Εμφανίζονται 1 - 13 Αποτελέσματα από 13 για την αναζήτηση '"сканирующая лазерная поляриметрия"', χρόνος αναζήτησης: 0,59δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: National Journal glaucoma; Том 23, № 2 (2024); 95-106 ; Национальный журнал Глаукома; Том 23, № 2 (2024); 95-106 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/527/470; Quigley HA, Broman AT. The number of people with glaucoma world-wide in 2010 and 2020. Br J Ophthalmol 2006; 90(3):262-267. https://doi.org/10.1136/bjo.2005.081224.; Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013.; Основные показатели первичной инвалидности взрослого населения Российской Федерации за 2021 год. ФГБУ «Центральный научно-исследовательский институт организации и информатизации здравоохранения»: Министерство здравоохранения Российской Федерации; 2022. 100 с.; Национальное руководство по глаукоме для практикующих врачей. Изд. 4-е, испр. и доп. Под ред. Егорова Е.А., Еричева В.П. М: ГЭОТАР-Медиа 2019; 384.; European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol 2021; 105(Suppl 1):1-169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines.; Еричев В.П., Антонов А.А., Витков А.А., Григорян Л.А. Статическая периметрия в диагностике глаукомы. Часть 1. Базовые принципы. Вестник офтальмологии 2021; 137(5-2):281-288. https://doi.org/10.17116/oftalma2021137052281; Еричев В.П., Антонов А.А., Витков А.А., Григорян Л.А. Статическая периметрия в диагностике глаукомы. Часть 2. Протокол исследования, классификации глаукомы, периметрические дефекты через призму структурно-функциональной корреляции. Вестник офтальмологии 2021; 137(5-2):289299. https://doi.org/10.17116/oftalma2021137052289; Антонов А.А., Козлова И.В., Витков А.А. Максимальная медикаментозная терапия глаукомы — что есть в нашем арсенале? Национальный журнал глаукома 2020; 19(2):51-58. https://doi.org/10.25700/NJG.2020.02.06; Еричев В.П., Онищенко А.Л., Куроедов А.В., Петров С.Ю., Брежнев А.Ю., Антонов А.А., Витков А.А., Мураховска Ю.К. Офтальмологические факторы риска развития первичной открытоугольно глаукомы. Российский медицинский журнал. РМЖ Клиническая офтальмология 2019; 2:81-86. https://doi.org/10.323642311772920191928186; Еричев В.П., Петров С.Ю., Козлова И.В., Макарова А.С., Рещикова В.С. Современные методы функциональной диагностики и мониторинга глаукомы. Часть 3. Роль морфофункциональных взаимоотношений в раннем выявлении и мониторинге глаукомы. Национальный журнал глаукома 2016; 15(2):96-101.; Kotowski J, Wollstein G, Ishikawa H, Schuman JS. Imaging of the optic nerve and retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring. Surv Ophthalmol 2014; 59(4):458-467. https://doi.org/10.1016/j.survophthal.2013.04.007.; Агаева Ф.А., Эфендиева М.Э. Гейдельбергская ретинальная томография. Офтальмология 2013; 3(13):93-96; Vessani RM, Moritz R, Batis L, Zagui RB, Bernardoni S, Susanna R. Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J Glaucoma 2009; 18(3):253-261. https://doi.org/10.1097/IJG.0b013e31818153da.; Harasymowycz PJ, Papamatheakis DG, Fansi AK, Gresset J, Lesk MR. Validity of screening for glaucomatous optic nerve damage using confocal scanning laser ophthalmoscopy (Heidelberg Retina Tomagraph II) in high-risk populations: a pilot study. Ophthalmology 2005; 112(12):2164-2171. https://doi.org/10.1016/j.ophtha.2005.09.009.; Betz P. Photographie stéréoscopique et photogrammétrie de l'excavation physiologique de la papille. 1981.; Iester M, Mikelberg FS, Drance SM. The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology 1997; 104(3):545-548. https://doi.org/10.1016/s0161-6420(97)30277-2.; Koch EC, Plange N, Fuest M, Schimitzek H, Kuerten D. [Diagnostic Precision of the Confocal Scanning Laser Ophthalmoscopy in the Large Optic Disc with Physiological Excavation — a Long-Term Study]. Klin Monbl Augenheilkd 2019; 236(1):88-95. https://doi.org/10.1055/s-0043-111798.; Healey PR, Lee AJ, Aung T, Wong TY, Mitchell P. Diagnostic accuracy of the Heidelberg Retina Tomograph for glaucoma a population-based assessment. Ophthalmology 2010; 117(9):1667-1673. https://doi.org/10.1016/j.ophtha.2010.07.001.; Zheng Y, Wong TY, Lamoureux E, Mitchell P, Loon SC, Saw SM, Aung T. Diagnostic ability of Heidelberg Retina Tomography in detecting glaucoma in a population setting: the Singapore Malay Eye Study. Ophthalmology 2010; 117(2):290-297. https://doi.org/10.1016/j.ophtha.2009.07.018.; Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 2000; 107(12):2272-2277. https://doi.org/10.1016/s0161-6420(00)00363-8.; Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41(7):1730-1742.; Куроедов А.В., Городничий В.В. Компьютерная ретинотомография (HRT): диагностика, динамика, достоверность. М: 2007; 236.; Danias J, Serle J. Can Visual Field Progression be Predicted by Confocal Scanning Laser Ophthalmoscopic Imaging of the Optic Nerve Head in Glaucoma? (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 2015; 113:T4.; Saarela V, Falck A, Airaksinen PJ, Tuulonen A. The sensitivity and specificity of Heidelberg Retina Tomograph parameters to glaucomatous progression in disc photographs. Br J Ophthalmol 2010; 94(1): 68-73. https://doi.org/10.1136/bjo.2009.159251.; Bowd C, Balasubramanian M, Weinreb RN, Vizzeri G, Alencar LM, O'Leary N, Sample PA, Zangwill LM. Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression. Invest Ophthalmol Vis Sci 2009; 50(2): 691-701. https://doi.org/10.1167/iovs.08-2136.; Chauhan BC, Hutchison DM, Artes PH, Caprioli J, Jonas JB, LeBlanc RP, Nicolela MT. Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study. Invest Ophthalmol Vis Sci 2009; 50(4):1682-1691. https://doi.org/10.1167/iovs.08-2457.; Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1):19-28. https://doi.org/10.1016/s0161-6420(92)32018-4.; Weinreb RN, Bowd C, Zangwill LM. