-
1
-
2Academic Journal
Συγγραφείς: A. I. Klimenko, Z. S. Mustafin, A. D. Chekantsev, R. K. Zudin, Yu. G. Matushkin, S. A. Lashin, А. И. Клименко, З. С. Мустафин, А. Д. Чеканцев, Р. К. Зудин, Ю. Г. Матушкин, С. А. Лашин
Πηγή: Vavilov Journal of Genetics and Breeding; Том 19, № 6 (2015); 745-752 ; Вавиловский журнал генетики и селекции; Том 19, № 6 (2015); 745-752 ; 2500-3259
Θεματικοί όροι: прокариоты, ecological simulation, evolutionary modeling, prokaryotes, экологическое моделирование, эволюционное моделирование
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/493/821; Гимельфарб А.А., Гинзбург Л.Р., Полуэктов Р.А., Пых Ю.А., Ратнер В.А. Динамическая теория биологических популяций. Наука, 1974.; Колмакова О.В. Современные методы определения видоспецифичных биогеохимических функций бактериопланктона. Журнал сибирского федерального ун-та. Сер. биол. 2013;6(1): 73-95.; Лихошвай В.А., Хлебодарова Т.М., Ратушный А.В., Лашин С.А., Турнаев И.И., Подколодная О.А., Ананько Е.А., Смирнова О.Г., Ибрагимова С.С., Колчанов Н.А. Компьютерный генетический конструктор: математическое моделирование генетических и метаболических подсистем E. сoli. Роль микроорганизмов в функционировании живых систем: фундаментальные проблемы и биоинженерные приложения. Ред. В.В. Власов, А.Г. Дегерменджи, Н.А. Колчанов, В.Н. Пармон, Е.А. Репин. Новосибирск: Изд-во СО РАН, 2010.; Логофет Д.О., Белова И.Н. Неотрицательные матрицы как инструмент моделирования динамики популяций: классические модели и современные обобщения. Фундаментальная и прикладная математика. 2007;13:145-164.; Нетрусов А.И., Котова И.Б. Микробиология. М.: Академия, 2007.; Ризниченко Г.Ю. Математические модели в биофизике и экологии. М.; Ижевск: Институт компьютерных исследований, 2003.; Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М.: Изд-во МГУ, 1993.; Чернавский Д.С., Иерусалимский Н.Д. К вопросу об определяющем звене в системе ферментативных реакций. Изв. АН СССР. Сер. биол. 1965;5:665-672.; Adler J. Chemotaxis in bacteria. J. Supramol. Struct. 1976;4:305-317. DOI 10.1146/annurev.bi.44.070175.002013; Beardmore R.E., Gudelj I., Lipson D.A., Hurst L.D. Metabolic tradeoffs and the maintenance of the fittest and the flattest. Nature. 2011;472:342-346. DOI 10.1038/nature09905; Beslon G., Parsons D.P., Sanchez-Dehesa Y., Peсa J.-M., Knibbe C. Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness? Biosystems. 2010;102:32-40. DOI 10.1016/j.biosystems.2010.07.009; Chewapreecha C. Your gut microbiota are what you eat. Nat. Rev. Microbiol. 2013;12:8. DOI 10.1038/nrmicro3186; Comolli L.R. Intra- and inter-species interactions in microbial communities. Front. Microbiol. 2014;5:1-3. DOI 10.3389/fmicb.2014.00629; Covert M.W., Schilling C.H., Famili I., Edwards J.S., Goryanin I.I., Selkov E., Palsson B.O. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 2001;26:179-186. DOI 10.1016/S0968- 0004(00)01754-0; De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 2002;9:67-103. DOI 10.1089/10665270252833208; De Roy K., Marzorati M., Van den Abbeele P., Van de Wiele T., Boon N. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environ. Microbiol. 2013;16:1472- 1481. DOI 10.1111/1462-2920.12343; DeAngelis D.L., Mooij W.M. Individual-based modeling of ecological and evolutionary processes 1. Annu. Rev. Ecol. Evol. Syst. 2005;36:147-168. DOI 10.1146/annurev.ecolsys.36.102003.152644; Durot M., Bourguignon P.