Εμφανίζονται 1 - 20 Αποτελέσματα από 49 για την αναζήτηση '"цитоплазматическая мужская стерильность"', χρόνος αναζήτησης: 0,65δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Наследие академика Н.В. Цицина: Ботанические сады. Отдалённая гибридизация растений и животных.

  3. 3
    Academic Journal

    Πηγή: Bulletin of NSAU (Novosibirsk State Agrarian University); № 3 (2024); 32-43 ; Вестник НГАУ (Новосибирский государственный аграрный университет); № 3 (2024); 32-43 ; 2072-6724

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestngau.elpub.ru/jour/article/view/2357/1031; Zeru Y., Chang J. Genetic Diversity and Estimation of Heterosis of Sorghum (Sorghum Bicolor L. Moench) Varieties and their Hybrids for Grain Yield and other Traits at, Baoding, Hebei Province, China // International Journal of Agriculture Innovations and Research. – 2020. – № 8. – P. 2319–2473.; Agroecological testing of sugar sorghum, sudanese grass and sorghum-sudanese hybrids in the natural conditions of the Novgorod region / E.P. Shkodina, O.V. Balun, S.I. Kapustin [et al.] // Indo American journal of pharmaceutical science. – 2019. – Vol. 6, N 7. – P. 13810–13815. – DOI:10.30766/2072-9081.2021.22.4.531-541.; Шишова Е.А., Ковтунов В.В., Ковтунова Н.А. Подбор родительских пар и изучение новых сорго-суданковых гибридов // Зерновое хозяйство России. – 2020. – № 4 (70). – С. 65–68. – DOI:10.31367/2079-8725-2020-70-4-65-68.; Капустин С.И., Володин А.Б., Капустин А.С. Гетерозисная селекция гибридов сорго и суданской травы // Таврический вестник аграрной науки. – 2022. – № 3 (31). – С. 76–84.; Продуктивность и питательная ценность суданской травы при возделывании на зеленый корм / Ю.Н. Плескачев, Ю.А. Лаптина, О.Г. Гиченкова [и др.] // Аграрный научный журнал. – 2021. – № 8. – C. 28–32. – DOI:10.28983/asj.y2021i8pp28-33.; Ковтунова Н.А., Ковтунов В.В., Шишова Е.А. Влияние метеорологических условий на урожайность и качество зеленой массы суданской травы // Вестник российской сельскохозяйственной науки. – 2016. – № 3. – C. 39–41.; Character association and inheritance studies of diferent sorghum genotypes for fodder yield and quality under irrigated and rainfed conditions / Tariq Abdus, Akram Zahid, Shabbir Ghulam [et al.] // African journal of biotechnology. – 2012. – N 11 (38). – DOI:10.5897/AJB11.2561.; Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress / K.B. Abreha, M. Enyew, A.S. Carlsson [et al.] // Planta. – 2021. – Vol. 255. – DOI:10.1007/s00425-021-03799-7.; Седукова Г.В., Кристова Н.В., Подоляк С.Л. Питательная ценность зеленой массы сорго сахарного, сорго-суданкового гибрида, суданской травы в юго-восточной части Беларуси // Земледелие и селекция в Беларуси. – 2022. – № 58. – С. 249–255.; Evaluation of fodder yield and fodder quality in sorghum and its interaction with grain yield under diferent water availability regimes / K. Somegowdaab, A. Vemula, J. Naravula [et al.] // Current Plant Biology. – 2021. – Vol. 25. – P. 100191. – DOI:10.1016/j.cpb.2020.100191.; Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Defcit: A Multiscale Analysis from Internode Tissue to Plant Level / L. Perrier, L. Rouan, S. Jafuel [et al.] // Plant Sci. – 2017. – № 8. – P. 1516. – DOI:10.3389/fpls.2017.01516.; Кормовая ценность суданской травы в зависимости от срока уборки / А.В. Алабушев, Н.А. Ковтунова, В.В. Ковтунов [и др.] // Аграрная наука Евро-Северо-Востока. – 2019. – Т. 20, № 4. – С. 343–350. – DOI:10.30766/2072-9081.2019.20.4.343-350.; Nutritional characteristics of Sorghum hybrids hay (Sorghum sudanense vs. Sorghum bicolor) / M.H.M. Lima, D.A.d.A. Pires, M.M.A. Moura [et al.] // Acta Scientiarum. Animal Sciences. – 2017. –N 39 (3). – P. 229–234. – DOI:10.4025/actascianimsci.v39i3.32524.; Дронова Т.Н., Бурцева Н.И. Возделывание суданской травы на корм в условиях орошения // Орошаемое земледелие. – 2019. – № 3. – C. 30–33. – DOI:10.35809/2618-8279-2019-3-8.; Кибальник О.П. Использование эффекта гетерозиса в селекции сорго // Вестник НГАУ (Новосибирский государственный аграрный университет). – 2019. – № 2 (51). – С. 15–24. – DOI:10.31677/2072-6724-2019-51-2-15-24.; Васильченко С.А., Метлина Г.В., Ковтунов В.В. Влияние сроков, способов посева и норм высева на продуктивность сорго зернового сорта Зерноградское 88 // Зерновое хозяйство России. – 2022. – Т. 14, № 4. – С. 91–96. – DOI:10.31367/2079-8725-2022-82-4-91-96.; Biochemical Evaluation of Forage Quality from Mutant Forms Sudan Grass (Sorghum sudanense (Piper) Stapf.) / I. Golubinova, Y. Naydenova, S. Enchev [et al.] // Journal of Ecology and Environment Sciences. – 2016. – Vol. XV, N 4. – P. 44–51.; https://vestngau.elpub.ru/jour/article/view/2357

  4. 4
  5. 5
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 3 (2023); 207-217 ; Вавиловский журнал генетики и селекции; Том 27, № 3 (2023); 207-217 ; 2500-3259 ; 10.18699/VJGB-23-24