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 2003; 121(2):218-224. https://doi.org/10.1001/archopht.121.2.218.; Reus NJ, Lemij HG. Scanning laser polarimetry of the retinal nerve fiber layer in perimetrically unaffected eyes of glaucoma patients. Ophthalmology 2004;111(12):2199-2203. https://doi.org/10.1016/j.ophtha.2004.06.018.; Zheng W, Baohua C, Qun C, Zhi Q, Hong D. Retinal nerve fiber layer images captured by GDx-VCC in early diagnosis of glaucoma. Ophthalmologica 2008; 222(1):17-20. https://doi.org/10.1159/000109273.; Dimopoulos AT, Katsanos A, Mikropoulos DG, Giannopoulos T, Empeslidis T, Teus MA, Hollo G, Konstas AG. Scanning laser polarimetry in eyes with exfoliation syndrome. Eur J Ophthalmol 2013; 23(5): 743-750. https://doi.org/10.5301/ejo.5000247.; Ara M, Ferreras A, Pajarin AB, Calvo P, Figus M, Frezzotti P. Repeatability and Reproducibility of Retinal Nerve Fiber Layer Parameters Measured by Scanning Laser Polarimetry with Enhanced Corneal Compensation in Normal and Glaucomatous Eyes. Biomed Res Int 2015; 2015:729392. https://doi.org/10.1155/2015/729392.; Wang Z, Liu XW, Li XY, Zhang WJ, Dai H. [Detection of the changes of retinal nerve fiber layer thickness by GDx-VCC laser scanning polarimetry in primary open angle glaucoma patients]. Zhonghua Yan Ke Za Zhi 2012; 48(6):497-501.; Wang G, Qiu KL, Lu XH, Sun LX, Liao XJ, Chen HL, Zhang MZ. The effect of myopia on retinal nerve fibre layer measurement: a comparative study of spectral-domain optical coherence tomography and scanning laser polarimetry. Br J Ophthalmol 2011; 95(2):255-260. https://doi.org/10.1136/bjo.2009.176768.; Dada T, Aggarwal A, Bali SJ, Sharma A, Shah BM, Angmo D, Panda A. Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC). Nepal J Ophthalmol 2013; 5(1):3-8. https://doi.org/10.3126/nepjoph.v5i1.7814.; Yu S, Tanabe T, Hangai M, Morishita S, Kurimoto Y, Yoshimura N. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk. Am J Ophthalmol 2006; 142(3):475-482. https://doi.org/10.1016/j.ajo.2006.04.053.; Bozkurt B, Irkec M, Tatlipinar S, Erdener U, Orhan M, Gedik S, Karaagaoglu E. Retinal nerve fiber layer analysis and interpretation of GDx parameters in patients with tilted disc syndrome. Int Ophthalmol 2001; 24(1):27-31. https://doi.org/10.1023/a:1014490414688.; Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science 1991; 254(5035):1178-1181. https://doi.org/10.1126/science.1957169.; Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, Swanson EA. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995; 6(2):89-95. https://doi.org/10.1097/00055735-199504000-00014.; Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113(5):586-596. https://doi.org/10.1001/archopht.1995.01100050054031.; Стоюхина А.С., Будзинская М.В., Стоюхин С.Г., Асламазова А.Э. Оптическая когерентная томография-ангиография в офтальмоонкологии. Вестник офтальмологии 2019; 135(1):104-111. https://doi.org/ 10.17116/oftalma2019135011104; Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002; 7(3):457-463. https://doi.org/10.1117/1.1482379.; Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 2010; 117(4):738-746. https://doi.org/10.1016/j.ophtha.2009.08.039.; Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol 2009; 93(8):1057-1063. https://doi.org/10.1136/bjo.2009.157875.; Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Jr., Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139(1):44-55. https://doi.org/10.1016/j.ajo.2004.08.069.; Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005; 112(1):3-9. https://doi.org/10.1016/j.ophtha.2004.06.039.; Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005; 46(7):2440-2443. https://doi.org/10.1167/iovs.04-1174.; Chang RT, Knight OJ, Feuer WJ, Budenz DL. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology 2009; 116(12):2294-2299. https://doi.org/10.1016/j.ophtha.2009.06.012.; Vizzeri G, Balasubramanian M, Bowd C, Weinreb RN, Medeiros FA, Zangwill LM. Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. Opt Express 2009; 17(5):4004-4018. https://doi.org/10.1364/oe.17.004004.; Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glauco- ma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 2009; 127(12):1603-1609. https://doi.org/10.1001/archophthalmol.2009.296.; Hung KC, Wu PC, Poon YC, Chang HW, Lai IC, Tsai JC, Lin PW, Teng MC. Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia. Optom Vis Sci 2016; 93(2):126-135. https://doi.org/10.1097/OPX.0000000000000776.; Chua J, Tan B, Ke M, Schwarzhans F, Vass C, Wong D, Nongpiur ME, Wei Chua MC, Yao X, Cheng CY, Aung T, Schmetterer L. Diagnostic Ability of Individual Macular Layers by Spectral-Domain OCT in Different Stages of Glaucoma. Ophthalmol Glaucoma 2020; 3(5):314-326. https://doi.org/10.1016/j.ogla.2020.04.003.; Morales-Fernandez L, Jimenez-Santos M, Martinez-de-la-Casa JM, Sanchez-Jean R, Nieves M, Saenz-Frances F, Garcia-Saenz S, Perucho L, Gomez-de-Liano R, Garcia-Feijoo J. Diagnostic capacity of SD-OCT segmented ganglion cell complex versus retinal nerve fiber layer analysis for congenital glaucoma. Eye (Lond) 2018; 32(8):1338-1344. https://doi.org/10.1038/s41433-018-0077-4.; Aksoy FE, Altan C, Yilmaz BS, Yilmaz I, Tunc U, Kesim C, Kocamaz M, Pasaoglu I. A comparative evaluation of segmental analysis of macu- lar layers in patients with early glaucoma, ocular hypertension, and healthy eyes. J Fr Ophtalmol 2020; 43(9):869-878. https://doi.org/10.1016/j.jfo.2019.12.020.; Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H, Xu G, Fan N, Pang CP, Tse KK, Lam DS. Evaluation of retinal nerve fiber layer pro- gression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010; 51(1):217-222. https://doi.org/10.1167/iovs.09-3468.; Nguyen AT, Greenfield DS, Bhakta AS, Lee J, Feuer WJ. Detecting Glaucoma Progression Using Guided Progression Analysis with OCT and Visual Field Assessment in Eyes Classified by International Classification of Disease Severity Codes. Ophthalmol Glaucoma 2019; 2(1):36-46. https://doi.org/10.1016/j.ogla.2018.11.004.; Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology 2012; 119(9):1858-1866. https://doi.org/10.1016/j.ophtha.2012.03.044. 58. Sung KR, Sun JH, Na JH, Lee JY, Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 2012; 119(2):308-313. https://doi.org/10.1016/j.ophtha.2011.08.022.; Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H, Ghahari E, Manalastas PIC, Proudfoot J, Weinreb RN. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glau- coma. Ophthalmology 2019; 126(7):980-988. https://doi.org/10.1016/j.ophtha.2019.03.003.; Mwanza JC, Sayyad FE, Budenz DL. Choroidal thickness in unilateral advanced glaucoma. Invest Ophthalmol Vis Sci 2012; 53(10):6695-6701. https://doi.org/10.1167/iovs.12-10388.; Li L, Bian A, Zhou Q, Mao J. Peripapillary choroidal thickness in both eyes of glaucoma patients with unilateral visual field loss. Am J Ophthalmol 2013; 156(6):1277-1284 e1271. https://doi.org/10.1016/j.ajo.2013.07.011.; Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q, Xin C, Kono R, Mudumbai RC, Johnstone MA, Chen PP, Wang RK. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coher- ence tomography-based microangiography. Quant Imaging Med Surg 2016; 6(2):125-133. https://doi.org/10.21037/qims.2016.03.05.; Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudum- bai RC, Johnstone MA, Chen PP, Wang RK. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography-Based Microangiography. Invest Ophthalmol Vis Sci 2016; 57(9):OCT475-485. https://doi.org/10.1167/iovs.15-18909.; Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the Foveal Avascular Zone Measured by Optical Coherence Tomography Angiography in Glaucoma Patients With Central Visual Field Defects. Invest Ophthalmol Vis Sci 2017; 58(3):1637-1645. https://doi.org/10.1167/iovs.16-21079.; Braaf B, Vermeer KA, Vienola KV, de Boer JF. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt Express 2012; 20(18):20516-20534. https://doi.org/10.1364/OE.20.020516.; Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol 2015; 133(9):1045-1052. https://doi.org/10.1001/jamaophthalmol.2015.2225.; Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014; 121(7):1322-1332. https://doi.org/10.1016/j.ophtha.2014.01.021.; Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3(12):3127-3137. https://doi.org/10.1364/BOE.3.003127.; Bojikian KD, Chen CL, Wen JC, Zhang Q, Xin C, Gupta D, Mudumbai RC, Johnstone MA, Wang RK, Chen PP. Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS One 2016; 11(5):e0154691. https://doi.org/10.1371/journal.pone.0154691.; Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Invest Ophthalmol Vis Sci 2017; 58(9):3637-3645. https://doi.org/10.1167/iovs.17-21846.; Alnawaiseh M, Lahme L, Muller V, Rosentreter A, Eter N. Correla- tion of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 2018; 256(3):589-597. https://doi.org/10.1007/s00417-017-3865-9.; Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci 2016; 57(9):OCT451-459. https://doi.org/10.1167/iovs.15-18944.; Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, Fu H, Lim C, Tay ELT, Loo-Valdez RG, Teo HY, Lim Ph A, Yip LWL. Optical Coherence Tomography Angiography of Optic Disc and Macula Vessel Density in Glaucoma and Healthy Eyes. J Glaucoma 2019; 28(1):80-87. https://doi.org/10.1097/IJG.0000000000001125.; Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Manalastas PIC, Penteado RC, Weinreb RN. Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glau- coma Suspect, and Healthy Eyes. Am J Ophthalmol 2018; 190:69-77. https://doi.org/10.1016/j.ajo.2018.03.026.; Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB, Ritch R. Association of Myopia With Peripapillary Perfused Capillary Density in Patients With Glaucoma: An Optical Coherence Tomogra- phy Angiography Study. JAMA Ophthalmol 2018; 136(5):507-513. https://doi.org/10.1001/jamaophthalmol.2018.0776.; Akil H, Chopra V, Al-Sheikh M, Ghasemi Falavarjani K, Huang AS, Sadda SR, Francis BA. Swept-source OCT angiography imaging of the macular capillary network in glaucoma. Br J Ophthalmol 2017; 132(4):515-519. https://doi.org/10.1136/bjophthalmol-2016-309816.; Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, Akagi T, Christopher M, Yarmohammadi A, Moghimi S, Weinreb RN. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glau- coma. J Glaucoma 2018; 27(6):481-489. https://doi.org/10.1097/IJG.0000000000000964.; Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M, Venugopal JP, Puttaiah NK, Rao DAS, Devi S, Mansouri K, Webers CAB. Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage. J Glaucoma 2017; 26(10):888-895. https://doi.org/10.1097/IJG.0000000000000758.; Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, Bettin P, Magazzeni S, Querques G, Vazquez LE, Barboni P, Bandello F. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Invest Ophthalmol Vis Sci 2017; 58(13):5713-5722. https://doi.org/10.1167/iovs.17-22865.; Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PIC, Penteado RC, Weinreb RN. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol 2017; 182:107-117. https://doi.org/10.1016/j.ajo.2017.07.011.; Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, Christopher M, Yarmohammadi A, Manalastas PIC, Shoji T, Bowd C, Weinreb RN. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthal- mology 2018; 125(11):1720-1728. https://doi.org/10.1016/j.ophtha.2018.05.006.; Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2012; 53(8):4519-4530. https://doi.org/10.1167/iovs.11-8362.; Stoor K, Karvonen E, Leiviska I, Liinamaa J, Saarela V. Comparison of imaging parameters between OCT, GDx and HRT in the Northern Finland birth cohort eye study. Acta Ophthalmol 2022; 100(5): e1103-e1111. https://doi.org/10.1111/aos.15046.; Badala F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Cap- rioli J. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol 2007;144(5):724-732. https://doi.org/10.1016/j.ajo.2007.07.010.; Karvonen E, Stoor K, Luodonpaa M, Hagg P, Lintonen T, Liinamaa J, Tuulonen A, Saarela V. Diagnostic performance of modern imaging instruments in glaucoma screening. Br J Ophthalmol 2020; 104(10): 1399-1405. https://doi.org/10.1136/bjophthalmol-2019-314795.; Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 2001; 119(7):985-993. https://doi.org/10.1001/archopht.119.7.985.; Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004; 122(6):827-837. https://doi.org/10.1001/archopht.122.6.827.; Sato S, Hirooka K, Baba T, Shiraga F. Comparison of optic nerve head parameters using Heidelberg Retina Tomograph 3 and spectral-domain optical coherence tomography. Clin Exp Ophthalmol 2012; 40(7):721-726. https://doi.org/10.1111/j.1442-9071.2012.02782.x.; Moreno-Montanes J, Anton A, Garcia N, Olmo N, Morilla A, Fallon M. Comparison of retinal nerve fiber layer thickness values using Stratus Optical Coherence Tomography and Heidelberg Retina Tomograph-III. J Glaucoma 2009; 18(7):528-534. https://doi.org/10.1097/IJG.0b013e318193c29f.; Lisboa R, Leite MT, Zangwill LM, Tafreshi A, Weinreb RN, Medeiros FA. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 2012; 119(11):2261-2269. https://doi.org/10.1016/j.ophtha.2012.06.009.; Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology 2008; 115(8):1340-1346. https://doi.org/10.1016/j.ophtha.2007.11.008.; Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Sample PA, Girkin CA, Liebmann JM, Medeiros FA. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci 2010; 51(7):3531-3539. https://doi.org/10.1167/iovs.09-4350.; Kim HG, Heo H, Park SW. Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma. Optom Vis Sci 2011; 88(1):124-129. https://doi.org/10.1097/OPX.0b013e3181fdef9c.; Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand 2006; 84(5):650-655. https://doi.org/10.1111/j.1600-0420.2006.00747.x.; Horn FK, Mardin CY, Laemmer R, Baleanu D, Juenemann AM, Kruse FE, Tornow RP. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Invest Ophthalmol Vis Sci 2009; 50(5):1971-1977. https://doi.org/10.1167/iovs.08-2405.; Xu G, Weinreb RN, Leung CKS. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance. Ophthalmology 2013; 120(12):2493-2500. https://doi.org/10.1016/j.ophtha.2013.07.027.; Lever M, Halfwassen C, Unterlauft JD, Bechrakis NE, Manthey A, Bohm MRR. Retinal nerve fibre layer thickness measurements in childhood glaucoma: the role of scanning laser polarimetry and optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2021; 259(12):3777-3786. https://doi.org/10.1007/s00417-021-05276-z.; Fallon M, Valero O, Pazos M, Anton A. Diagnostic accuracy of imaging devices in glaucoma: A meta-analysis. Surv Ophthalmol 2017; 62(4): 446-461. https://doi.org/10.1016/j.survophthal.2017.01.001.; https://www.glaucomajournal.ru/jour/article/view/527

  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: National Journal glaucoma; Том 15, № 2 (2016); 96-101 ; Национальный журнал Глаукома; Том 15, № 2 (2016); 96-101 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/110/111; Bowd C., Zangwill L.M., Berry C.C., Blumenthal E.Z., Vasile C., Sanchez-Galeana C. et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001; 42(9): 1993-2003.; Mardin C.Y., Peters A., Horn F., Junemann A.G., Lausen B. Improving glaucoma diagnosis by the combination of perimetry and HRT measurements. J Glaucoma 2006; 15(4): 299-305. 10.1097/01.ijg.0000212232.03664.ee.; Shah N.N., Bowd C., Medeiros F.A., Weinreb R.N., Sample P.A., Hoffmann E.M. et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology 2006; 113(9): 1593-1602. 10.1016/j.ophtha.2006.06.004.; Goetghebeur E., Liinev J., Boelaert M., Van der Stuyft P. Diagnostic test analyses in search of their gold standard: latent class analyses with random effects. Statistical Methods In Medical Research 2000; 9(3): 231-248.; Hong S., Ahn H., Ha S.J., Yeom H.Y., Seong G.J., Hong Y.J. Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Ophthalmology 2007; 114(2): 210-215. 10.1016/j.ophtha.2006.09.021.; Mardin C.Y., Hothorn T., Peters A., Junemann A.G., Nguyen N.X., Lausen B. New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees. J Glaucoma 2003; 12(4): 340-346.; Artes P.H., Chauhan B.C. Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Research 2005; 24(3): 333-354. 10.1016/j.preteyeres.2004.10.002.; Heijl A., Leske M.C., Bengtsson B., Bengtsson B., Hussein M., Early Manifest Glaucoma Trial G. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmologica Scandinavica 2003; 81(3): 286-293.; Kass M.A., Heuer D.K., Higginbotham E.J., Johnson C.A., Keltner J.L., Miller J.P. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 701-713; discussion 829-730.; Miglior S., Zeyen T., Pfeiffer N., Cunha-Vaz J., Torri V., Adamsons I. et al. Results of the European Glaucoma Prevention Study. Ophthalmology 2005; 112(3): 366-375. 10.1016/j.ophtha.2004.11.030.; Patterson A.J., Garway-Heath D.F., Crabb D.P. Improving the repeatability of topographic height measurements in confocal scanning laser imaging using maximum-likelihood deconvolution. Invest Ophthalmol Vis Sci 2006; 47(10): 4415-4421. 10.1167/iovs.06-0191.; Strouthidis N.G., Vinciotti V., Tucker A.J., Gardiner S.K., Crabb D.P., Garway-Heath D.F. Structure and function in glaucoma: The relationship between a functional visual field map and an anatomic retinal map. Invest Ophthalmol Vis Sci 2006; 47(12): 5356-5362. 10.1167/ iovs.05-1660.; Wollstein G., Schuman J.S., Price L.L., Aydin A., Stark P.C., Hertzmark E. et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123(4): 464-470. 10.1001/archopht.123.4.464.; Chauhan B.C., McCormick T.A., Nicolela M.T., LeBlanc R.P. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2001; 119(10): 1492-1499.; Girkin C.A., Emdadi A., Sample P.A., Blumenthal E.Z., Lee A.C., Zangwill L.M. et al. Short-wavelength automated perimetry and standard perimetry in the detection of progressive optic disc cupping. Arch Ophthalmol 2000; 118(9): 1231-1236.; Kamal D.S., Garway-Heath D.F., Hitchings R.A., Fitzke F.W. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Brit J Ophthalmol 2000; 84(9): 993-998.; Quigley H.A., Katz J., Derick R.J., Gilbert D., Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1): 19-28.; Hood D.C., Anderson S.C., Wall M., Kardon R.H. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci 2007; 48(8): 3662-3668. 10.1167/iovs.06-1401.; Hood D.C., Kardon R.H. A framework for comparing structural and functional measures of glaucomatous damage. Progress in Retinal and Eye Research 2007; 26(6): 688-710. 10.1016/j.preteyeres.2007.08.001.; Kymes S.M., Kass M.A., Anderson D.R., Miller J.P., Gordon M.O., Ocular Hypertension Treatment Study G. Management of ocular hypertension: a cost-effectiveness approach from the Ocular Hypertension Treatment Study. Am J Ophthalmol 2006; 141(6): 997-1008. 