-Y., Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 2009;33:164-190. DOI 10.1111/j.1574-6976.2008.00146.x; Emonet T., Macal C.M., North M.J., Wickersham C.E., Cluzel P. Agent-Cell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics. 2005;21:2714-2721. DOI 10.1093/bioinformatics/bti391; Esteban P.G., Rodríguez-Patón A. Simulating a Rock-Scissors-Paper Bacterial Game with a Discrete Cellular Automaton. New Challenges on Bioinspired Applications, Lecture Notes in Computer Science. Eds J.M. Ferràndez, J.R. Álvarez Sànchez, F. de la Paz, F.J. Toledo. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. DOI 10.1007/978-3-642-21326-7; Faust K., Raes J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 2012;10:538-550. DOI 10.1038/nrmicro2832; Frey E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A Stat. Mech. its Appl. 2010; 389:4265-4298. DOI 10.1016/j.physa.2010.02.047; Fuhrman J.A. Microbial community structure and its functional implications. Nature. 2009;459:193-199. DOI nature08058 [pii]n10.1038/nature08058 [doi]; Ginovart M., López D., Valls J. INDISIM, an individual-based discrete simulation model to study bacterial cultures. J. Theor. Biol. 2002; 214:305-319. DOI 10.1006/jtbi.2001.2466; Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., Goss-Custard J., Grand T., Heinz S.K., Huse G., Huth A., Jepsen J. U., Jørgensen C., Mooij W.M., Müller B., Pe’er G., Piou C., Railsback S.F., Robbins A.M., Robbins M.M., Rossmanith E., Rüger N., Strand E., Souissi S., Stillman R. a., Vabø R., Visser U., DeAngelis D.L. A standard protocol for describing individual-based and agent-based models. Ecol. Modell. 2006;198:115-126. DOI 10.1016/j.ecolmodel.2006.04.023; Halfen L.N., Castenholz R.W. Gliding motility in the blue-green alga oscillatoria princeps. 1971.; Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: Data integration in dynamic models–A review. Biosystems. 2009;96:86-103. DOI 10.1016/j.biosystems.2008.12.004; Henrichsen J. Bacterial Surface Translocation: a Survey and a Classification. Bacteriol. Rev. 1972;36:478-503.; Henson M.A., Hanly T.J. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 2014;8:214-229. DOI 10.1049/iet-syb.2013.0021; Ishii N., Robert M., Nakayama Y., Kanai A., Tomita M. Toward largescale modeling of the microbial cell for computer simulation. J. Biotechnol. 2004;113:281-294. DOI 10.1016/j.jbiotec.2004.04.038; Karr J.R., Sanghvi J.C., MacKlin D.N., Gutschow M.V., Jacobs J.M., Bolival B., Assad-Garcia N., Glass J.I., Covert M.W. A wholecell computational model predicts phenotype from genotype. Cell. 2012;150:389-401. DOI 10.1016/j.cell.2012.05.044; Karunakaran E., Mukherjee J., Ramalingam B., Biggs C.A. «Biofilmology »: a multidisciplinary review of the study of microbial biofilms. Appl. Microbiol. Biotechnol. 2011;90:1869-1881. DOI 10.1007/s00253-011-3293-4; Klimenko A.I., Matushkin Y.G., Kolchanov N.A., Lashin S.A. Modeling evolution of spatially distributed bacterial communities: a simulation with the haploid evolutionary constructor. BMC Evol. Biol. 2015;15:S3. DOI 10.1186/1471-2148-15-S1-S3; Klitgord N., Segre D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 2010;101:1435-1439. DOI 10.1371/Citation; Knibbe C., Fayard J.-M., Beslon G. The topology of the protein network influences the dynamics of gene order: from systems biology to a systemic understanding of evolution. Artif. Life. 2008;14:149-156. DOI 10.1162/artl.2008.14.1.149; Kutalik Z., Razaz M., Baranyi J. Connection between stochastic and deterministic modelling of microbial growth. J. Theor. Biol. 2005;232:285-299. DOI 10.1016/j.jtbi.2004.08.013; Larsen P., Hamada Y., Gilbert J. Modeling microbial communities: Current, developing, and future technologies for predicting microbial community interaction. J. Biotechnol. 