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3732/1700; 1. Agafonov N.S., Bogomolov M.A., Zhuzhzhalova T.P., Kornienko A.V., Fedulova T.P., Popova I.R. Method for obtaining sugar beet homozygous lines. Inventor’s certificate 1708210 USSR. MKI АОLH 1/04. No. 4818227/13. Applied 12.03.90.; Published 30.01.92. Bulletin No. 4. 1992. (in Russian) Atanasov A. Biotechnology in Plant Industry. Novosibirsk, 1993. (in Russian); Balkov I.Ya., Karakotov S.D., Logvinov A.V., Logvinov V.A., Mishchenko V.N. Evolution of Sugar Beet: from Garden Forms to Modern Profitable Hybrids. Shchelkovo, 2017. (in Russian); Banzal K.C., Lenka S.K., Mondal T.K. Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breed. 2014; 133(1):1-11. DOI 10.1111/pbr.12117.; Bartenev I.I., Gavrin D.S., Nechaeva O.M., Senyutin A.A. Heterogeneity of seed plant populations and quality indicators of sugar beet seeds. Sakhar = Sugar. 2018;10:46-49. (in Russian); Barykina R.P., Veselova T.D., Devyatov A.G., Dzhalilova Kh.Kh., Ilyina G.M., Chubatova N.V. Handbook of Botanical Microprocedures: Grounds and Methods. Moscow: Moscow State University Publ., 2004. (in Russian); Batygina T.B. Nontraditional views of reproduction types and methods. Phenomenon of embryoidogeny, a new way of flowering plant propagation. In: Developmental Biology: Morphogenesis of Reproductive Structures and the Role of Somatic and Stem Cells in Development and Evolution: Proc. Intern. Conf., Dedicated to the 50th Anniversary of the Laboratory of Embryology and Reproductive Biology. St. Petersburg, December 13-16, 2010. Moscow, 2010;26-31. (in Russian); Batygina T.B., Vinogradova G.Yu. Phenomenon of polyembriony. Genetic heterogeneity of seeds. Russ. J. Dev. Biol. 2007; 38:126-151. DOI 10.1134/S1062360407030022.; Bednarska E. The effect of intracellular calcium level regulators on the synthesis of pollen tube callose in Oenothera bien­ nis L. Acte Soc. Bot. Pol. 1989;58(2):199-210. DOI 10.5586/asbp.1989.016.; Bogomolov M.A. Induced apomixis and its use in sugar beet breeding. In: Encyclopedia of the Beta Genus: Biology, Genetics, and Breeding of Beet. Novosibirsk: Sova Publ., 2010; 504-513. (in Russian); Bogomolova N.M., Zhuzhzhalova T.P. Study of somatic embryoidogenesis in sugar beet (B. vulgaris L.). In: Issues of Botanical Sciences at the Turn of the 21st Century. V. 1. St. Petersburg: Botanical Institute RAS Publ., 1998;103. (in Russian); Bragin A.G., Ivanov M.K., Fedoseeva L.A., Dymshits G.M. Analysis of mitochondrial DNA heteroplasmy in fertile and owen CMS sugar beet (Beta vulgaris) plants. Vavilivskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2011;15(3): 524-530. (in Russian); Cherkasova N.N., Zhuzhzhalova T.P., Kolesnikova E.O. Development of a technology to select sugar beet in vitro regenerants for tolerance of acidity and drought. Sakhar = Sugar. 2018;10:43-45. (in Russian); Cherkasova N.N., Zhuzhzhalova T.P., Kolesnikova E.O. Influence of ionic toxicity on morphological development of sugar beet regenerants. Sakharnaya Svekla = Sugar Beet. 2020;5: 33-35. DOI 10.25802/SB.2020.94.56.003. (in Russian); Cherkasova N.N., Zhuzhzhalova T.P., Tkachenko O.V. Increasing the resistance of sugar beet plants to drought in vitro conditions. Sakharnaya Svekla = Sugar Beet. 2021;8:12-14. DOI 10.25802/SB.2021.52.25.002. (in Russian); Dubrovna O.V. In vitro selection of wheat for resistance to abiotic stress factors. Fiziologiya Rastenij i Genetika = Plant Physiology and Genetics. 2017;49(4):279-292. (in Russian); Dymshits E.M., Bragin A.G., Ivanov M.K. Molecular aspects of cytoplasmic male sterility. In: Encyclopedia of the Beta Genus. Biology, Genetics, and Breeding of Beet. Novosibirsk: Sova Publ., 2010;228-247. (in Russian); Dzhavakhia V., Filippov A., Skryabin K., Voinova T., Kouznetsova M., Shulga O., Shumilina D., Kromina K., Pridanniko M., Battchikova N., Korpela T. Proteins inducing multiple resistance of plants to phytopathogens and pests. US patent No. WO 2005061533. Intern. Filing Date 17.12.2004. Publ. Date 07.07.2005.; Fedulova T.P., Nalbandyan A.A., Duvanova T.N. Screening of sugar beet parental materials for the presence of TRs minisatellite loci associated with CMS. Sakhar = Sugar. 2022;3: 38-41. DOI 10.24412/2413-5518-2022-3-38-41. (in Russian); Fomenko N.P., Zhuzhzhalova T.P., Fedulova T.P., Bogomolov M.A. Cytoembryological and morphological characterization of plants in apomictic gamma lines of sugar beet. In: Factors of the Experimental Evolution of Organisms. Kiev: Agrarnaya Nauka Publ., 2003; 212-217. (in Russian); Hohmann U., Jacobs G., Jung C. An EMC mutagenesis protocol for sugar beet and isolation non-bolting mutants. Plant Breed. 2005;124(4):317-321. DOI 10.1111/j.1439-0523.2005.01126.x.; Ilyenko I.I. Microclonal propagation and maintainance of sugar beet breeding material in in vitro culture. Fiziologiya i Bio­ khimiya Kulturnykh Rasteniy = Physiology and Biochemistry of Cultivated Plants. 1983;15(4):351-355. (in Russian); Karakotov S.D., Apasov I.V., Nalbandyan A.A., Vasilchenko E.N., Fedulova T.P. Modern issues of sugar beet (Beta vulgaris L.) hybrid breeding. Vavilivskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021; 25(4):394-400. DOI 10.18699/VJ2.043. (in Russian); Katayeva N.V., Butenko R.G. Clonal Micropropagation of Plants. Moscow: Nauka Publ., 1983. (in Russian); Khlestkina E.K. Molecular markers in genetic studies and breeding. Vavilivskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):1044-1054. (in Russian); Khussein A.S., Mikheeva N.R., Nalbandyan A.A., Cherkasova N.N. Screening of sugar beet regenerants for the heavy metal resistance MTP4 gene. Biotekhnologiya = Biotechno­ logy. 2021;37(4):14-19. DOI 10.21519/0234-2758-2021-37-4-14-19. (in Russian); Khussein A.S., Nalbandyan A.A., Bogacheva N.N., Vasilchenko E.N., Fedulova T.P. Microsatellite analysis of transgenic forms of sugar beet. Doklady Rossiyskoy Akademii Sel’skokhozyaystvennykh Nauk = Proceedings of the Russian Academy of Agricultural Sciences. 2013;2:17-20. (in Russian); Kikindonov G., Kikindonov Tz., Erchev S. Economical qualities of crosses between doubled haploid sugar beet lines. Agric. Sci. Technol. 2016;8(2):107-110. DOI 10.15547/ast2016.02.018.; Kolesnikova E.O., Zhuzhzhalova T.P. Microcloning and maintenance of lines material in sugar beet breeding process. In: Proc. of IV (XII) Int. Botanical Conf. of Young Scientists in St. Petersburg, April 22–28, 2018. St. Petersburg: Komarov Botanical Institute of the RAS, 2018;267-268.; Kornienko A.V., Podvigina O.A., Zhuzhzhalova T.P., Fedulova T.P., Bogomolov M.A., Oshevnev V.P., Butorina A.K. High-priority research directions in genetics and the breeding of the sugar beet (Beta vulgaris L.) in the 21st century. Russ. J. Genet. 2014;50(11):1137-1148. DOI 10.1134/S1022795414110064.; Kornienko A.V., Znamenskaya V.V. New Methods for Obtaining Sugar Beet Parent Material. Ramon’, 2001. (in Russian); Kourelis J., van der Hoorn R.A.L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 2018;30(2):285299. DOI 10.1105/tpc.17.00579.; Kovaleva L.V. Intercellular interactions of the pollen-pistil system in the progamic phase of fertilization. Uspekhi Sovremennoj Biologii = Advances in Current Biology. 1991;111(5):782796. (in Russian); Kovaleva L.V., Zakharova E.V., Voronkov A.S., Timofeyeva G.V., Minkina Yu.V. Plant hormones and polar growth of pollen tubes. In: Embryology, Genetics, and Biotechnology. Proceedings of the 5th International School for Young Scientists (St. Petersburg, October 9-14, 2016). St. Petersburg: Levsha Publ., 2016;107.; Lamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 2018;6: 26. DOI 10.3389/fchem.2018.00026.; Larsen K. Self-incompatibility in Beta vulgaris L. Four gametophytic, complementary S-loci in sugar beet. Hereditas. 