10.1016/j.ajo.2006.01.019.; Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 714-720; discussion 829-730.; Ocular Hypertension Treatment Study G., European Glaucoma Prevention Study G., Gordon M.O., Torri V., Miglior S., Beiser J.A. et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007; 114(1): 10-19. 10.1016/j.ophtha.2006.08.031.; Medeiros F.A., Zangwill L.M., Bowd C., Vasile C., Sample P.A., Weinreb R.N. Agreement between stereophotographic and confocal scanning laser ophthalmoscopy measurements of cup/disc ratio: effect on a predictive model for glaucoma development. J Glaucoma 2007; 16(2): 209-214. 10.1097/IJG.0b013e31802d695c.; Lalezary M., Medeiros F.A., Weinreb R.N., Bowd C., Sample P.A., Tavares I.M. et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol 2006; 142(4): 576-582. 10.1016/j.ajo.2006.05.004.; Alencar L.M., Bowd C., Weinreb R.N., Zangwill L.M., Sample P.A., Medeiros F.A. Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. Invest Ophthalmol Vis Sci 2008; 49(5): 1898-1906. 10.1167/iovs.07-0111.; Bowd C., Zangwill L.M., Medeiros F.A., Hao J., Chan K., Lee T.W. et al. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest Ophthalmol Vis Sci 2004; 45(7): 2255-2262.; Zangwill L.M., Weinreb R.N., Beiser J.A., Berry C.C., Cioffi G.A., Coleman A.L. et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1188-1197. 10.1001/archopht.123.9.1188.; Essock E.A., Gunvant P., Zheng Y., Garway-Heath D.F., Kotecha A., Spratt A. Predicting visual field loss in ocular hypertensive patients using wavelet-fourier analysis of GDx scanning laser polarimetry. Optometry Vis Sci: official publication of the American Academy of Optometry 2007; 84(5): 380-387. 10.1097/OPX.0b013e318058a0de.; Mohammadi K., Bowd C., Weinreb R.N., Medeiros F.A., Sample P.A., Zangwill L.M. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138(4): 592-601. 10.1016/j. ajo.2004.05.072.; Medeiros F.A., Sample P.A., Weinreb R.N. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol 2004; 137(5): 863-871. 10.1016/j. ajo.2003.12.009.; https://www.glaucomajournal.ru/jour/article/view/110

  5. 5
    Academic Journal

    Πηγή: National Journal glaucoma; Том 14, № 3 (2015); 72-79 ; Национальный журнал Глаукома; Том 14, № 3 (2015); 72-79 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/75/76; Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 714-720; discussion 829-730.; Lin S.C., Singh K., Jampel H.D., Hodapp E.A., Smith S.D., Francis B.A. et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 2007; 114(10): 1937-1949. 10.1016/j.ophtha.2007.07.005.; Medeiros F.A., Zangwill L.M., Bowd C., Sample P.A., Weinreb R.N. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol 2005; 139(6): 1010-1018. 10.1016/j.ajo.2005.01.003.; Fingeret M., Medeiros F.A., Susanna R. Jr., Weinreb R.N. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry 2005; 76(11): 661-668. 10.1016/j.optm.2005.08.029.; Tielsch J.M., Katz J., Quigley H.A., Miller N.R., Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology 1988; 95(3): 350-356.; Varma R., Steinmann W.C., Scott I.U. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology 1992; 99(2): 215-221.; Gaasterland D.E., Blackwell B., Dally L.G., Caprioli J., Katz L.J., Ederer F. et al. The Advanced Glaucoma Intervention Study (AGIS): 10. Variability among academic glaucoma subspecialists in assessing optic disc notching. Transactions Am Ophthalmol Soc 2001; 99: 177-184; discussion 184-175.; Parrish R.K., 2nd, Schiffman J.C., Feuer W.J., Anderson D.R., Budenz D.L., Wells-Albornoz M.C. et al. Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol 2005; 140(4): 762-764. 10.1016/j.ajo.2005.04.044.; Zeyen T., Miglior S., Pfeiffer N., Cunha-Vaz J., Adamsons I., European Glaucoma Prevention Study G. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology 2003; 110(2): 340-344.; Deleon-Ortega J.E., Arthur S.N., McGwin G., Jr., Xie A., Monheit B.E., Girkin C.A. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci 2006; 47(8): 3374-3380. 10.1167/iovs.05-1239.; Girkin C.A., DeLeon-Ortega J.E., Xie A., McGwin G., Arthur S.N., Monheit B.E. Comparison of the Moorfields classification using confocal scanning laser ophthalmoscopy and subjective optic disc classification in detecting glaucoma in blacks and whites. Ophthalmology 2006; 113(12): 2144-2149. 10.1016/j.ophtha.2006.06.035.; Henderer J.D., Liu C., Kesen M., Altangerel U., Bayer A., Steinmann W.C. et al. Reliability of the disk damage likelihood scale. Am J Ophthalmol 2003; 135(1): 44-48.; Weinreb R.N., Bowd C., Zangwill L.M. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 2003; 121(2): 218-224.; Miglior S., Guareschi M., Albe E., Gomarasca S., Vavassori M., Orzalesi N. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am J Ophthalmol 2003; 136(1): 26-33.; Wollstein G., Garway-Heath D.F., Hitchings R.A. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998; 105(8): 1557-1563. 10.1016/S0161-6420(98)98047-2.; Miglior S., Guareschi M., Romanazzi F., Albe E., Torri V., Orzalesi N. The impact of definition of primary open-angle glaucoma on the cross-sectional assessment of diagnostic validity of Heidelberg retinal tomography. Am J Ophthalmol 2005; 139(5): 878-887. 10.1016/j.ajo.2005.01.013.; Ford B.A., Artes P.H., McCormick T.A., Nicolela M.T., LeBlanc R.P., Chauhan B.C. Comparison of data analysis tools for detection of glaucoma with the Heidelberg Retina Tomograph. Ophthalmology 2003; 110(6): 1145-1150. 10.1016/S0161-6420(03)00230-6.; Mardin C.Y., Hothorn T., Peters A., Junemann A.G., Nguyen N.X., Lausen B. New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees. J Glaucoma 2003; 12(4): 340-346.; Zangwill L.M., Chan K., Bowd C., Hao J., Lee T.W., Weinreb R.N. et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci 2004; 45(9): 3144-3151. 10.1167/iovs.04-0202.; Zangwill L.M., Weinreb R.N., Beiser J.A., Berry C.C., Cioffi G.A., Coleman A.L. et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1188-1197. 10.1001/archopht.123.9.1188.; Danesh-Meyer H.V., Gaskin B.J., Jayusundera T., Donaldson M., Gamble G.D. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma. Brit J Ophthalmol 2006; 90(4): 437-441. 