3473–3478. https://doi.org/10.1021/jf0112318; Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., Wang, C.-Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1–8. https://doi.org/10.1016/j.foodcont.2016.07.019; Jin, T.Z., Zhang, H.Q. (2020). Pulsed electric fields for pasteurization: Food safety and shelf life. Food Engineering Series, 553–577. https://doi.org/10.1007/978–3–030–42660–6_21; Guerrero-Beltran, J.A., Welti-Chanes, J. (2016). Pulsed electric fields. Chapter in a book: Encyclopedia of Food and Health, Academic Press, 2016. https://doi.org/10.1016/b978–0–12–384947–2.00579–1; Jadhav, H.B., Annapure, U.S., Deshmukh, R.R. (2021). Non-thermal technologies for food processing. Frontiers in Nutrition, 8, Article 657090. https://doi.org/10.3389/fnut.2021.657090; Mendes-Oliveira, G., Jin, T.Z., Campanella, O.H. (2020). Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering, 282, Article 110001. https://doi.org/10.1016/j.jfoodeng.2020.110001; Shamsi, K., Sherkat, F. (2009). Application of pulsed electric field in non-thermal processing of milk. Asian Journal of Food and Agro-Industry, 2(03), 216–244.; Bhattacharjee, C., Saxena, V. K., Dutta, S. (2019). Novel thermal and nonthermal processing of watermelon juice. Trends in Food Science and Technology, 93, 234–243. https://doi.org/10.1016/j.tifs.2019.09.015; Koubaa, M., Barba, F.J, Bursać Kovačević, D., Putnik, P., Santos, M.D., Queirós R. P., et al. (2018). Pulsed electric field processing of fruit juices. Chapter in a book: Fruit Juices: Extraction, Composition, Quality and Analysis. Academic Press, 2018. https://doi.org/10.1016/B978–0–12–802230–6.00022–9; Wibowo, S., Essel, E. A., De Man, S., Bernaert, N., Van Droogenbroeck, B., Grauwet, T., et al. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innovative Food Science and Emerging Technologies, 54, 64–77. https://doi.org/10.1016/j.ifset.2019.03.004; Timmermans, R.A.H., Mastwijk, H.C., Berendsen, L.B.J.M., Nederhoff, A.L., Matser, A.M., Van Boekel, M.A.J.S. et al. (2019). Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298, 63–73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015; Roobab, U., Abida, A., Chacha, J.S., Athar, A., Madni, G.M., Ranjha, M.M.A.N. et al. (2022) Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules, 27(13), Article 4031. https://doi.org/10.3390/molecules27134031; Salehi, F. (2020). Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: a review. International Journal of Food Properties, 23(1), 1036–1050. https://doi.org/10.1080/10942912.2020.1775250; Rodrigo, D., Martinez, A., Harte, F., Barbosa-Canovas, G., Rodrigo, M. (2001). Study of inactivation of kactobacillus plantarum in orange-carrot juice by means of pulsed electric fields: Comparison of inactivation kinetics models. Journal of Food Protection, 64(2), 259–263. https://doi.org/10.4315/0362–028X-64.2.259; Aguilo-Aguayo, I., Soliva-Fortuny, R., Martín-Belloso, O. (2008). Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat. European Food Research and Technology, 227(2), 599–606. https://doi.org/10.1007/s00217–007–0761–2; Ortega-Rivas, E. (2011). Critical issues pertaining to application of pulsed electric fields in microbial control and quality of processed fruit juices. Food and Bioprocess Technology, 4(4), 631–645. https://doi.org/10.1007/s11947–009–0231-x; Sharma, P., Sharma, S. R., Mittal, T. C. (2020). Effects and application of ionizing radiation on fruits and vegetables: A review. Journal of Agricultural Engineering, 57(2), 