1977; 85(2):227-248. DOI 10.1111/j.1601-5223.1977.tb00971.x.; Leyke G., Labes R., Ertel K., Peteresdorf M. Using of Tissue and Organ Cultures in Plant Breeding and Planting Material Production. Moscow: Kolos Publ., 1980. (in Russian); Lutova L.A., Ezhova T.A., Dodueva I.E., Osipova M.A. Genetics of Plant Development. St. Petersburg: N-L Publ., 2010. (in Russian); Mahmoud K., Najar A., Jedid E., Jemai N., Jemmali A. Tissue culture techniques for clonal propagation, viral sanitation and germplasm improvement in strawberry (Fragaria × ananas­ sa Duch.). J. New Sci. 2017;47(2):2564-2576.; Maletskaya E.I., Maletskiy S.I. Haploidy in apozygotic progeny of sugar beet. In: Encyclopedia of the Beta Genus: Biology, Genetics, and Breeding of Beet. Novosibirsk: Sova Publ., 2010;466-472. (in Russian); Maletskiy S.I. Evolution Biology. Dictionary of Terms. Novosibirsk: ICG SB RAS Publ., 2005. (in Russian); Maletskii S.I., Maletskaya E.I. Self-fertility and agamospermy in sugar beet (Beta vulgaris L.). Russ. J. Genet. 1996;32(12): 1431-1437.; Maletskiy S.I., Maletskaya E.I., Yudanova S.S. New technology of seeds reproduction in sugar beets (parthenogenetic mode). Trudy Kubanskogo Gosudarstvennogo Agrarnogo Universiteta = Works of the Kuban State Agrarian Univer­ sity. 2015;3(54):204-213. (in Russian); Mazlumov A.L. Sugar Beet Breeding. Moscow: Kolos Publ., 1970. (in Russian); McCallum C.M., Comai L., Greene E.A., Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 2000;123(2):439-442. DOI 10.1104/pp.123.2.439.; Murashige T. Plant propagation through tissue cultures. Ann. Rev. Plant Physiol. 1974;25:135-166. DOI 10.1146/annurev.pp.25.060174.001031.; Nalbandyan A.A., Fedulova T.P., Cherepukhina I.V., Kryukova T.I., Oshevnev V.P., Gribanova N.P. DNA markers in sugar beet breeding. Sakharnaya Svekla = Sugar Beet. 2021;2:1014. DOI 10.25802/SB.2021.57.87.001. (in Russian); Nalbandyan A.A., Fedulova T.P., Khussein A.S. Molecular selection of sugar beet breeding material with genes of resistance to biotic stresses. Rossiyskaya Sel’skokhozyaystvennaya Nauka = Russian Agricultural Science. 2019;1:16-20. DOI 10.31857/S2500-26272019116-20. (in Russian); Nalbandyan A.A., Khussein A.S., Fedulova T.P., Cherepukhina I.V., Kryukova T.I., Rudenko T.S., Mikheeva N.R., Moiseenko A.V. Differentiation of sugar beet cultivars by SSR markers to create promising hybrids. Rossiyskaya Sel’skokho­ zyaystvennaya Nauka = Russian Agricultural Science. 2020; 4:18-21. DOI 10.31857/S2500262720040043. (in Russian); Nishizawa S., Kubo T., Mikami T. Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr. Ge­ net. 2000; 37(1):34-38. DOI 101007/s002940050005.; Oshevnev V.P., Cherepukhin E.I., Balkov I.Ya. Use of the selfincompatibility trait in sugar beet breeding on the CMS base. Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 1986a;21(8):90-92. (in Russian); Oshevnev V.P., Gribanova N.P. Breeding of O-type self-compatible pollinators in sugar beet. In: Encyclopedia of the Beta Genus: Biology, Genetics, and Breeding of Beet. Novosibirsk: Sova Publ., 2010;542-554. (in Russian); Oshevnev V.P., Gribanova N.P., Zhuzhzhalova T.P., Cherepukhin E.I. Formation of pistillodes in sugar beet. Genetika = Genetics. 1986b;22(4):889-891. (in Russian); Owen F.V. Mendelian male sterility in sugar beets. Am. Soc. Sugar Beet Technol.1952;7:371-376.; Paesold S., Borchardt D., Schmidt T., Dechyeva D. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J. 2012;72(4):600-611. DOI 10.1111/j.1365-313X.2012.05102.x.; Pazuki A., Aflaki F., Gürel E., Ergül A., Gürel S. Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6-benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech. 2018;20:69-77. DOI 10.1007/s12355-0170522-x.; Podvigina O.A. In vitro induction of haploidy from unfertilized sugar beet ovules. In: Encyclopedia of the Beta Genus: Biology, Genetics, and Breeding of Beet. Novosibirsk: Sova Publ., 2010;455-465. (in Russian); Rusea I., Popescu A., Valentina I., Hoza D. Micropropagation of strawberry cv. Magic. Ann. Univ. Craiova. 2020;XXIV(LX): 218-223.; Seman I., Farago J. Research biotechnological methods in sugar beet breeding in the research and breeding institute at Bucany. Potsdam. Forsh. B. 1988;57:51-56.; Shevelukha V.S. Plant Growth and its Regulation in Ontogenesis. Moscow: Nauka Publ., 1992. (in Russian); Simko I., Eujayl I., van Hintum T.J. Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations. Plant Sci. 2012;184: 54-62. DOI 10.1016/j.plantsci.2011.12.009.; Stevanato P., Trebbi D., Panella L., Richardson K., Droccanelo C., Pakish L., Fenwick A., Saccomani M. Identification and validation of a SNP marker linked to the gene HsBvm­1 for nematode resistance in sugar beet. Plant Mol. Biol. Rep. 2015;33:474-479. DOI 10.1007/s11105-014-0763-8.; Titov A.F., Talanova V.V., Kaznina N.M., Laydinen G.F. Heavy metal tolerance in plants. Petrozavodsk: Karelian Scientific Centre Publ., 2007. (in Russian); Tomaszevska-Sowa M., Figas A.S., Gatz A. Histological analysis of organogenesis and somatic embryogenesis during shoot formation in sugar beet (B. vulgaris L.) via gynogenesis. Po­ lish J. Nat. Sci. 2017;32(4);705-717.; Vaisman N.Ya., Zhuzhzhalova T.P., Agafonov N.S. Cytology of incompatibility in sugar beet. In: Sugar Beet Genetics. Novosibirsk: Nauka Publ., 1984;121-129. (in Russian); Vasilchenko E.N., Zhuzhzhalova T.P., Fedorin D.N., Dzhavakhiya V.G. Use of the MF2 gene for transformation of sugar beet plants. In: Modern Immunology Studies and Their Role in Development of New Varieties and Intensification of Plant Growing. Bolshie Vyazemy, 2009;162-168. (in Russian); Vasilchenko E.N., Zhuzhzhalova T.P., Fedorin D.N., Zemlyanukhina O.A. Molecular and biochemical properties of transgenic sugar beet plants. In: Proceedings of the 5th All-Russian Symposium “Transgenic Plants: Development Technologies, Biochemical Properties, Use, and Biosafety”. Moscow. December 1-4, 2014. Moscow, 2014;63-66. (in Russian); Vasilchenko E.N., Zhuzhzhalova T.P., Kolesnikova E.O. Rapid raise of new sugar beet (B. vulgaris L.) homozygous lines. Sakhar = Shugar. 2020a;2:30-32. DOI 10.24411/2413-5518-2020-10203. (in Russian); Vasilchenko E.N., Zhuzhzhalova T.P., Tkachenko O.V. Changes in morphological characteristics of sugar beet under the action of ethylmethanesulphonate. Sakharnaya Svekla = Sugar Beet. 2020b;8:2-6. DOI 10.25802/SB.2020.52.38.001. (in Russian); Vishnyakova M.A. Possible ways of structural mechanisms underlying the evolution of self-incompatibility reaction in angiosperm plants. In: Issues of Botanical Sciences at the Turn of the 21st Century. St. Petersburg: Botanical Institute RAS Publ., 1998;107-108. (in Russian); Yarmolyuk G.I., Shiryaeva E.I., Kulik A.G. Endospermal embryony, a new form of apomixis in sugar beet. Doklady VASKHNIL = Reports of the Academy of Agricultural Sci­ ences. 1990;3-4:8-11. (in Russian); Zaykovskaya N.E., Peretyat’ko N.A. Apomictic development of sugar beet seeds. In: Fundamentals and Practical Methods of the Growing of Sugar Beet and Other Crops. Kiev: All-Ukraine Institute of Breeding, 1977;19-21. (in Russian); Zaykovskaya N.E., Zhuzhzhalova T.P. Development of pollen tubes in isolated self-fertile and self-sterile sugar beet lines. Tsitologiya i Genetika = Cytology and Genetics. 1976; 10(1):57-61. (in Russian); Zhuzhzhalova T.P., Znamenskaya V.V., Podvigina O.A., Yarmolyuk G.I. Reproduction Biology of Sugar Beet. Voronezh: Sotrudnichestvo Publ., 2007. (in Russian); Znamenskaya V.V. In vitro microcloning as a method of maintenance and propagation of sugar beet lines. In: Encyclopedia of the Beta Genus: Biology, Genetics, and Breeding of Beet. Novosibirsk: Sova Publ., 2010;420-437. (in Russian); Znamenskaya V.V., Zhuzhzhalova T.P. Use of microclonal propagation and maintainance of valuable sugar beet genotypes to accelerate breeding. In: Use of Biotechnological Methods in Sugar Beet Breeding. Kiev, 1989;52-58. (in Russian); https://vavilov.elpub.ru/jour/article/view/3732