2012;160:17-24. DOI 10.1016/j.jbiotec.2012.03.009; Laspidou C.S., Rittmann B.E. Evaluating trends in biofilm density using the UMCCA model. Water Res. 2004;38:3362-33672. DOI 10.1016/j.watres.2004.04.051; Lencastre Fernandes R., Nierychlo M., Lundin L., Pedersen A.E., Puentes Tellez P.E., Dutta A., Carlquist M., Bolic A., Schäpper D., Brunetti A.C., Helmark S., Heins A.L., Jensen A.D., Nopens I., Rottwitt K., Szita N., van Elsas J.D., Nielsen P.H., Martinussen J., Sørensen S.J., Lantz A.E., Gernaey K.V. Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol. Adv. 2011;29:575-599. DOI 10.1016/j.biotechadv.2011.03.007; Leslie P.H. On the use of matrices in certain population mathematics. Biometrika. 1945. DOI 10.2307/2332297; Likhoshvai V.A., Ratushny A.V. Generalized Hill function method for modeling molecular processes. J. Bioinform. Comput. Biol. 2007;05: 521-531. DOI 10.1142/S0219720007002837; Mahadevan R., Henson M.A. Genome-based modeling and design of metabolic interactions in microbial communities. Comput. Struct. Biotechnol. J. 2012;3:1-7. DOI 10.5936/csbj.201210008; Mburu N., Rousseau D.P.L., Stein O.R., Lens P.N.L. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment. J. Environ. Manage. 2014;134:100-108. DOI 10.1016/j.jenvman.2014.01.005; Monod J. La technique de culture continue. Theorie et applications. Ann. Inst. Pasteur. 1950;79:391-410.; Niu B., Wang H., Duan Q., Li L. Biomimicry of quorum sensing using bacterial lifecycle model. BMC Bioinformatics. 2013;14(Suppl. 8): S8. DOI 10.1186/1471-2105-14-S8-S8; O’Donnell A.G., Young I.M., Rushton S.P., Shirley M.D., Crawford J. W. Visualization, modelling and prediction in soil microbiology. Nat. Rev. Microbiol. 2007;5:689-699. DOI 10.1038/nrmicro1714; Oberhardt M.A., Palsson B.Ø., Papin J.A. Applications of genomescale metabolic reconstructions. Mol. Syst. Biol. 2009;5. DOI 10.1038/msb.2009.77; Pfeiffer T., Schuster S. Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci. 2005;30: 20-25. DOI 10.1016/j.tibs.2004.11.006; Price N.D., Reed J.L., Palsson B.Ø. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2004;2:886-897. DOI 10.1038/nrmicro1023; Ramkrishna D. Population Balances: Theory and Applications to Particulate Systems in Engineering, Chemical Engineering. 2000.; Rudge T.J., Steiner P.J., Phillips A., Haseloff J. Computational modeling of synthetic microbial biofilms. ACS Synthetic Biology 2012;1(8): 345-352. DOI 10.1021/sb300031n; Salli K.M., Ouwehand A.C. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J. Oral Microbiol. 2015;7. DOI 10.3402/jom.v7.26149; Sauer U., Heinemann M., Zamboni N. GENETICS: getting closer to the whole picture. Science. 2007;316:550-551. DOI 10.1126/science.1142502; Scheffer M., Baveco J.M., DeAngelis D.L., Rose K.A., van Nes E.H. Super-individuals a simple solution for modelling large populations on an individual basis. Ecol. Modell. 1995;80:161-170. DOI 10.1016/0304-3800(94)00055-M; Scheibe T.D., Mahadevan R., Fang Y., Garg S., Long P.E., Lovley D.R. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2009;2:274-286. DOI 10.1111/j.1751-7915.2009.00087.x; Schuster S., Fell D.A., Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 2000;18:326-332. DOI 10.1038/73786; Segrè D., Vitkup D., Church G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA. 2002;99: 15112-15117. DOI 10.1073/pnas.232349399; Shrout J.D. A fantastic voyage for sliding bacteria. Trends Microbiol. 