Εμφανίζονται 1 - 8 Αποτελέσματα από 8 για την αναζήτηση '"усовершенствованная технология"', χρόνος αναζήτησης: 0,70δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 1 (2023); 46-55 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 1 (2023); 46-55 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/495/410; Semenikhina D.V., Semenikhin A.I., Yukhanov Y.V. Effect of frequency selective shield of semielliptical shape on the characteristics of antenna array. Proc. of Inter. conf. on computer information systems and industrial applications (CISIA 2015). 28—29 June 2015. Bangkok, Thailand. Atlantis Press; 2015. P. 107—109. https://doi.org/10.2991/cisia-15.2015.28; Singh A., Singh C. Quad-band FSS for electromagnetic shielding. International Journal of Computer Communication and Informatics. 2021; 3(1): 1—14. https://doi.org/10.34256/ijcci2111; Silva M.W.B., Junqueira C.C.M., Culhaoglu A.E., Kemptner E. Frequency selective smart shield design for wireless signals. Proc. 9th European conf. on antennas and propagation (EuCAP,2015). 12—17 April 2015. Lisbon, Portugalia. https://ieeexplore.ieee.org/document/7228738; Koohestani M., Perdriau R., Ramdani M., Carlsson J. Frequency selective surfaces for electromagnetic shielding of pocket-sized transceivers. IEEE Transactions on Electromagnetic Compatibility. 2020; 62(6): 2785—2792. https://doi.org/10.1109/temc.2020.2999635; Konoplev I., Posthuma De Boer D.W., Warsop C., John M. Design and characterisation of frequency selective conductive materials for electromagnetic fields control. Scientific Reports. 2020; 10(1): 19351. https://doi.org/10.1038/s41598-020-76447-x; Mayouf A.T., Sayidmarie K.H., Mohammed Ali Y.E. A Dual stopband frequency selective surface for mobile shielding applications. IOP Conference Series: Materials Science and Engineering. 2021; 1152(1): 012008. https://doi.org/10.1088/1757-899X/1152/1/012008; Khoshniat A., Abhari R. Suppression of radiated electromagnetic emissions using absorbing frequency selective surfaces. 2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS); 2017. P. 1—3. https://doi.org/10.1109/EPEPS.2017.8329705; Perotoni M.B., Andrade L.A., Junqueira C. Design, prototyping and measurement of a cascaded 6-GHz frequency selective surface array. Journal of Aerospace Technology and Management. 2016; 8(2): 137—142. https://doi.org/10.5028/jatm.v8i2.629; Hussein M., Zhou J., Huang Y., Al-Juboori B. A low-profile miniaturized second-order bandpass frequency selective surface. IEEE Antennas Wireless Propagation Letters. 2017; 16: 2791—2794. https://doi.org/10.1109/LAWP.2017.2746266; De Siqueira Campos A.L.P., Maniçoba R.H.C., d’Assunção A.G. Investigation of enhancement band using double screen frequency selective surfaces with Koch fractal geometry at millimeter wave range. Journal of Infrared, Millimeter and Terahertz Waves. 2010; 31(12): 1503—1511. https://doi.org/10.1007/s10762-010-9735-8; Liu P., Yang S., Jain A., Wang Q., Jiang H., Song J., Koschny T., Soukoulis C.M., Dong L. Tunable meta-atom using liquid metal embedded in stretchable polymer. Journal of Applied Physics. 2015; 118(1): 014504—014902. https://doi.org/10.1063/1.4926417; Yang S., Liu P., Yang M., Wang Q., Song J., Dong L. From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects. Scientific Reports. 2016; 6(1): 21921. https://doi.org/10.1038/srep21921; Sessions D., Cook A., Fuchi K., Gillman A., Huff G., Buskoh P. Origami-inspired frequency selective surface with fixed frequency response under folding. Sensors. 2019; 19(21): 4808—4828. https://doi.org/10.3390/s19214808; Liang B., Bai M. Subwavelength three-dimensional frequency selective surface based on surface wave tunneling. Optics Express. 