10.1136/bjo.2005.077131.; Medeiros F.A., Zangwill L.M., Bowd C., Vasile C., Sample P.A., Weinreb R.N. Agreement between stereophotographic and confocal scanning laser ophthalmoscopy measurements of cup/disc ratio: effect on a predictive model for glaucoma development. J Glaucoma 2007; 16(2): 209-214. 10.1097/IJG.0b013e31802d695c.; Reus N.J., de Graaf M., Lemij H.G. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Brit J Ophthalmol 2007; 91(3): 313-318. 10.1136/bjo.2006.096586.; Swindale N.V., Stjepanovic G., Chin A., Mikelberg F.S. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41(7): 1730-1742.; Burgansky-Eliash Z., Wollstein G., Patel A., Bilonick R.A., Ishikawa H., Kagemann L. et al. Glaucoma detection with matrix and standard achromatic perimetry. Brit J Ophthalmol 2007; 91(7): 933-938. 10.1136/bjo.2006.110437.; Harizman N., Zelefsky J.R., Ilitchev E., Tello C., Ritch R., Liebmann J.M. Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III. Brit J Ophthalmol 2006; 90(11): 1390-1392. 10.1136/bjo.2006.098111.; Zangwill L.M., Jain S., Racette L., Ernstrom K.B., Bowd C., Medeiros F.A. et al. The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. Invest Ophthalmol Vis Sci 2007; 48(6): 2653-2660. 10.1167/iovs.06-1314.; Coops A., Henson D.B., Kwartz A.J., Artes P.H. Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci 2006; 47(12): 5348-5355. 10.1167/iovs.06-0579.; Artes P.H., Chauhan B.C. Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Res 2005; 24(3): 333-354. 10.1016/j.preteyeres.2004.10.002.; Chauhan B.C., Blanchard J.W., Hamilton D.C., LeBlanc R.P. Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 2000; 41(3): 775-782.; Quigley H.A., Katz J., Derick R.J., Gilbert D., Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1): 19-28.; Sehi M., Guaqueta D.C., Feuer W.J., Greenfield D.S., Advanced Imaging in Glaucoma Study G. Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. Am J Ophthalmol 2007; 143(2): 272-279. 10.1016/j.ajo.2006.09.049.; Bowd C., Zangwill L.M., Medeiros F.A., Tavares I.M., Hoffmann E.M., Bourne R.R. et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 2006; 47(7): 2889-2895. 10.1167/iovs.05-1489.; Schlottmann P.G., De Cilla S., Greenfield D.S., Caprioli J., Garway-Heath D.F. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by scanning laser polarimetry. Invest Ophthalmol Vis Sci 2004; 45(6): 1823-1829.; Brusini P., Salvetat M.L., Parisi L., Zeppieri M., Tosoni C. Discrimination between normal and early glaucomatous eyes with scanning laser polarimeter with fixed and variable corneal compensator settings. Eur J Ophthalmol 2005; 15(4): 468-476.; Bowd C., Medeiros F.A., Zhang Z., Zangwill L.M., Hao J., Lee T.W. et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci 2005; 46(4): 1322-1329. 10.1167/iovs.04-1122.; Essock E.A., Zheng Y., Gunvant P. Analysis of GDx-VCC polari-metry data by Wavelet-Fourier analysis across glaucoma stages. Invest Ophthalmol Vis Sci 2005; 46(8): 2838-2847. 10.1167/iovs.04-1156.; Medeiros F.A., Zangwill L.M., Bowd C., Bernd A.S., Weinreb R.N. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma. Invest Ophthalmol Vis Sci 2003; 44(6): 2606-2612.; Medeiros F.A., Zangwill L.M., Bowd C., Mohammadi K., Weinreb R.N. Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol 2004; 122(5): 698-704. 10.1001/archopht.122.5.698.; Mohammadi K., Bowd C., Weinreb R.N., Medeiros F.A., Sample P.A., Zangwill L.M. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138(4): 592-601. 10.1016/j.ajo.2004.05.072.; Horn F.K., Brenning A., Junemann A.G., Lausen B. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. J Glaucoma 2007; 16(4): 363-371. 10.1097/IJG.0b013e318032e4c2.; Bagga H., Greenfield D.S., Feuer W.J. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol 2005; 139(3): 437-446. 10.1016/j.ajo.2004.10.019.; Bowd C., Tavares I.M., Medeiros F.A., Zangwill L.M., Sample P.A., Weinreb R.N. Retinal nerve fiber layer thickness and visual sensitivity using scanning laser polarimetry with variable and enhanced corneal compensation. Ophthalmology 2007; 114(7): 1259-1265. 10.1016/j.ophtha.2006.10.020.; Medeiros F.A., Bowd C., Zangwill L.M., Patel C., Weinreb R.N. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci 2007; 48(7): 3146-3153. 10.1167/iovs.06-1139.; Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W. et al. Optical coherence tomography. Science 1991; 254(5035): 1178-1181.; Paunescu L.A., Schuman J.S., Price L.L., Stark P.C., Beaton S., Ishikawa H. et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 2004; 45(6): 1716-1724.; Schuman J.S., Pedut-Kloizman T., Hertzmark E., Hee M.R., Wilkins J.R., Coker J.G. et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996; 103(11): 1889-1898.; Pieroth L., Schuman J.S., Hertzmark E., Hee M.R., Wilkins J.R., Coker J. et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology 1999; 106(3): 570-579.; Schuman J.S., Hee M.R., Puliafito C.A., Wong C., Pedut-Kloizman T., Lin C.P. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113(5): 586-596.; Williams Z.Y., Schuman J.S., Gamell L., Nemi A., Hertzmark E., Fujimoto J.G. et al. Optical coherence tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Am J Ophthalmol 2002; 134(4): 538-546.; Bourne R.R., Medeiros F.A., Bowd C., Jahanbakhsh K., Zangwill L.M., Weinreb R.N. Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2005; 46(4): 1280-1285. 10.1167/iovs.04-1000.; Budenz D.L., Michael A., Chang R.T., McSoley J., Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005; 112(1): 3-9. 10.1016/j.ophtha.2004.06.039.; Kanamori A., Escano M.F., Eno A., Nakamura M., Maeda H., Seya R. et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. International J Ophthalmol. Zeitschrift fur Augenheilkunde 2003; 217(4): 273-278. 70634.; Leung C.K., Chan W.M., Hui Y.L., Yung W.H., Woo J., Tsang M.K. et al. Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46(3): 891-899. 10.1167/iovs.04-1107.; Nouri-Mahdavi K., Hoffman D., Tannenbaum D.P., Law S.K., Caprioli J. Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol 2004; 137(2): 228-235. 10.1016/j.ajo.2003.09.004.; Wollstein G., Ishikawa H., Wang J., Beaton S.A., Schuman J.S. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 2005; 139(1): 39-43. 