2015;23:244-246. DOI 10.1016/j.tim.2015.03.001; Song H.-S., Cannon W., Beliaev A., Konopka A. Mathematical modeling of microbial community dynamics: a methodological review. Processes. 2014;2:711-752. DOI 10.3390/pr2040711; Stauffer D., Kunwar A., Chowdhury D. Evolutionary ecology in silico: Evolving food webs, migrating population and speciation. Physica A. 2005;352:202-215. DOI 10.1016/j.physa.2004.12.036; Tang Y., Valocchi A.J. An improved cellular automaton method to model multispecies biofilms. Water Res. 2013;47:5729-5742. DOI 10.1016/j.watres.2013.06.055; Tindall M.J., Maini P.K., Porter S.L., Armitage J.P. Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations. Bull. Math. Biol. 2008a. DOI 10.1007/s11538-008-9322-5; Tindall M.J., Porter S.L., Maini P.K., Gaglia G., Armitage J.P. Overview of mathematical approaches used to model bacterial chemotaxis I: The single cell. Bull. Math. Biol. 2008b. DOI 10.1007/s11538-008-9321-6; Tomita M. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 2001;19:205-210. DOI 10.1016/S0167-7799(01)01636-5; Tomita M., Hashimoto K., Takahashi K., Shimizu T., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J., Hutchison C. E-CELL: software environment for whole-cell simulation. Bioinformatics. 1999;15:72-84. DOI 10.1093/bioinformatics/15.1.72; Turing A.M. The chemical theory of morphogenesis. Phil. Trans. Roy.Soc. 1952;13:1.; Wanner O., Morgenroth E. Biofilm modeling with AQUASIM. Water Sci. Technol. 2004;49:137-144.; Wimpenny J., Manz W., Szewzyk U. Heterogeneity in biofilms. FEMS Microbiol. Rev. 2000. DOI 10.1016/S0168-6445(00)00052-8; Wimpenny J.W.T., Colasanti R. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol. 1997. DOI 10.1016/S0168-6496(96)00078-5; Wolfe B.E., Dutton R.J. Review fermented foods as experimentally tractable microbial ecosystems. Cell. 2015;161:49-55. DOI 10.1016/j.cell.2015.02.034; Wooley J.C., Godzik A., Friedberg I. A primer on metagenomics. PLoS Comput. Biol. 2010. DOI 10.1371/journal.pcbi.1000667; Zomorrodi A.R., Islam M.M., Maranas C.D. D-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol. 2014;3:247-257. DOI 10.1021/sb4001307; Zomorrodi A.R., Maranas C.D. OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 2012;8. DOI 10.1371/journal.pcbi.1002363; https://vavilov.elpub.ru/jour/article/view/493
-
3Academic Journal
Συγγραφείς: БАХАРЕВА НАТАЛЬЯ АЛЕКСАНДРОВНА
Περιγραφή αρχείου: text/html
-
4Report
Συγγραφείς: Перминова, Татьяна Анатольевна
Συνεισφορές: Барановская, Наталья Владимировна
Θεματικοί όροι: бром, компоненты окружающей среды, Томская область, токсичность, экологическое моделирование, bromine, natural environments, Tomsk region, toxicity, ecological modeling, 05.06.01, 504.5:546.14(571.16)
Περιγραφή αρχείου: application/pdf
Relation: Перминова Т. А. Бром в компонентах природной среды Томской области и оценка его токсичности : научный доклад / Т. А. Перминова; Национальный исследовательский Томский политехнический университет (ТПУ), Управление магистратуры, аспирантуры и докторантуры (УМАД), Отдел аспирантуры и докторантуры (ОАиД); науч. рук. Н. В. Барановская. — Томск, 2017.; http://earchive.tpu.ru/handle/11683/40480
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/40480
-
5Academic Journal
Συγγραφείς: Кравцова, Марианна, Аладинская, Анастасия, Писклова, Ольга
Θεματικοί όροι: ЭКОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ, ОЦЕНКА ВОЗДЕЙСТВИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ
Περιγραφή αρχείου: text/html
-
6Academic Journal
Πηγή: Перспективы науки и образования.