  6. 6
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: This work was carried out as a part of the research plan of the Federal State Budget Scientific Research Institution of Sorghum and Maize “Rossorgo”, and the Federal State Budget Scientific Institution “Agricultural Research Institute of the South-East Region”.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 24, № 6 (2020); 549-556 ; Вавиловский журнал генетики и селекции; Том 24, № 6 (2020); 549-556 ; 2500-3259 ; 10.18699/VJ20.647

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2769/1414; Amiribehzadi A., Satyavathi C.T., Singh S.P., Bharadwaj C., Singh M.P. Estimation of heterosis in diverse cytoplasmic male sterile sources of pearl millet (Pennisetum glaucum (L.) Br. R). Ann. Agric. Res. New Series. 2012;33(4):220-227.; Aruna C., Shrotria P.K., Pahuja S.K., Umakanth A.V., Bhat B.V., Devender A.V., Patil J.V. Fodder yield and quality in forage sorghum: scope for improvement though diverse male sterile cytoplasms. Crop Pasture Sci. 2013;63(12):1114-1123. DOI 10.1071/CP12215.; Atienza S.G., Martin A.C., Ramírez M.C., Martin A., Ballesteros J. Effect of Hordeum chilense cytoplasm on agronomic traits in common wheat. Plant Breed. 2007;126:5-8. DOI 10.1111/j.1439-0523.2007.01319.x.; Ba Q., Zhang G., Niu N., Ma S., Wang J. Cytoplasmic effects on DNA methylation between male sterile lines and the maintainer in wheat (Triticum aestivum L.). Gene. 2014;549:192-197.; Bychkova V.V., Elkonin L.A. The effect of the type of sterile cytoplasm on the photosynthetic parameters of the grain sorghum hybrids. Zernovoye Khozjaistvo Rossii = Grain Economy of Russia. 2016;4(46): 5-8. (in Russian); Bychkova V.V., Elkonin L.A. Effect of the sterile cytoplasm type on grain yield, biomass, and protein content in grain sorghum hybrids. Tavricheskiy Vestnik Agrarnoy Nauki = Taurida Herald of the Agrarian Sciences. 2017;1(9):37-44. (in Russian); Chakrabarty S.K., Maity A., Yadav J.V. Influence of cyto-sterility source of female line on seed quality of Indian mustard (Brassica juncea L. Czern & Coss.) in relation to storage period. Plant Breed. 2015;134(3):333-337. DOI 10.1111/pbr.12267.; Chandra-Shekara A.C., Prasanna B.M., Singh B.B., Unnikrishan K.V., Seetharam A. Effect of cytoplasm and cytoplasm-nuclear interaction on combining ability and heterosis for agronomic traits in pearl millet {Pennisetum glaucum (L.) Br. R}. Euphytica. 2007;153:15-26. DOI 10.1007/s10681-006-9194-4.; Dahlberg J.A., Madera-Torres P. Restorer reaction in A1 (AT 623), A2 (A2T 632), and A3 (A3SC 103) cytoplasms to selected accessions from the Sudan sorghum collection. Int. Sorghum Millet Newsl. 1977;38:43-58.; Elkonin L., Kibalnik O., Zavalishina A., Gerashchenkov G., Rozhnova N. Genetic function of cytoplasm in plants with special emphasis on sorghum. In: Dejesus C., Trask L. (Eds.). Chloroplasts and Cytoplasm. Structure and Function. New York: Nova Science Publ., 2018.; Elkonin L.A., Kozshemyakin V.V., Ishin A.G. Using new types of CMS-inducing cytoplasm to create precocious sorghum lines with male sterility. Doklady Rossiyskoy Akademii Selskokhozyaystvennykh Nauk = Proceedings of the Russian Academy of Agricultural Sciences. 1997;2:7-9. (in Russian); Fujii S., Toriyama K. Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol. 2008;49:1484-1494.; Frankovskaya M.T., Papazov D.Yu., Ognyanik L.G. The influence of different types of CMS on the performance of hybrids. Kukuruza i Sorgo = Maize and Sorghum. 1995;3:4-5. (in Russian); Gorbunov V.S., Kostina G.I., Ishin A.G., Kolov O.V., Zhuzhukin V.I., Semin D.S., Efremova I.G., Lyascheva S.V., Kibalnik O.P., Revyakin E.L. Resource-Saving Technology of Grain Sorghum Production. Moscow, 2012. (in Russian); Jan C., Seiler G., Hammond J.J. Effect of wild Helianthus cytoplasms on agronomic and oil characteristics of cultivated sunflower (Helianthus annuus L.). Plant Breed. 2014;133(2):262-267. DOI 10.1111/pbr.12151.; Kabanova E.M., Kazakova V.V., Sivovol A.A. The influence of cytoplasmic male sterility on panicle length and the height of ear attachment in maize. Trudy Kubanskogo Gosudarstvennogo Agrarnogo Universiteta = Proceeding of the Kuban State Agrarian University. 2015;57:84-88. (in Russian); Khotyleva L.V., Kilchevsky A.V., Shapturenko M.N. Theoretical aspects of heterosis. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):482-492. DOI 10.18699/VJ16.174. (in Russian); Kibalnik O.P., Elkonin L.A. Effect of sterile cytoplasm type on economically-valuable traits of the sorghum-sudangrass hybrids. Doklady Rossiyskoy Akademii Selskokhozyaystvennykh Nauk = Proceedings of the Russian Academy of Agricultural Sciences. 2012;1:12-15. (in Russian); Kibalnik O.P., Kostina G.I., Semin D.S. Plasticity and stability аssessment the grain sorghum under the conditions of Saratov region. Agrarnyy Vestnik Yugo­Vostoka = Agrarian Reporter of SouthEast. 2010;3-4:64-67. (in Russian); Kibalnik O.P., Semin D.S. Using A3, A4, and 9E СSM types in breeding grain sorghum hybrids. Russian Agricultural Sciences. 2018;44: 516-520. DOI 10.3103/S1068367418060071.; Kibalnik O., Semin D., Gorbunov V., Zhuzhukin V., Efremova I., Kukoleva S., Starchak V., Arhipov A., Kameneva O. Directions of breeding of grain sorghum in the Low Volga region of Russia. In: Agrobiodiversity for Improving Nutrition, Health and Life Quality. 2017;1: 226-229. DOI 10.15414/agrobiodiversity.2017.2585-8246.226-229.; Kilchevsky A.V., Khotyleva L.V., Tarutina L.A., Shapturenko M.N. Heterosis in breeding of agricultural plants. In: Molecular and Applied Genetics. V. 8. Minsk, 2008;7-25. (in Russian); Kishan A.G., Borikar S.T. Line × tester analysis involving diverse cytoplasm system in sorghum. Plant Breed. 1989;102(2):153-157. DOI 10.1111/j.1439-0523.1989.tb00329.x.; Martynov S.P. Statistical and Biometrical Genetic Analysis in Crop Production and Breeding: A Software package. Tver, 1999. (in Russian); Methods of State Variety Testing of Agricultural Crops. V. 2. Moscow, 1989. (in Russian); Moran J.L., Rooney W.L. Effect of cytoplasm on the agronomic performance of grain sorghum hybrids. Crop Sci. 2003;43(3):777-781. DOI 10.2135/cropsci2003.0777.; Pujiar M., Govindaraj M., Gangaprasad S., Kanatti A. Effect of isonuclear-alloplasmic cytoplasmic male sterility on grain yield in pearl millet. Indian J. Genet. 2019;79(Suppl. 1):141-149. DOI 10.31742/IJGPB.79S.1.3.; Ramesh S., Reddy B.V.S., Reddy S., Ramaiah B. Influence of cytoplasmic-nuclear male sterility on agronomic performance of sorghum hybrids. Int. Sorghum Millet Newslett. 2006;47:21-25.; Reddy B.V.S., Ramesh S., Reddy P.S., Kumar A.A. Male-sterility inducing cytoplasmic effect on combining ability in sorghum (Sorghum bicolor (L.) Moench). Indian J. Genet. Plant Breed. 2009; 69(3):199-204.; Reddy B.V.S., Ramesh S., Reddy P.S., Ramaiach B. Combining ability and heterosis as influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor (L.) Moench]. Euphytica. 2007;154: 153-164. DOI 10.1007/s10681-006-9281-6.; Savchenko V.K. A method for assessing the combinational ability of genetically heterogeneous sets of parental forms. In: Methods of Breeding and Genetic Experiments. Minsk, 1973. (in Russian); Tao D., Xu P., Zhou J., Deng X., Li J., Deng W., Yang J., Yang G., Li Q., Hu F. Cytoplasm affects grain weight and filled-grain ratio in indica rice. BMC Genet. 2011;12:53. DOI 10.1186/1471-2156-12-53.; Torres-Cardona S., Sotomayor-Rios A., Quiles Belen A., Schertz K.F. Fertility restoration to A1, A2, and A3 cytoplasm systems of converted sorghum lines. Texas Agric. Exp. Stn. 1990;MP-1721:1-11.; Tuteja O.P., Banga M. Effect of cytoplasm on heterosis for agronomic traits in upland cotton (Gossypium hirsutum). Indian J. Agric. Sci. 2011;81(11):1001-1007.; Tyagi V., Dhillon S.K. Cytoplasmic effect on combining ability for agronomic traits in sunflower under different irrigation regimes. SABRAO J. Breed Genet. 2016;48(3):295-308.; Urban E.P., Hardzei S.I. Use of CMS of P- and G-types in breeding and seed growing of heterotic winter rye (Secale cereale L.) F1 hybrids. Zemledeliye i Selektsiya v Belarusi = Agriculture and Breeding in Belarus. 2013;49:291-299. (in Russian); Williams-Alanís H., Rodríguez-Herrera R. Сombining ability on isogenic sorghum in A1 and A2 cytoplasm. Int. Sorghum Millets Newsl. 1994;35:75.; Worstell J.V., Kidd H.J., Schertz K.F. Relationships among malesterility inducing cytoplasms of sorghum. Crop Sci. 1984;24(1): 186-189.; Xu P., Yan W., He J., Li Y., Zhang H., Peng H., Wu X. DNA methylation affected by male sterile cytoplasm in rice (Oryza sativa L.). Mol. Breed. 2013;31:719-727.; Yaakov B., Kashkush K. Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. Int. J. Plant Genom. 2011;2011:569826:7. DOI 10.1155/2011/569826.; Young J.B., Virmani S.S. Effects of cytoplasm on heterosis and combining ability for agronomic traits in rice (Oryza sativa L.). Euphytica. 1990;48:177-188.; Zavalishina A.N., Tyrnov V.S. The starting mechanism for paramutation: cytoplasm as a factor. Maize Gen. Coop. Newslett. 2003;77: 66-67.; Zavalishina A.N., Tyrnov V.S. Cytoplasm-induced paramutations in maize. In: 52nd Annual Maize Genetics Conference. Riva del Garda (Trento), March 18–21, 2010. Riva del Garda (Trento). 2010;165.; https://vavilov.elpub.ru/jour/article/view/2769

  9. 9
    Academic Journal

    Πηγή: Vegetable crops of Russia; № 4 (2020); 42-44 ; Овощи России; № 4 (2020); 42-44 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/1102/753; Коновалов Ю.Б., Пыльнев В.В. и др. Общая селекция растений: учебник. М.: Изд-во РГАУ-МСХА имени К.А. Тимирязева. 2011. 395 с.; Liu B., Ou C., Chen S. et al. Differentially Expressed Genes between Carrot Petaloid Cytoplasmic Male Sterile and Maintainer during Floral Development. Sci Rep 9. 17384 (2019). https://doi.org/10.1038/s41598019-53717-x; Леунов В.И., Ховрин А.Н., Корнев А.В. и др. Производство, селекция и семеноводство моркови. Картофель и овощи. 2014;(3):34-36.; Чистова А.В. Применение метода молекулярно-генетического анализа для выявления растений моркови с цитоплазмой типа «петалоид». Картофель и овощи. 2018;(9):33-35. DOI:10.25630/PAV.2018.9.18333; Bach I.C., Olesen A., Simon P.W. PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.). Euphytica. 2002;(127):353-365.; https://www.vegetables.su/jour/article/view/1102

  10. 10
    Academic Journal

    Συνεισφορές: This work was partially supported by the Russian Foundation for Basic Research (project No. 16-04-01131).