10.1016/j.ajo.2004.08.036.; Wollstein G., Schuman J.S., Price L.L., Aydin A., Beaton S.A., Stark P.C. et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004; 138(2): 218-225. 10.1016/j.ajo.2004.03.019.; Leung C.K., Chan W.M., Yung W.H., Ng A.C., Woo J., Tsang M.K. et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 2005; 112(3): 391-400. 10.1016/j.ophtha.2004.10.020.; Manassakorn A., Nouri-Mahdavi K., Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol 2006; 141(1): 105-115. 10.1016/j.ajo.2005.08.023.; Schuman J.S., Wollstein G., Farra T., Hertzmark E., Aydin A., Fujimoto J.G. et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confo-cal scanning laser ophthalmoscopy. Am J Ophthalmol 2003; 135(4): 504-512.; Guedes V., Schuman J.S., Hertzmark E., Wollstein G., Correnti A., Mancini R. et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003; 110(1): 177-189.; Burgansky-Eliash Z., Wollstein G., Chu T., Ramsey J.D., Glymour C., Noecker R.J. et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci 2005; 46(11): 4147-4152. 10.1167/iovs.05-0366.; Ishikawa H., Stein D.M., Wollstein G., Beaton S., Fujimoto J.G., Schuman J.S. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46(6): 2012-2017. 10.1167/iovs.04-0335.; Wollstein G., Schuman J.S., Price L.L., Aydin A., Stark P.C., Hertzmark E. et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123(4): 464-470. 10.1001/archopht.123.4.464.; Drexler W., Morgner U., Ghanta R.K., Kartner F.X., Schuman J.S., Fujimoto J.G. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature medicine 2001; 7(4): 502-507. 10.1038/86589.; Gabriele M.L., Ishikawa H., Wollstein G., Bilonick R.A., Kagemann L., Wojtkowski M. et al. Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest Ophthalmol Vis Sci 2007; 48(7): 3154-3160. 10.1167/iovs.06-1416.; Wollstein G., Paunescu L.A., Ko T.H., Fujimoto J.G., Kowale-vicz A., Hartl I. et al. Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology 2005; 112(2): 229-237. 10.1016/j.ophtha.2004.08.021.; Essock E.A., Sinai M.J., Bowd C., Zangwill L.M., Weinreb R.N. Fourier analysis of optical coherence tomography and scanning laser polarimetry retinal nerve fiber layer measurements in the diagnosis of glaucoma. Arch Ophthalmol 2003; 121(9): 1238-1245. 10.1001/archopht.121.9.1238.; Leung C.K., Chan W.M., Chong K.K., Yung W.H., Tang K.T., Woo J. et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, I: correlation analysis in glaucoma. Invest Ophthalmol Vis Sci 2005; 46(9): 3214-3220. 10.1167/iovs.05-0294.; Leung C.K., Chong K.K., Chan W.M., Yiu C.K., Tso M.Y., Woo J. et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci 2005; 46(10): 3702-3711. 10.1167/iovs.05-0490.; Hoffmann E.M., Bowd C., Medeiros F.A., Boden C., Grus F.H., Bourne R.R. et al. Agreement among 3 optical imaging methods for the assessment of optic disc topography. Ophthalmology 2005; 112(12): 2149-2156. 10.1016/j.ophtha.2005.07.003.; https://www.glaucomajournal.ru/jour/article/view/75

  6. 6
    Academic Journal

    Συγγραφείς: Gábor Hollo, Габор Холло

    Πηγή: National Journal glaucoma; Том 13, № 1 (2014); 56-58 ; Национальный журнал Глаукома; Том 13, № 1 (2014); 56-58 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/8/9; Choplin N.T., Schallhorn S.C. The effect of excimer laser photorefractive keratectomy for myopia on retinal nerve fiber layer thickness measurements as determined by scanning laser polarimetry. Ophthalmology 1999; 106: 1019-1023.; Choplin N.T., Schallhorn S.C., Sinai M., et al. Retinal nerve fiber layer measurements do not change after LASIK for high myopia as measured by scanning laser polarimetry with custom compensation. Ophthalmology 2005; 112: 92-97.; Centofani M., Oddone F., Parravano M., et al. Corneal birefringence changes after laser assisted in situ keratomileusis and their influence on retinal nerve fiber layer thickness measurement by means of scanning laser polarimetry. Br J Ophthalmol 2005; 89: 689-693.; Greenfield D.S., Knighton R.W., Huang X.R., et al. Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser poalrimetry. Am J Ophthalmol 2000; 129: 715-722.; Gürses-Özden R., Pons M.E., Barbieri C., et al. Scanning laser polarimetry measurements after laser-assisted in situ keratomileusis. Am J Ophthalmol 2000; 129: 461-464.; Holló G., Nagymihály A., Vargha P. Scanning laser polarimetry in corneal haze after excimer laser refractive surgery. J Glaucoma 1997; 6: 359-362.; Holló G., Nagy Z., Vargha P., et al. Influence of post-LASIK corneal healing on scanning laser polarimetric measurement of the retinal nerve fibre layer thickness. Br J Ophthalmol 2002; 86: 627-631.; Holló G., Katsanos A., Kóthy P., et al. Influence of LASIK on scanning laser polarimetric measurement of the retinal nerve fibre layer with fixed angle and customised corneal polarisation compensation. Br J Ophthalmol 2003; 87: 1241-1246.; Katsanos A., Kóthy P., Nagy Z.Z., Holló G. Scanning laser polarimetry of retinal nerve fibre layer thickness after LASIK: stability of the values after the third post-LASIK month. Acta Physiologica Hungarica 2004; 91: 119-131.; Lemij H.G., Reus N.J. New developments in scanning laser polarimetry for glaucoma. Curr Opin Ophthalmol 2008; 19: 136-140.; Tóth M., Holló G. Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarization pattern. Br J Ophthalmology 2005; 89: 1139-1142.; Tóth M., Holló G. Evaluation of enhanced corneal compensation in scanning laser polarimetry: comparison with variable corneal compensation in a human LASIK model. J Glaucoma 2006; 15: 53-59.; Tsai Y.Y., Lin J.M. Effect of laser-assisted in situ keratomileusis on the retinal nerve fiber layer. Retina 2000; 20: 342-345.; https://www.glaucomajournal.ru/jour/article/view/8

  7. 7
    Academic Journal