Περιγραφή αρχείου: text/html
-
7
-
8Academic Journal
Συγγραφείς: М.В. Кузнецов, О.Г. Зима, А.Г. Зима, M.V. Kuznetsov, O.G. Zima
Πηγή: Системи обробки інформації. — 2010. — № 5(86). 239-242 ; Системы обработки информации. — 2010. — № 5(86). 239-242 ; Information Processing Systems. — 2010. — № 5(86). 239-242 ; 1681-7710
Θεματικοί όροι: Запобігання та ліквідація надзвичайних ситуацій, УДК 631.416.8, ґрунти, важкі метали, прогноз, метод, екологічне моделювання, часовий ряд прогнозування, забруднення ґрунтів, почвы, тяжелые металлы, экологическое моделирование, временной ряд прогнозирования, загрязнение почв, soils, heavy metals, prognosis, method, ecological design, temporal row of prognostication, contamination of soils
Περιγραφή αρχείου: application/pdf
Relation: http://www.hups.mil.gov.ua/periodic-app/article/7653/soi_2010_5_58.pdf; http://www.hups.mil.gov.ua/periodic-app/article/7653
Διαθεσιμότητα: http://www.hups.mil.gov.ua/periodic-app/article/7653
-
9
-
10Academic Journal
Πηγή: Известия Самарского научного центра Российской академии наук.
Θεματικοί όροι: 13. Climate action, 11. Sustainability, ЭКОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ, ОЦЕНКА ВОЗДЕЙСТВИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ
Περιγραφή αρχείου: text/html
-
11
Συνεισφορές: Томский государственный университет
Θεματικοί όροι: экология, диссертации, мятлики, Stenopoa, секция мятликов, динамика ареалов Stenopoa, распространение Stenopoa, эколого-климатические особенности, карты цифровые распространения Stenopoa, Азиатская Россия, эколого-климатические ниши, климатически показатели, ареалы модельных видов Stenopoa, модели территорий обитания Stenopoa, климат, 21 век 1 четверть, модели распространения Stenopoa, 2070 г, 2080 г, голоцен средний, четвертичный период, биоклиматическое моделирование, ГИС-технологии, BIOCLIM, пакет программ биоклиматических растров, DIVA-GIS, географическая информационная система анализа данных о биоразнообразии растений, SDM, моделирование распространения видов, экологическое моделирование
Περιγραφή αρχείου: application/pdf
Relation: koha:001147344; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001147344
-
12Dissertation/ Thesis
Συγγραφείς: Kozii, Ivan Serhiiovych
Θεματικοί όροι: екологічне моделювання, пыль, atmosphere, ecological modeling, экологическое моделирование, dust, атмосфера, пил
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://essuir.sumdu.edu.ua/handle/123456789/25610
-
13
Συγγραφείς: Олонова, Марина Владимировна, Гудкова, Полина Дмитриевна
Συνεισφορές: Томский государственный университет Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт), Томский государственный университет Научное управление
Θεματικοί όροι: экологическое моделирование, методы, Diva-GIS, ГИС-программа, BIOCLIM, программа моделирования распределения видов, MaxEnt, программа моделирования географического распространения биологических видов методом максимальной энтропии, пространственные модели, распределение видов, метод максимальной энтропии, факторы окружающей среды, подготовка данных, ввод данных, эколого-климатические ниши, климатические переменные биологически значимые, визуализация результатов, карты биологического разнообразия растений, карты компьютерные, биоэкологическое моделирование компьютерное, практические работы, форматы данных, преобразование данных, импортирование данных
Περιγραφή αρχείου: application/pdf
Relation: vtls:000576304; URN:ISBN:9785946216098; http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000576304
-
14Dissertation/ Thesis
Θεματικοί όροι: пил, пыль, dust, екологічне моделювання, экологическое моделирование, ecological modeling, атмосфера, atmosphere
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: http://essuir.sumdu.edu.ua/handle/123456789/25610
-
15
Συγγραφείς: Кирпотин, Сергей Николаевич
Συνεισφορές: Томский государственный университет Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт) Кафедра ботаники
Πηγή: Вопросы географии Сибири : [сборник статей]. Томск, 2003. Вып. 25. С. 303-309
Θεματικοί όροι: природные тела, биосфера, морфологический метод, теория симметрии, экологическое моделирование, ландшафтная экология
Περιγραφή αρχείου: application/pdf
Relation: vtls:000328399; http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000328399