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 23, № 4 (2019); 412-421 ; Вавиловский журнал генетики и селекции; Том 23, № 4 (2019); 412-421 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2132/1230; Alsdurf J., Anderson C., Siemens D.H. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development. AoB Plants. 2016;8: plv146. DOI 10.1093/aobpla/plv146.; Atkin O.K., Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. Ann. Bot. 2009;103:581-597. DOI 10.1093/aob/mcn094.; Bohra A., Jha U.C., Adhimoolam P., Bisht D., Singh N.P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016;35:967-993. DOI 10.1007/s00299-016-1949-3.; Chase C.D., Gabay-Laughnan S. Cytoplasmic male sterility and fertility restoration by nuclear genes. Eds. H. Daniell, C.D. Chase. Molecular Biology and Biotechnology of Plant Organelles. New York: Springer, 2004;593-621.; Dahlberg J.A., Madera-Torres P. Restorer reaction in A1 (AT×623), A2 (A2T×632), and A3 (A3SC 103) cytoplasms to selected accessions from the Sudan sorghum collection. Int. Sorghum Millet Newsl. 1997;38:43-58.; Dolferus R., Powell N., Xuemei J.I., Ravash R., Edlington J., Oliver S., Van Dongen J., Shiran B. The physiology of reproductive-stage abiotic stress tolerance in cereals. Eds. G.R. Rout, A.B. Das. Molecular Stress Physiology of Plants. Dordrecht; Heidelberg; New York; London: Springer Science & Business Media, 2013;193-216. DOI 10.1007/978-81-322-0807-5_8.; Duvick D.N. Cytoplasmic pollen sterility in corn. Adv. Genet. 1965;13:1-56. DOI 10.1016/S0065-2660(08)60046-2.; Elkonin L.A., Gerashchenkov G.A., Tsvetova M.I., Sarsenova S. Kh., Rozhnova N.A. Environmental effects on expression of A3 type CMS of sorghum. Intern. J. Plant Reprod. Biol. 2019;11(2).Accepted for publication.; Hauser M.T., Aufsatz W., Jonak C., Luschnig C. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta. 2011;1809(8): 459-468. DOI 10.1016/j.bbagrm.2011.03.007.; Horn R., Gupta K.J., Colombo N. Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion. 2014;19:198205. DOI 10.1016/j.mito.2014.04.004.; Jacoby R.P., Li L., Huang S., Lee С.P., Millar A.H., Taylor N.L. Mitochondrial composition, function and stress response in plants. J. Integr. Plant Biol. 2012;54:887-906. DOI 10.1111/j.17447909.2012. 01177.x.; Kaul M.L.H. Male Sterility in Higher Plants (Monographs on Theoretical and Applied Genetics, Vol. 10). London: Springer-Verlag, 1988.; Kozhemyakin V.V., Elkonin L.A., Dahlberg J.A. Effect of drought stress on male fertility restoration in A3 CMS-inducing cytoplasm of sorghum. Crop J. 2017;5(4):282-289. DOI 10.1016/j.cj.2017.02.003.; Kuhlman L.C., Pring D.R., Rooney W.L., Tang H.V. Allelic frequency at the Rf3 and Rf4 loci and the genetics of A3 cytoplasmic fertility restoration in converted Sorghum lines. Crop Sci. 2006;46:1576-1580. DOI 10.2135/cropsci2005.10-0380.; Kumar S., Kumari R., Sharma V. Transgenerational inheritance in plants of acquired defense against biotic and abiotic stresses: implications and applications. Agric. Res. 2015;4(2):109-120. DOI 10.1007/s40003-015-0170-x.; Li S., Wan C., Hu C., Gao F., Huang Q., Wang K., Wang T., Zhu Y. Mitochondrial mutation impairs cytoplasmic male sterility rice in response to H2O2 stress. Plant Sci. 2012;195:143-150. DOI 10.1016/j.plantsci.2012.05.014.; Liberatorе K.L., Dukowic-Schulze S., Miller M.E., Chen C., Kianian S.F. The role of mitochondria in plant development and stress tolerance. Free Rad. Biol. Med. 2016;100:238-256. DOI 10.1016/j.freeradbiomed.2016.03.033.; Lukens L.N., Zhan S.H. The plant genome’s methylation status and response to stress, implications for plant improvement. Curr. Opin. Plant Biol. 2007;10:317-322. DOI 10.1016/j.pbi.2007.04.012.; McDonald J.H. Handbook of Biological Statistics (3rd ed.). Baltimore, Maryland: Sparky House Publ., 2014. (http://udel. edu/~mcdonald/statexactbin.html).; Ng S., De Clercq I., Van Aken O., Law S.R., Ivanova A., Willems P., Giraud E., Van Breusegem F., Whelan J. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol. Plant. 2014;7:1075-1093. DOI 10.1093/mp/ssu037.; Paszkowski J., Grossniklaus U. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 2011;14:195-203. DOI 10.1016/j.pbi.2011.01.002.; Pring D.R., Tang H.V., Howad W., Kempken F. A unique two-gene gametophytic male sterility system in sorghum involving a possible role of RNA editing in fertility restoration. J. Hered. 1999;90: 386-393.; Reddy B.V.S., Ramesh S., Ortiz R. Genetic and cytoplasmic-nuclear male sterility in Sorghum. Ed. J. Janik. Plant Breeding Reviews. Hoboken; New Jersey: Willey & Sons, Inc., 2005;Vol. 25: 139-169.; Reddy S.P., Rao M.D., Reddy B.V.S., Kumar A.A. Inheritance of male-fertility restoration in A1, A2, A3 and A4(M) cytoplasmic male-sterility systems of sorghum [Sorghum bicolor (L.) Moench]. Indian J. Genet. 2010;70(3):240-246.; Tang H.V., Chang R., Pring D.R. Co-segregation of single genes associated with fertility restoration and transcript processing of sorghum mitochondrial orf107 and urf 209. Genetics. 1998;150:383-391.; Tang H.V., Pedersen J.F., Chase C.D., Pring D.R. Fertility restoration of the sorghum A3 male-sterile cytoplasm through a sporophytic mechanism derived from sudangrass. Crop Sci. 2007;47:943-950. DOI 10.2135/cropsci2006.08.0542.; Torres-Cardona S., Sotomayor-Rios A., Quiles Belen A., Schertz K.F. Fertility restoration to A1, A2, and A3 cytoplasm systems of converted sorghum lines. MP-1721. Texas Agric. Exp. Stn., Texas A&M Univ., College Station, 1990;1-11.; Tricker P.J. Transgenerational inheritance or resetting of stressinduced epigenetic modifications: two sides of the same coin. Front. Plant Sci. 2015;6:699. DOI 10.3389/fpls.2015.00699.; Tricker P.J., Gibbings J.G., Lopez C.M.R., Hadley P., Wilkinson M.J. Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot. 2012;63(10):3799-3814. DOI 10.1093/jxb/ers076.; Wang W.-S., Pan Y.J., Zhao X.-Q., Dwivedi D., Zhu L.-H., Ali J., Fu B.Y., Li Z.-K. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J. Exp. Bot. 2011;62:1951-1960. DOI 10.1093/jxb/erq391.; Wilson Z.A., Song J., Taylor B., Yang C. The final split: the regulation of anther dehiscence. J. Exp. Bot. 2011;62:1633-1649. DOI 10.1093/jxb/err014.; Worstell J.V., Kidd H.J., Schertz K.F. Relationships among malesterility inducing cytoplasms of sorghum. Crop Sci.1984;24(1): 186-189.; Zaitsev G.N. Mathematical Statistics in Experimental Botany. Мoscow: Nauka Publ., 1984. (in Russian); Zheng X., Chen L., Li M., Lou Q., Xia H., Wang P., Li T., Liu H., Luo L. Transgenerational variations in DNA methylation in-duced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One. 2013;8(11):e80253. DOI 10.1371/journal.pone.0080253.; https://vavilov.elpub.ru/jour/article/view/2132

  11. 11
    Academic Journal

    Πηγή: Vegetable crops of Russia; № 5 (2019); 15-19 ; Овощи России; № 5 (2019); 15-19 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/880/636; Hanson M.R. Phylogenetic relationship among cultivated Allium species from restriction enzyme analysis of the chloroplast genome. Theor. Appl. Genet. 1991;81:752-757. DOI:10.1007/BF00224985; Jones, H.A., and Mann, L.K. Onion and their Allies. Leonard Hill Ltd, 1963, London, pp 286.; Jones H.A., Clarke A.E. Inheritance of male sterility in the onion and the production of hybrid seed. Proc. Am. Soc. Hort. Sci. 1943;43:189–194.; Kaul, M.L.Y. Male sterility in higher plants, Monogr in Theor. Appl. Genet, 1988, Vol. 9, Springer-Verlag, Berlin, pp. 1005. DOI:10.1007/978-3-642-83139-3; Berninger E. Contribution a l’etude de la sterilite de male de l’oignon (Allium cepa L.). Ann Amelior. Plant (Paris) 1965. – V.23. – P. 183-199.; Havey M. J. Diversity among male-sterility inducing and male-fertile cytoplasms of onion. Theor. Appl. Genet. 2000;101:778-782. DOI:10.1007/s001220051543; De Courcel A.G.L., Vedel F., Boussac J. M. DNA polymorphism in Allium cepa cytoplasms and its implications concerning the origin of onions. Theor. Appl. Genet. 1989;77:793–798. DOI:10.1007/BF00268328; Havey M.J. A putative donor of S-cytoplasm and its distribution among openpollinated population of onion. Theor. Appl. Genet. 1993;86:128-134. DOI:10.1007/BF00223817; Holford P., Croft J.H., Newbury H.J. Differences between, and possible origins of the cytoplasms found in fertile and male-sterile onions (Allium cepa L.). Theor. Appl. Genet. 1991a;82:737–744. DOI:10.1007/BF00227319; Havey M.J. Identification of cytoplasms using the polymerase chain reaction to aid in the extraction of maintainer lines from open-pollinated populations of onion. Theor. Appl. Genet. 1995;90:263–268. DOI:10.1007/BF00222212; Holford P., Croft J.H., Newbury, H.J. Structural studies of microspogenesis in fertile and male sterile onions (Allium cepa L.) containing the CMS-S cytoplasm. Theor. Appl. Genet. 1996b;82:745-755. DOI:10.1007/BF00227320; Sato Y. PCR amplification of CMS-specific mitochondrial nucleotide sequences to identify cytoplasmic genotypes of onion (Allium cepa L.). Theor. Appl. Genet. 1998;96:367–370. DOI:10.1007/s00122-003-1230-3; Engelke T, Terefe D, Tatlioglu T. A PCR-based marker system monitoring CMS-(S), CMS-(T) and (N)-cytoplasm in the onion (Allium cepa L.). Theor. Appl. Genet. 2003;107:162–167. DOI:10.1007/s00122-003-1230-3; Kim S., Lee E., Cho D. Y., Han T., Bang H., Patil B. S., Ahn Y. K., and Yoon M. Identification of a novel chimeric gene, orf725, and its use in development of a molecular marker for distinguishing three cytoplasm types in onion (Allium cepa L.). Theor. Appl. Genet. 2009;118:433-441. DOI:10.1007/s00122-008-0909-x; Gökҫe A.F., Havey M.J. Linkage equilibrium among tightly linked RFLPs and the Ms locus in open-pollinated onion populations. J. Am. Soc. Hortic. Sci. 2002;127:944–946. DOI:10.21273/JASHS.127.6.944; Martin W.J., McCallum J., Shigyo M., Jakse J., Kuhl J.C, Yamane N., Pither-Joyce M., Gökçe A.F., Sink K.C., Town C.D., Havey M.J. Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol. Genet. Genomics. 2005;274:197–204. DOI:10.1007/s00438-005-0007; Bang H., Cho D.Y., Yoo K.S, Yoon M.K., Patil B.S., Kim S. Development of simple PCR-based markers linked to the Ms locus, a restorer-of-fertility gene in onion (Allium cepa L.). Euphytica 2011a;179:439–449. DOI:10.1007/s10681-010-0342-5; Bang H., Kim S., Park S.O., Yoo K.S., Patil B.S. Development of a codominant CAPS marker linked to the Ms locus controlling fertility restoration in onion (Allium cepa L.). Sci.Hortic. 2013;153:42–49. DOI:10.1016/j.scienta.2013.01.020; Park J., Bang H., Cho D., Yoon M-K., Patil B., Kim S. Construction of high-resolution linkage map of the Ms locus, a restorer-of-fertility gene in onion (Allium cepa L.). Euphytica. 2013;192:267–278. DOI:10.1007/s10681-012-0851-5; Huo Y.M., Miao J., Liu B.J., Yang Y.Y., Zhang Y.H., Wu X. The expression of pectin methylesterase in onion flower buds is associated with the dominant male-fertility restoration allele. Plant. Breed. 2012;131:211–216. DOI:10.1111/j.1439-0523.2011.01907.x; Yang Y.Y., Huo Y.M., Miao J., Liu B.J., Kong S.P., Gao L.M., Liu C., Wang Z.B., Tahara Y., Kitano H., Wu X. Identification of two SCAR markers co-segregated with the dominant Ms and recessive ms alleles in onion (Allium cepa L.). Euphytica. 2013;190:267–277. DOI:10.1007/s10681-012-0842-6.; Kim S. A codominant molecular marker in linkage disequilibrium with a restorer-of-fertility gene (Ms) and its application in reevaluation of inheritance of fertility restoration in onions. Mol. Breed. 2014;34:769–778. DOI:10.1007/s11032-014-0073-8; Huo, Y.M., Liu, B.J., Yang, Y.Y., Miao J., Gao L.M., Kong S.P., Wang Z.B., Kitano H., Wu X. AcSKP1, a multiplex PCR-based co-dominant marker in complete linkage disequilibrium with the male-fertility restoration (Ms) locus, and its application in open-pollinated populations of onion. Euphytica. 2015;204:711. DOI:10.1007/s10681-015-1374-7; Супрунова Т.П., Логунов А.Н., Логунова В.В., Агафонов А.Ф. Определения типа цитоплазматической мужской стерильности лука репчатого (Allium cepa L.) селекции ВНИИССОК с помощью молекулярных маркеров. Овощи России. 2011;(4):20-21.; Павлова И.В., Купреенко Н.П., Булахова А.С. Использование ДНК маркеров для изучения цитоплазматической мужской стерильности лука репчатого (Allium cepa L.). Овощи России. 2018;(4):16-19. DOI:10.18619/2072-9146-2018-4-16-19.; Kim, B., Yang, TJ. & Kim, S. Identification of a gene responsible for cytoplasmic male-sterility in onions (Allium cepa L.) using comparative analysis of mitochondrial genome sequences of two recently diverged cytoplasms. Theor. Appl. Genet. 2019;132:313. DOI:10.1007/s00122-018-3218-z; Von Kohn C., Kiełkowska A., Havey M.J. Sequencing and annotation of the chloroplast DNAs and identification of polymorphisms distinguishing normal male-fertile and male-sterile cytoplasms of onion. Genome. 2013;56:737–742. DOI:10.1139/gen-2013-0182; Khar A., Saini N. Limitations of PCR-based molecular markers to identify male-sterile and maintainer plants from Indian onion (Allium cepa L.) populations. Plant. Breed. 2016;135(4):519-524. DOI:10.1111/pbr.12373; https://www.vegetables.su/jour/article/view/880

  12. 12
  13. 13
    Academic Journal

    Πηγή: Vegetable crops of Russia; № 2 (2018); 32-34 ; Овощи России; № 2 (2018); 32-34 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/523/440; Логунов А.Н., Будылин М.В., Тико Е.А. Использование молекулярных маркеров в современной селекции лука репчатого (Allium cepa L.) / «Селекция, семеноводство и сортовая агротехника овощных, бахчевых и цветочных культур» // Сб. науч. трудов по материалам Международной научно-практической конференции, посвященной VII Квасниковским чтениям. 2016. – С.194-198.; Пивоваров В.Ф. Селекция и семеноводство овощных культур. – М.: ВНИИССОК, 2007г. – 816 с.; Прохоров И.А., Крючков А.В., Комиссаров В.А. Селекция и семеноводство овощных культур. М.: Колос, 1981.; Семеноводство гетерозисных гибридов [Электронный ресурс] http://window.edu.ru/library/pdf2txt/466/64466/35294/page2; Berninger E. 1965. Contribution a l’etude de la sterilite male de l’oignon (Allium cepa L.). Ann. Amйlior. Plantes 15:183–199.; Havey M.J. 1994. The cytoplasms of sterile lines used to produce commercial hybrid-onion seed. Allium Improvement Nwsl. 4:25–27.; Jones H., A. Clarke. 1943. Inheritance of male sterility in the onion and the production of hybrid seed. Proc. Amer. Soc. Hort. Sci. 43:189–194.; Jones H., G. Davis. 1944. Inbreeding and heterosis and their relation to the development of new varieties of onions. USDA Tech. Bul. 874.; Jones H., S. Emsweller. 1936. A male sterile onion. Proc. Amer. Soc.Hort. Sci. 34:582–585.; Joshi H., D J. Tandon. 1976. Heterosis for yield and its genetic basis in the onion. IndianJ. Agr. Sci. 46:88–92.; McCollum G. 1980. Development of the amphidiploid of Allium galanthum x A. cepa. J. Hered. 71:445–447.; https://www.vegetables.su/jour/article/view/523

  14. 14
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Agrarian Series; Том 56, № 4 (2018); 448-455 ; Известия Национальной академии наук Беларуси. Серия аграрных наук; Том 56, № 4 (2018); 448-455 ; 1817-7239 ; 1817-7204 ; 10.29235/1817-7204-2018-56-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestiagr.belnauka.by/jour/article/view/317/313; Кобылянский, В. Д. Рожь. Генетические основы селекции / В. Д. Кобылянский. – М. : Колос, 1982. – 271 с.; Heterosis of factoral inter-pool-single cross among elite winter rye inbred lines / H. H. Geiger [et al.] // Proceedings of the EUCARPIA rye meeting, July 4–7, 2001, Radzików, Poland / Plant Breeding a. Acclimatization Inst.; ed. R. Osiński. – Radzików, 2002. – P. 19–22.; Geiger, H. H. Hybrid rye and heterosis / Н. Н. Geiger, T. Miedaner // The genetics and exploitation of heterosis in crops / ed.: J. G. Coors, S. Pandey. – Madison, 1999. – Р. 439–450. doi:10.2134/1999.geneticsandexploitation.c41; Костов, К. В. Перспективы селекции гибридов зерновых культур / К. В. Костов, С. В. Гончаров // Тр. Куб. гос. аграр. ун-та. – 2016. – № 59. – С. 209–216.; Корень, Л. В. Оценка влияния степени генетической дивергенции родительских форм на уровень гетерозиса F1 гибридов озимой тритикале / Л. В. Корень, О. А. Орловская, Л. В. Хотылева // Вес. Нац. акад. навук Беларусі. Сер. біял. навук. – 2013. – № 1. – С. 30–36.; Исмагилов, Р. В. Особенности формирования хлебопекарных свойств зерна озимой ржи / Р. В. Исмагилов // Новые методы селекции озимых колосовых культур : сб. науч. тр. / Башк. науч.-исслед. ин-т сел. хоз-ва; редкол.: И. Т. Шаяхметов [и др.]. – Уфа, 2001. – С. 36–40.; Oberforster, M. Erfolgreich mit Roggen, Triticale und Winterweizen / M. Oberforster, G. Marco // Fortschr. Landmirt. – 1998. – N 18. – P. 25–31.; Arseniuk, E. Rye production and breeding in Poland / E. Arseniuk, T. Oleksiak // Plant Breeding a. Seed Science. – 2003. – Vol. 47, N 1–2. – P. 7–16.; Кобылянский, В. Д. Использование доноров ценных признаков растений в селекции новых сортов озимой ржи / В. Д. Кобылянский, О. В. Солодухина // Достижения науки и техники АПК. – 2015. – № 7. – С. 7–12.; Пономарев, С. Н. Гетерозис у F1 гибридов озимой ржи, полученных с использованием ЦМС / С. Н. Пономарев, Ф. С. Кудряшева // Науч.-техн. бюл. Всерос. науч.-исслед. ин-та растениеводства им. Н. И. Вавилова. – СанктПетербург, 1992. – Вып. 223 : Генофонд культурных растений для целей селекции. – С. 24–26.; Пономарев, С. Н. Гетерозис у озимой ржи и пути его реализации / С. Н. Пономарев // Актуальные проблемы развития прикладных исследований и пути повышения их эффективности в сельскохозяйственном производстве : материалы междунар. науч.-практ. конф., Казань, 10–12 июля 2000 г. / Тат. науч.-исслед. ин-т сел. хоз-ва. – Казань, 2001. – С. 78–81.; Пономарев, С. Н. Проблемы и перспективы селекции озимой ржи на гетерозис / С. Н. Пономарев, М. Л. Пономарева // Вопросы селекции, семеноводства и технологии возделывания озимой ржи в России : тез. докл. Всерос. науч.-метод. совещ. / Самар. науч.-исслед. ин-т сел. хоз-ва; ред.: А. А. Гончаренко, С. Н. Шевченко. – Самара, 2000. – С. 41–42.; Новые сорта озимой ржи / А. А. Гончаренко [и др.] // Вестн. семеноводства в СНГ. – 2001. – № 3. – С. 16–17.; Урбан, Э. П. Озимая рожь в Беларуси (селекция, семеноводство, технология возделывания) / Э. П. Урбан. – Минск : Беларус. навука, 2009. – 269 с.; Geiger, H. H. Cytoplasmic male s terility i n r ye (Secale cereale L.) / H. H. Geiger, F. W. Schnell // Crop Science. – 1970. – Vol. 10, N 5. – P. 590–593. https://doi.org/10.2135/cropsci1970.0011183x001000050043x; Гордей, С. И. Селекционно-генетические аспекты использования эффекта гетерозиса у озимой ржи (Secale cereale L.) / С. И. Гордей // Вес. Нац. акад. навук Беларусi. Сер. бiял. навук. – 2002. – № 1. – С. 103–108.; Hardzei, S. Prospects and problems of hybrid rye breeding in Belarus / S. Hardzei, E. Urban // Plant Breeding a. Seed Science. – 2003. – Vol. 47, N 1–2. – P. 29–31.; Шлегель, Р. Селекция гибридных форм как стимул развития молекулярно-генетических исследований у ржи / Р. Шлегель // Вавил. журн. генетики и селекции. – 2015. – Т. 19, № 5. – С. 589–603. https://doi.org/10.18699/VJ15.076; Изучение комбинационной способности инбредных линий озимой ржи по методу топкросса / А. А. Гончаренко [и др.] // Зерновое хоз-во России. – 2017. – № 5. – С. 1–8.; Madej, L. Ocena plodnosci mieszancow zyta / L. Madej, R. Osinski, J. Jagodinski // Biul. Inst. Hodowli i Aklimatyzacji Roslin. – 1995. – N 195/196. – S. 283–290.; Melz, Gi. Genetics of a male-sterile rye of “G-type” with results of the first F1 hybrids / Gi. Melz, Gu. Melz, F. Hartmann // Proceedings of the EUCARPIA rye meeting, July 4–7, 2001, Radzików, Poland / Plant Breeding a. Acclimatization Inst.; ed. R. Osiński. – Radzików, 2002. – P. 43–50.; https://vestiagr.belnauka.by/jour/article/view/317

  15. 15
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 21, № 6 (2017); 651-656 ; Вавиловский журнал генетики и селекции; Том 21, № 6 (2017); 651-656 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1184/973; Alabushev A.V., Anipenko L.N., Gurskiy N.G., Kolomiets N.Ya., Kostylev P.I., Mangush P.A., Alabusheva O.I. Sorgo (selektsiya, semenovodstvo, tekhnologiya, ekonomika) [Sorghum: breeding, seed production, technology, and economy]. Rostov-on-Don: Kniga Publ., 2003. (in Russian); Aruna C., Shrotria P.K., Pahujia S.K., Umakanth A.V., Venkatesh Bhat B., Vishala Devender A., Patil J.V. Fodder yield and quality in forage sorghum: scope for improvement through diverse male sterile cytoplasms. Crop Pasture Sci. 2013;36(12):1114-1123.; Beseda N.A., Kostylev P.I., Gorpinichenko S.I. The combining ability of grain sorghum in the system of diallel crossings. Zernovoe khozjaistvo Rossii = Grain Economy of Russia. 2009;1:14-16. (in Russian); Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezultatov isledovaniy) [Methods of Field Experiments (with Fundamentals of Statistical Processing of Study Results)]. Moscow: Al’yans Publ., 2011. (in Russian); Elkonin L.A., Kozhemyakin V.V., Ishin A.G. Nuclear-cytoplasmic interactions in fertility restoration in sorghum: alternative CMS-inducing cytoplasms. Int. Sorghum Millet Newslett. 1995;36:75-76.; Elkonin L.A., Kozhemyakin V.V., Ishin A.G. Comparative analysis of restoration of male-sterile (CMS)-inducing cytoplasms A3 and M35-1. Int. Sorghum Millet Newslett. 1997;38:29-30.; Elkonin L.A., Kozhemyakin V.V., Ishin A.G. Use of new types of CMS-inducing cytoplasm for the creation of early ripening sorghum lines with male sterility. Doklady Rossiyskoy Akademii Selskokhozyaystvennykh Nauk = Proceedings of the Russian Academy of Agricultural Sciences. 1997;2:7-9. (in Russian); Fasahat P., Rajabi A., Rad J.M., Derera J. Principles and utilization of combining ability in plant breeding. Biom. Biostat. Int. J. 2016;4(1): 1-24. DOI 10.15406/bbij.2016.04.00085.; Garshin A.Y., Zhuzhukin V.I., Semin D.S. Determination of the combining ability of sweet sorghum genotypes for grain quality in test crosses. Kukuruza i sorgo = Maize and Sorghum. 2014;1:20-23. (in Russian); Hundekar R., Kamatar M.Y., Brunda S.M., Pattar V. Combining ability analysis for yield and grain mold resistance in kharif sorghum [Sorghum bicolor (L.) Moench]. Int. J. Plant Sci. 2014;9(1):252-256.; Justin R., Were B., Mgonja M., Santosh D., Abhishek R., Emmarold M., Agustino O., Samuel G. Combining ability of some sorghum lines for dry lands and sub-humid environments of East Africa. Afr. J. Agric. Res. 2015;10(19):2048-2060. DOI 10.5897/AJAR2014.8519.; Kenga R., Tenkouano A., Gupta S.C., Alabi S.O. Genetic and phenotypic association between yield components in hybrid sorghum (Sorghum bicolor (L.) Moench) population. Euphytica. 2006;150(3): 319-326.; Khotyleva L.V., Kilchevsky A.V., Shapturenko M.N. Theoretical aspect of heterosis. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):482-492. DOI 10.18699/ VJ16.174. (in Russian); Kibalnik O.P. The combinational ability of grain sorghum CMS lines for yield components. Kukuruza i sorgo = Maize and Sorghum. 2016;3:23-27. (in Russian); Kibalnik O.P., Elkonin L.A. The combining ability of new CMS lines and varieties of grain sorghum. Kukuruza i sorgo = Maize and Sorghum. 2014;2:25-28. (in Russian); Kibalnik O.P., Elkonin L.A., Bychkova V.V. The combining ability of CMS lines of sorghum for fresh yield. Zernovoe khozjaistvo Rossii = Grain Economy of Russia. 2014;6:5-8. (in Russian); Kovtunov V.V., Gorpinichenko S.I. Major applications of grain sorghum. Zernovoe khozjaistvo Rossii = Grain Economy of Russia. 2011;6:28-32. (in Russian); Kovtunova N.A., Kovtunov V.V. The use of sorghum and the main areas of breeding work at the Kalinenko All-Russia Research Institute for Grain Crops. Tavricheskiy vestnik agrarnoy nauki = Taurida Herald of the Agrarian Sciences. 2016;3(7):60-70. (in Russian); Kumar S., Kumar V., Chand P., Kumar N., Shrotria P.K. Genetic parameters for hydrocyanic acid content in forage sorghum (Sorghum bicolor (L.) Moench). Int. J. Biotechnol. Bioeng. Res. 2013;4(4): 395-400.; Mahdy E.E., Ali M.A., Mahmoud A.M. The effect of environment on combining ability and heterosis in grain sorghum (Sorghum bicolor L. Moench). Asian J. Crop Sci. 2011;3(1):1-15. DOI 10.3923/ ajcs.2011.1.15.; Metodika gosudarstvennogo sortoispytaniya selskokhozyaystvennykh kultur. Vyp. 2 [Methods of state variety testing of crops. Issue 2]. Moscow, 1989. (in Russian); Mohammed M.I. Line × tester analysis across locations and year in Sudanese × exotic lines of forage sorghum. J. Plant Breed. Crop. Sci. 2009;1(9):311-319.; Mohammed R., Are R., Bhavanasi R., Munghate R.S., Kishor K.P.B., Sharma H.C. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor. Front. Plant Sci. 2015;6:1-17. DOI 10.3389/fpls.2015.00945.; More A., Kalpande H.V., Aundhekar R.L., Chavan S.K., Patil V.S., Jangampalli S.S. Heterosis and line × tester analysis of combining ability in kharif sorghum with special reference tograin mold (Sorghum bicolor (L.) Moench). Agrotechnol. 2014;2:4. DOI. 10.4172/2168-9881.S1.012.; Nikitin I.A., Svechnikov A.Yu., Zots A.D., Alfimova A.D., Tatraev D.A., Miriev M.O. Analysis of the application of sorghum and its derivatives in bakery and pastry production. Tehnicheskie nauki – ot teorii k praktikе [Technology sciences: from theory to practice]. No-vosibirsk: SibAK Publ., 2016;12(30):123-129. (in Russian); Patil V.R., Kute N.S. Combining ability studies in grain sorghum. J. Global Biosci. 2015;4(1):1902-1909.; Reddy B.V.S., Ramesh S., Ortiz R. Genetic and cytoplasmic-nuclear male sterility in Sorghum. Plant Breeding Reviews. Ed. J. Janik. Hoboken, New Jersy: Willey & Sons, Inc. 2005;25:139-169.; Reddy B.V.S., Ramesh S., Reddy P.S., Kumar A.A. Male-starility inducing cytoplasmic on combining ability in sorghum [Sorghum bi¬color (L.) Moench]. Ind. J. Genet. 2009;69(3):199-204.; Reddy B.V.S., Ramesh S., Reddy P.S., Ramaiah B. Combining ability and heterosis as influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor (L.) Moench]. Euphytica. 2007;154(1): 153-164. DOI 10.1007/s10681-006-9281-6.; Savchenko V.K. Metod otcenki kombinatcionnoi sposobnosti geneticheski raznokachestvennykh naborov roditelskikh form [A method for evaluating the combining ability of genetically different sets of parental forms]. Metodiki genetiko-selektcionnogo i genetiches- kogo eksperimentov [Methods of genetic–breeding and genetic experiments]. Minsk: Nauka i Tekhnika Publ., 1973;48-77. (in Russian); Zhuzhukin V.I., Semin D.S., Garshin A.Y. Study of the combining ability of forage sorghum for economically valuable traits in test crosses. Kukuruza i sorgo = Maize and Sorghum. 2016;1:11-13. (in Russian); https://vavilov.elpub.ru/jour/article/view/1184