    Πηγή: National Journal glaucoma; Том 14, № 2 (2015); 75-81 ; Национальный журнал Глаукома; Том 14, № 2 (2015); 75-81 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/66/67; The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol 2000; 130(4): 429-440.; Gordon M.O., Kass M.A. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Arch Ophthalmol 1999; 117(5): 573-583.; Leske M.C., Heijl A., Hyman L., Bengtsson B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology 1999; 106(11): 2144-2153.; Miglior S., Zeyen T., Pfeiffer N., Cunha-Vaz J. et al. The European glaucoma prevention study design and baseline description of the participants. Ophthalmology 2002; 109(9): 1612-1621.; Musch D.C., Lichter P.R., Guire K.E., Standardi C.L. The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology 1999; 106(4): 653-662.; Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6): 714-720; discussion 829-730.; Medeiros F.A., Weinreb R.N., Sample P.A., Gomi C.F. et al. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Arch Ophthalmol 2005; 123(10): 1351-1360. doi:10.1001/archopht.123.10.1351.; Ocular Hypertension Treatment Study G., European Glaucoma Prevention Study G., Gordon M.O., Torri V. et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007; 114(1): 10-19. doi:10.1016/j.oph-tha.2006.08.031.; European Glaucoma Prevention Study G., Miglior S., Pfeiffer N., Torri V. et al. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 2007; 114(1): 3-9. doi:10.1016/j.ophtha.2006.05.075.; Kass M.A., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 701-713; discussion 829-730.; Heijl A., Leske M.C., Bengtsson B., Bengtsson B., Hussein M. Early Manifest Glaucoma Trial G. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 2003; 81(3): 286-293.; Heijl A., Leske M.C., Bengtsson B., Hyman L. et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120(10): 1268-1279.; Higginbotham E.J., Gordon M.O., Beiser J.A., Drake M.V. et al. The Ocular Hypertension Treatment Study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Arch Ophthalmol 2004; 122(6): 813-820. doi:10.1001/archopht.122.6.813.; Quigley H.A., Dunkelberger G.R., Green W.R. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107(5): 453-464.; Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41(3): 741-748.; Artes P.H., Iwase A., Ohno Y., Kitazawa Y., Chauhan B.C. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 2002; 43(8): 2654-2659.; Keltner J.L., Johnson C.A., Levine R.A., Fan J. et al. Normal visual field test results following glaucomatous visual field and points in the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1201-1206. doi:10.1001/archopht.123.9.1201.; Keltner J.L., Johnson C.A., Anderson D.R., Levine R.A. et al. The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. Ophthalmology 2006; 113(9): 1603-1612. doi:10.1016/j.ophtha.2006.05.061.; Blumenthal E.Z., Sample P.A., Berry C.C., Lee A.C. et al. Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects, and normals. Ophthalmology 2003; 110(10): 1895-1902. doi:10.1016/S0161-6420(03)00541-4.; Bengtsson B., Heijl A. Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand 1998; 76(3): 268-272.; Weinreb R.N., Greve E.L. Glaucoma diagnosis, structure and function: reports and consensus statements of the 1st global AIGS Consensus meeting on «structure and function in the management of glaucoma». The Hague: Kugler Publications; 2004.; Dacey D.M., Lee B.B. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 1994; 367(6465): 731-735. doi:10.1038/367731a0.; Dacey D.M., Packer O.S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiology 2003; 13(4): 421-427.; Martin P.R., White A.J., Goodchild A.K., Wilder H.D., Sefton A.E. Evidence that blue-on cells are part of the third geniculo-cortical pathway in primates. Europ J Neuroscience 1997; 9(7): 1536-1541.; Bengtsson B. A new rapid threshold algorithm for short-wave-length automated perimetry. Invest Ophthalmol Vis Sci 2003; 44(3): 1388-1394.; Bengtsson B., Heijl A. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Invest Ophthalmol Vis Sci 2003; 44(11): 5029-5034.; Sample P.A., Taylor J.D., Martinez G.A., Lusky M., Weinreb R.N. Short-wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol 1993; 115(2): 225-233.; Wild J.M., Cubbidge R.P., Pacey I.E., Robinson R. Statistical aspects of the normal visual field in short-wavelength automated perimetry. Invest Ophthalmol Vis Sci 1998; 39(1): 54-63.; Bengtsson B., Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Ophthalmology 2006; 113(7): 1092-1097. doi:10.1016/j.ophtha.2005.12.028.; Sample P.A., Weinreb R.N. Progressive color visual field loss in glaucoma. Invest Ophthalmol Vis Sci 1992; 33(6): 2068-2071.; Johnson C.A., Adams A.J., Casson E.J., Brandt J.D. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 1993; 111(5): 645-650.; Johnson C.A., Adams A.J., Casson E.J., Brandt J.D. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol 1993; 111(5): 651-656.; Johnson C.A., Sample P.A., Zangwill L.M., Vasile C.G. et al. Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. Am J Ophthalmol 2003; 135(2): 148-154.; Keltner J.L., Johnson C.A., Cello K.E., Bandermann S.E. et al. Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma 2007; 16(8): 665-669. doi:10.1097/IJG.0b013e318057526d.; Sample P.A., Bosworth C.F., Blumenthal E.Z., Girkin C., Wein-reb R.N. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 2000; 41(7): 1783-1790.; McKendrick A.M., Badcock D.R., Morgan W.H. Psychophysical measurement of neural adaptation abnormalities in mag-nocellular and parvocellular pathways in glaucoma. Invest Ophthalmol Vis Sci 2004; 45(6): 1846-1853.; Sample P.A., Medeiros F.A., Racette L., Pascual J.P. et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 2006; 47(8): 3381-3389. doi:10.1167/iovs.05-1546.; Yucel Y.H., Zhang Q., Gupta N., Kaufman P.L., Weinreb R.N. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 2000; 118(3): 378-384.; Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci 2001; 42(13): 3216-3222.; Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, konio-cellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Progress in Retinal and Eye Research 2003; 22(4): 465-481.; Симакова И.Л., Волков В.В., Бойко Э.В. Создание метода периметрии с удвоенной пространственной частотой за рубежом и в России. Глаукома 2009; 8(2): 15. [Simakova I.L., Volkov V.V., Boiko E.V. Creation of the method of frequency-doubling technology perimetry: an international and Russian experience. Glaucoma 2009; 8(2): 15. (In Russ.)].; Симакова И.Л., Волков В.В., