Showing 1 - 20 results of 42 for search '"АССОЦИАТИВНЫЕ ИССЛЕДОВАНИЯ"', query time: 0.88s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Contributors: The study was carried out using Center for Collective Use «Biomika» and unique scientific installation «KODINK» (IBG UFRC RAS) equipment and IBG UFRC RAS collection of human biological materials, and was partially supported by the mega grant of the Government of the Russian Federation № 075-15-2021-595 and scientific-research work № АААА-А16-116020350031-4., Исследование выполнено на оборудовании ЦКП «Биомика» и УНУ «КОДИНК» (ИБГ УФИЦ РАН) с использованием коллекции биологических материалов человека ИБГ УНЦ РАН при частичной поддержке мегагранта Правительства Российской Федерации № 075-15-2021-595 и НИР № АААА-А16-116020350031-4.

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 13, No 1S (2021): Спецвыпуск: рассеянный склероз; 31-38 ; Неврология, нейропсихиатрия, психосоматика; Vol 13, No 1S (2021): Спецвыпуск: рассеянный склероз; 31-38 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2021-1S

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1645/1294; Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020 Dec;26(14):1816-21. doi:10.1177/1352458520970841. Epub 2020 Nov 11.; Boyko A, Melnikov M. Prevalence and Incidence of Multiple Sclerosis in Russian Federation: 30 Years of Studies. Brain Sci. 2020 May 18;10(5):305. doi:10.3390/brainsci10050305; Бахтиярова КЗ, Галиуллин ТР, Лютов ОВ. Результаты 10-летнего опыта работы регионального центра рассеянного склероза. Журнал неврологии и психиатрии им. C.C. Корсакова. 2019;119(5-2):32-3.; Бахтиярова К, Гончарова З. Рассеянный склероз в Республике Башкортостан и Ростовской области: сравнительная эпидемиологическая характеристика. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2014;114(2-2):5-9.; Baranzini SE, Oksenberg JR. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends Genet. 2017 Dec;33(12):960-70. doi:10.1016/j.tig.2017.09.004. Epub 2017 Oct 5.; Lvovs D, Favorova OO, Favorov AV. A polygenic approach to the study of polygenic diseases. Acta Naturae. 2012 Jul;4(3):59-71.; Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 Feb;17(2):162-73. doi:10.1016/S1474-4422(17)30470-2. Epub 2017 Dec 21.; Животовский Л. Популяционная биометрия. Москва: Наука; 1991. 271 с.; Favorov AV, Andreewski TV, Sudomoina MA, et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics. 2005 Dec;171(4):2113-21. doi:10.1534/genetics.105.048090. Epub 2005 Aug 22.; International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011 Aug 10;476(7359):214-9. doi:10.1038/nature10251; Bahlo M, Booth DR, Broadley SA, et al. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009 Jul;41(7):824-8. doi:10.1038/ng.396. Epub 2009 Jun 14.; Sokolova EA, Malkova NA, Korobko DS, et al. Association of SNPs of CD40 Gene with Multiple Sclerosis in Russians. PloS One. 2013 Apr 22;8(4):e61032. doi:10.1371/journal.pone.0061032. Print 2013.; Ханох ЕВ, Рождественский АС, Кудрявцева ЕА и др. Исследование наследственных факторов предрасположенности к рассеянному склерозу и особенностей его течения в русской этнической группе. Сибирский научный медицинский журнал. 2011;31(1):113-8.; De Jager PL, Baecher-Allan C, Maier LM, et al. The role of the CD58 locus in multiple sclerosis. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5264-9. doi:10.1073/pnas.0813310106. Epub 2009 Feb 23.; Hunt SE, McLaren W, Gil L, et al. Ensembl variation resources. Database (Oxford). 2018 Jan 1;2018:bay119. doi:10.1093/database/bay119; Fraussen J, Claes N, van Wijmeersch B, et al. B cells of multiple sclerosis patients induce autoreactive proinflammatory T cell responses. Clin Immunol. 2016 Dec;173:124-32. doi:10.1016/j.clim.2016.10.001. Epub 2016 Oct 4.; Smets I, Fiddes B, Garcia-Perez JE, et al. Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain. 2018 Mar 1;141(3):786-96. doi:10.1093/brain/awx372; Lill CM, Schjeide BM, Graetz C, et al. MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain. 2013 Jun;136(Pt 6):1778-82. doi:10.1093/brain/awt101; Abdollah Zadeh R, Jalilian N, Sahraian MA, et al. Polymorphisms of RPS6KB1 and CD86 associates with susceptibility to multiple sclerosis in Iranian population. Neurol Res. 2017 Mar;39(3):217-22. doi:10.1080/01616412.2016.1278108. Epub 2017 Jan 12.

  9. 9
  10. 10
  11. 11
    Academic Journal

    Contributors: This work was supported by the Russian Science Foundation, project 18-76-00034

    Source: Vavilov Journal of Genetics and Breeding; Том 24, № 2 (2020); 185-190 ; Вавиловский журнал генетики и селекции; Том 24, № 2 (2020); 185-190 ; 2500-3259 ; 10.18699/VJ20.605

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2549/1368; Долматова A.B., Сковородин Е.Н. Использование ДНК-полиморфизма в селекции свиней. В: Материалы междунар. науч.-практ. конф. «Современные проблемы интенсификации производства свинины в странах СНГ», посвященной 75-летнему юбилею заслуженного деятеля науки РФ, профессора В.Е. Уитько, 7–10 июля 2010 г. Ульяновск, 2010;138-143.; Племяшов К.В. Геномная селекция – будущее животноводства. Животноводство России. 2014;5:2-4.; Barrett J., Fry B., Maller J., Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-265. DOI 10.1093/bioinformatics/bth457.; Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. 1995;57(1):289-300. DOI 10.2307/2346101.; Boddicker N., Waide E.H., Rowland R.R.R., Lunney J.K., Garrick D.J., Reecy J.M., Dekkers J.C.M. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J. Anim. Sci. 2012;90(6):1733-1746.; Bruun C.S., Jorgensen C.B., Nielsen V.H., Andersson L., Fredholm M. Evaluation of the porcine melanocortin 4 receptor(MC4R) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Anim. Genet. 2006;37(4):359-362. DOI 10.1111/j.1365-2052.2006.01488.x.; Ciobanu D.C., Lonergan S.M., Huff-Lonergan E.J. Genetics of meat quality and carcass traits. In: Rothschild M.F., Ruvinsky A. (Eds.). The Genetics of the Pig. 2nd ed. Wallingford: CAB International, 2011;355-389.; Ernst C.W., Steibel J.P. Molecular advances in QTL discovery and application in pig breeding. Trends Genet. 2013;29(4):215-224. DOI 10.1016/j.tig.2013.02.002.; McLaren W., Gil L., Hunt S., Riat H., Ritchie G., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. DOI10.1186/s13059-016-0974-4.; Nyachoti C., Kiarie E., Bhandari S., Zhang G., Krause D. Weaned pig responses to Escherichia coli K88 oral challenge when receiving a lysozyme supplement. J. Anim. Sci. 2012;90(1):252-260. DOI 10.2527/jas.2010-3596.; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M., Bender D., Maller J., Sklar P., Bakker P., Daly M., Sham P. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007;81:559-575. DOI 10.1086/519795.; Peterson R.A. Estimating normalization transformations with bestNormalize. 2017. Available at: https://github.com/petersonR/bestNormalize; Salas R., Mingala C. Genetic factors affecting pork quality: halothane and rendement napole genes. Anim. Biotechnol. 2017;28(2):148-155. DOI 10.1080/10495398.2016.1243550. Epub 2016 Nov. 17.; See T., Max F., Rothschild C., Christains J. Swine Genetic Abnormalities. Pork Information Gateway. 2006; PIG 06-06-01.; Sermyagin А., Gladyr E., Plemyashov K., Kudinov A., Dotsev A., Deniskova T., Zinovieva N. Genome-wide association studies for milk production traits in Russian population of Holstein and blackand-white cattle. In: Anisimov K.V. et al. (Eds.). Proc. of the Sci.-Pract. Conf. “Research and Development – 2016”, 14–15 Dec. 2016, Moscow, Russia. Springer Open, 2018;591-599. DOI 10.1007/978-3-319-62870-7_62.; Sermyagin A., Kovalyuk N., Ermilov A., Yanchukov I., Satsuk V., Do tsev A., Deniskova T., Brem G., Zinovieva N.A. Associations of Bola-drb3 genotypes with breeding values for milk production traits in Russian dairy cattle population. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2016;51(6):775-781. DOI 10.15389/agrobiology.2016.6.775eng.; Storey J., Bass A., Dabney A., Robinson D. qvalue: Q-value estimation for false discovery rate control. R package version 2.10.1. 2017. http://github.com/StoreyLab/qvalue; Turner S. qqman: Q-Q and Manhattan Plots for GWAS Data. R package version 0.1.4. 2017. https://CRAN.R-project.org/package=qqman; Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821-824. DOI 10.1038/ng.2310.; https://vavilov.elpub.ru/jour/article/view/2549

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20