  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Agrarian Series; № 3 (2016); 41-49 ; Известия Национальной академии наук Беларуси. Серия аграрных наук; № 3 (2016); 41-49 ; 1817-7239 ; 1817-7204 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestiagr.belnauka.by/jour/article/view/194/195; Валовой сбор и урожайность сельскохозяйственных культур в Республике Беларусь / М-во стат. и анализа Респ. Беларусь. – Минск, 2014.; Государственный реестр сортов / отв. за вып. В. А. Бейня. – Минск, 2015. – 274 с.; Результаты испытаний сортов озимых, яровых зерновых, зернобобовых и крупяных культур на хозяйственную полезность Республики Беларусь за 2011–2013 гг.– Минск, 2014.; Результаты испытаний сортов озимых, яровых зерновых, зернобобовых и крупяных культур на хозяйственную полезность Республики Беларусь за 2013–2015 гг. – Минск, 2015.; https://vestiagr.belnauka.by/jour/article/view/194; undefined

  20. 20
    Academic Journal

    Συνεισφορές: РФФИ

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 19, № 5 (2015); 538-544 ; Вавиловский журнал генетики и селекции; Том 19, № 5 (2015); 538-544 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/446/523; Адрианова Ю.Е., Тарчевский И.А. Хлорофилл и продуктивность растений. М., 2000.; Гужов Ю.Л., Фукс А., Валичек П. Селекция и семеноводство культивируемых растений. М., 1999.; Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). М., 2011.; Ермаков А.И. Методы биохимических исследований растений. Л., 1987.; Кибальник О.П., Эльконин Л.А. Влияние типов стерильных цитоплазм на содержание пигментов в листьях гибридов F1 зернового сорго. Докл. РАСХН. 2009;1:18-21.; Шимкевич А.М., Макаров В.Н., Голоенко И.М., Давыденко О.Г. Функциональное состояние фотосинтетического аппарата у аллоплазматических линий ячменя. Экол. генетика. 2006;4(2): 37-42.; Эльконин Л.А., Кожемякин В.В., Ишин А.Г. Использование новых ЦМС-индуцирующих цитоплазм для создания скороспелых линий сорго с мужской стерильностью. Докл. РАСХН. 1997;2:7-9.; Юрина Н.П., Одинцова М.С. Сигнальные системы растений. Пластидные сигналы и их роль в экспрессии ядерных генов. Физиол. растений. 2007;54(4):485-498.; Amiri Behzadi A., Satyavathi C., Singh S., Bharadwaj C., Singh M. Estimation of heterosis in diverse cytoplasmic male sterile sources of Pearl millet [Pennisetum glaucum (L.) R. Br.]. Ann. Agric. Res. 2012;33(4):220-227.; Aruna C., Shrotria P.K., Pahuja S.K., Umakanth A.V., Bhat B.V., Devender A.V., Patil J.V. Fodder yield and quality in forage sorghum: scope for improvement though diverse male sterile cytoplasms. Crop Pasture Sci. 2013;63(12):1114-1123. DOI:10.1071/cp12215; Blanco N.E., Guinea-Díaz M., Whelan J., Strand А. Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014;369:1640. DOI:10.1098/rstb.2013.0231; Bollivar D.W. Recent advances in chlorophyll biosynthesis. Photosynth. Res. 2006;89(3):1-22. DOI:10.1007/s11120-006-9076-6; Chamola R., Balyan H., Bhat S. Effect of alien cytoplasm and fertility restorer genes on agronomic and physiological traits of Brassica juncea L. Czern. Plant Breeding. 2013;132(6):681-687. DOI:10.1111/pbr.12080; Chi W., Sun X., Zhang L. Intracellular signaling from plastid to nucleus. Annu. Rev. Plant Biology. 2013;64:559-582. DOI:10.1146/annurev-arplant-050312-120147; Delorme V., Keen C.L., Rai K.N., Leaver C.J. Cytoplasmic-nuclear male sterility in pearl millet: comparative RFLP and transcript analyses of isonuclear male-sterile lines. Theor. Appl. Genet. 1997;95(5):961-968. DOI:10.1007/s001220050648; Eckhardt U., Grimm B., Hörtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol. Biol. 2004;56(1):1-14. DOI:10.1007/s11103-004-2331-3; Elkonin L.A., Kozhemyakin V.V., Ishin A.G. Nuclear-cytoplasmic interactions in fertility restoration in sorghum: alternative CMS-inducing cytoplasms. Int. Sorghum Millet Newslett. 1995;36:75-76.; Elkonin L.A., Kozhemyakin V.V., Ishin A.G. Comparative analysis of restoration of male-sterile (CMS)-inducing cytoplasms A3 and M35-1. Int. Sorghum Millet Newslett. 1997;38:29-30.; Frankel R., Scowcroft W.R., Whitfeld P.R. Chloroplast DNA variation in isonuclear male-sterile lines of Nicotiana. Mol. Gen. Genet. 1979;169:129-135.; Fujii S., Komatsu S., Toriyama K. Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant Mol. Biol. 2007;63:405-417. DOI:10.1007/s11103-006-9097-8; Heng S., Wei C., Jing B., Wan Z., Wen J., Yi B., Ma C., Tu J., Fu T., Shen J. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMSassociated gene orf288. BMC Genomics. 2014;15:322-334. DOI:10.1186/1471-2164-15-322; Lopez-Juez E., Pyke K.A. Plastids unleashed: their development and their integration in plant development. Int. J. Dev. Biol. 2005;49(5/6): 557-577. DOI:10.1387/ijdb.051997el; Masuda T., Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem. Photobiol. Sci. 2008;7(10):131-1149. DOI:10.1039/b807210h; Moran J.L., Rooney W.L. Effect of cytoplasm on the agronomic performance of grain Sorghum hybrids. Crop Sci. 2003;43:777-781. DOI:10.2135/cropsci2003.0777; Pogson B.J., Albrecht V. Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol. 2011;155:1545-1551. DOI:10.1104/pp.110.170365; Pring D.R., Tang H.V., Schertz K.F. Cytoplasmic male sterility and organelle DNAs of sorghum. Eds C.S. Levings, I.K. Vasil. The Molecular Biology of Plant Mitochondria. Dordrecht: Kluwer Acad. Publ., 1995.; Reddy B.V.S., Ramesh S., Ortiz R. Genetic and cytoplasmic-nuclear male sterility in Sorghum. Plant Breeding Reviews. Ed. J. Janik. Hoboken, New Jersy: Willey & Sons, Inc. 2005;25:139-169. DOI:10.1002/9780470650301.ch6; Satyavathi C., Begum S., Singh B., Unnikrishnan K., Bharadwaj C. Analysis of diversity among cytoplasmic male sterile sources and their utilization in developing F1 hybrids in Pearl millet [Pennisetum glaucum (R.) Br]. Indian J. Genet. Plant Breed. 2009;69(4): 352-360.; Tanaka Y., Tsuda M., Yasumoto K., Yamagishi H., Terachi T. A complete of Ogura-Type male-starile cytoplasm andits comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics. 2012;13:352-363. DOI:10.1186/1471-2164-13-352; Tang S., Sun Y., Zang H., Gu Y., Lu J., Tian S., Yu B., Gu M. Comparison on the characteristics of the isonuclear alloplasmic CMS lines in japonica Rice. Chines J. Rice Sci. 2005;19(6):521-526.; https://vavilov.elpub.ru/jour/article/view/446