97–126.; Barbosa-Canovas, G.V., Bermúdez-Aguirre, D. (2010). Novel food processing technologies and regulatory hurdles. Chapter in a book: Ensuring Global Food Safety, Academic Press, 2010. https://doi.org/10.1016/B978–0–12–374845–4.00016–3; Mendonca A. F., Daraba, A. (2014). Non-thermal processing: Irradiation. Chapter in a book: Encyclopedia of Food Microbiology: Second Edition, Academic Press, 2014. https://doi.org/10.1016/b978–0–12–384730–0.00399–2; Boylston, T.D., Reitmeier, C. A., Moy, J. H., Mosher, G. A., Taladriz, L. (2002). Sensory quality and nutrient composition of three hawaiian fruits treated by X-irradiation. Journal of Food Quality, 25(5), 419–433. https://doi.org/10.1111/j.1745–4557.2002.tb01037.x; Alonso, M., Palou, L., Ángel del Rio, M. A., Jacas, J.-A. (2007). Effect of X-ray irradiation on fruit quality of clementine mandarin cv. ‘Clemenules’. Radiation Physics and Chemistry, 76(10), 1631–1635. https://doi.org/10.1016/j.radphyschem.2006.11.015; Fan, X., Niemera, B. A, Mattheis, J. E., Zhuang, H., Olson, D. W. (2006). Quality of fresh-cut apple slices as affected by low-dose ionizing radiation and calcium ascorbate treatment. Journal of Food Science, 70(2), S143-S148. https://doi.org/10.1111/j.1365–2621.2005.tb07119.x; McDonald, H., Arpaia, M., Caporaso, F., Obenland, D., Were, L., Rakovski, C. et al. (2013). Effect of gamma irradiation treatment at phytosanitary dose levels on the quality of ‘Lane Late’ navel oranges. Postharvest Biology and Technology, 86, 91–99. https://doi.org/10.1016/j.postharvbio.2013.06.018; Chawla, A., Lobacz, A., Tarapata, J., Zulewska, J. (2021). UV light application as a mean for disinfection applied in the dairy industry. Applied Scences (Switzerland), 11(16), Article 7285. https://doi.org/10.3390/app11167285; Priyadarshini, A., Rajauria, G., O’Donnell, C., Tiwari, B. (2019). Emerging food processing technologies and factors impacting their industrial adoption. Critical Reviews in Food Science and Nutrition, 59(19), 3082–3101. https://doi.org/10.1080/10408398.2018.1483890; Lo´pez-Malo, A., Palou, E. (2004). Ultraviolet light and food preservation. Chapter in a book: Novel Food Processing Technologies. CRC Press, 2004.; Шишкина, Н.С., Карастоянова, О.В., Коровкина, Н.В., Федянина, Н.И. (2020). Комплексная технология хранения растительной продукции с применение УФ-излучения. Все о мясе, 5S, 407–411. https://doi.org/10.21323/2071–2499–2020–5S-407–411; Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Canadian Journal of Microbiology, 53(7), 813–821. https://doi.org/10.1139/W07–042; Schmalwieser, A.W., Weihs, P., Schauberger, G. (2018). UV effects on living organisms. Chapter in a book: Encyclopedia of Sustainability Science and Technology. Springer, New York, 2018. https://doi.org/10.1007/978–1–4939–2493–6_454–3; Soni, A., Oey, I., Silcock, P., Bremer, P. (2016). Bacillus spores in the food industry: A review on resistance and response to novel inactivation technologies. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1139–1148. https://doi.org/10.1111/1541–4337.12231; Nicholson, W. L., Galeano, B. (2003). UV resistance of Bacillus anthracis spores revisited: Validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Applied and Environmental Microbiology, 69(2), 1327–1330. https://doi.org/10.1128/AEM.69.2.1327–1330.2003; Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., Barak, Z. (2001). Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Current Microbiology, 43(2), 140–143. https://doi.org/10.1007/s002840010276; Setlow, P. (2006). Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. Journal Applied Microbiology, 101(3), 514–525. https://doi.org/10.1111/j.1365–2672.2005.02736.x; Csapo, J., Prokischv, J., Albert, C., Sipos, P. (2019). Effect of UV light on food quality and safety. Acta Universitatis Sapientiae, Alimentaria, 12(1), 21–41. https://doi.org/10.2478/ausal-2019–0002; Koutchma, T. (2009). Advances in ultraviolet light technology for nonthermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155. https://doi.org/10.1007/s11947–008–0178–3; Afendi, N. A., Shah, N.N.A.K. (2022). Impact of UV–C assisted drying treatment on the quality of Malaysian stingless bee honey. Advances in Agricultural and Food Research Journal, 3(2), Article a0000306. https://doi.org/10.36877/aafrj.a0000306; https://www.fsjour.com/jour/article/view/223
-
18Academic Journal
Authors: Andrii A. Shevchenko, Mykola M. Zipunnikov, Аnatolii L. Kotenko, Iryna O. Vorobiova, Vitalii M. Semykin
Source: Journal of Mechanical Engineering, Vol 22, Iss 4, Pp 53-60 (2019)
Проблемы машиностроения; Том 22, № 4 (2019); 53-60
Проблеми машинобудування; Том 22, № 4 (2019); 53-60
Journal of Mechanical Engineering; Том 22, № 4 (2019); 53-60Subject Terms: UDC 544.6.018.42, 0211 other engineering and technologies, электролизер, водород, кислород, высокое давление, 02 engineering and technology, electrolyzer, hydrogen, oxygen, high pressure, 7. Clean energy, 0201 civil engineering, 3. Good health, електролізер, водень, кисень, високий тиск, TJ1-1570, УДК 544.6.018.42, Mechanical engineering and machinery
File Description: application/pdf
-
19Academic Journal
Authors: Kamel, G. I., Gasilo, Yu. A., Ivchenko, P. S., Volkov, G. P., Zadoia, N. O.
Source: Збірник наукових праць Дніпровського державного технічного університету (технічні науки); Том 1, № 34 (2019): collection; 46-49
Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences); Том 1, № 34 (2019): ; 46-49Subject Terms: Industrial Engineering. Applied mechanics, UDC 671.791, Галузеве машинобудування. Прикладна механіка, основи і середні перемички ротора, корпус, високий тиск, луг, автономна робота, ударна хвиля, основания и средние перемычки ротора, высокое давление, щелочь, автономная работа, ударная волна, bases and average jumper rotor, shirt, high pressure, meadow, autonomous work, shock wav, УДК 671.791, Отраслевое машиностроение. Прикладная механика
File Description: application/pdf
-
20Academic Journal
Authors: Sukmanov, Valerii, Kirik, Ihor, Palash, Anatolii
Source: Ресторанний і готельний консалтинг: Інновації, Vol 2, Iss 1, Pp 59-83 (2019)
Ресторанний і готельний консалтинг. Інновації; Том 2, № 1 (2019); 59-83
Restaurant and hotel consulting. Innovations; Том 2, № 1 (2019); 59-83
Ресторанный и гостиничный консалтинг. Инновации; Том 2, № 1 (2019); 59-83Subject Terms: високий тиск, технологія, cooked sausages, technology, high pressure, properties, shelf life, варені ковбаси, властивості, термін зберігання, HF1-6182, вареные колбасы, технология, высокое давление, свойства, срок хранения, Commerce, 637.523:66.083, Hospitality industry. Hotels, clubs, restaurants, etc. Food service, TX901-946.5
File Description: application/pdf
Access URL: http://restaurant-hotel.knukim.edu.ua/article/download/170412/171370
https://doaj.org/article/b9017632d0dd4602a9ac02cfc016a406
http://restaurant-hotel.knukim.edu.ua/article/download/170412/171370
http://restaurant-hotel.knukim.edu.ua/article/view/170412
http://restaurant-hotel.knukim.edu.ua/article/view/170412