2016; 24(13): 14697—14702. https://doi.org/10.1364/OE.24.014697; Sanz-Izquierdo B., Parker E.A. 3D Printing technique for fabrication of frequency selective structures for built environment. Electronics Letters. 2013; 49(18): 1117—1118. https://doi.org/10.1049/el.2013.2256; Новикова Ю.А. Обзор неуправляемых и управляемых частотно-избирательных поверхностей. Сб. докладов 1-й Всеросс. науч. конф. «Моделирование и ситуационное управление качеством сложных систем». 14–22 апреля 2020 г., Санкт-Петербург. СПб.: Санкт-Петербургский государственный университет аэрокосмического приборостроения; 2020. С. 95—98. https://doi.org/10.31799/978-5-8088-1449-3-2020-1-95-98; Anwar R.S., Mao L., Ning H. Frequency selective surfaces: A review. Applied Sciences. 2018; 8(9): 1689—1736. https://doi.org/10.3390/app8091689; Martinez-Lopez L., Rodriguez-Cuevas J., Martinez-Lopez J.I., Martynyuk A.E. A multilayer circular polarizer based on bisected split-ring frequency selective surfaces. IEEE Antennas Wireless Propagation Letters. 2014; 13: 153—156. https://doi.org/10.1109/LAWP.2014.2298393; Campos A.L.P.; de Oliveira E.E.C.; da Fonseca Silva P.H. Design of miniaturized frequency selective surfaces using Minkowski island fractal. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe). 2010; 9(1): 43—49.; Yao X., Bai M., Miao J. Equivalent circuit method for analyzing frequency selective surface with ring patch in oblique angles of incidence. IEEE Antennas Wireless Propagation Letters. 2011; 10: 820—823. https://doi.org/10.1109/LAWP.2011.2164774; Li W., Wang C., Zhang Y., Li Y. A miniaturized frequency selective surface based on square loop aperture element. International Journal Antennas Propagation. 2014; 2014: 1—6. https://doi.org/10.1155/2014/701279; Huang F.-C., Chiu C.-N., Wu T.-L., Chiou Y.-P. A circular-ring miniaturized-element metasurface with many good features for frequency selective shielding applications. IEEE Transactions on Electromagnetic Compatibility. 2015; 57(3): 365—374. https://doi.org/10.1109/TEMC.2015.2389855; Panwar R., Lee J.R. Progress in frequency selective surface-based smart electromagnetic structures: A critical review. Aerospace Science and Technology. 2017; 66: 216—234. https://doi.org/10.1016/J.AST.2017.03.006; Liu T., Kim S.-S. High-capacitive frequency selective surfaces of folded spiral conductor arrays. Microwave and Optical Technology Letter. 2020; 62(1): 301—307. https://doi.org/10.1002/mop.32006; Chena T.-K., Huff G.H. Transmission line analysis of the Archimedean spiral antenna in free space. Journal of Electromagnetic Waves and Applications. 2014; 28(10): 1175—1193. https://doi.org/10.1080/09205071.2014.909295; https://met.misis.ru/jour/article/view/495

  2. 2
    Academic Journal

    Πηγή: Eastern-European Journal of Enterprise Technologies; Vol. 2 No. 11 (110) (2021): Technology and Equipment of Food Production; 61-67
    Eastern-European Journal of Enterprise Technologies; Том 2 № 11 (110) (2021): Технологии и оборудование пищевых производств; 61-67
    Eastern-European Journal of Enterprise Technologies; Том 2 № 11 (110) (2021): Технології та обладнання харчових виробництв; 61-67

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journals.uran.ua/eejet/article/view/230328

  3. 3
  4. 4
    Academic Journal

    Πηγή: Eastern-European Journal of Enterprise Technologies

    Περιγραφή αρχείου: application/pdf

  5. 5
  6. 6
    Academic Journal
  7. 7
  8. 8

    Relation: Автореферат; http://ir.nmu.org.ua/handle/123456789/146751; 622.742:621.928

    Διαθεσιμότητα: http://ir.nmu.org.ua/handle/123456789/146751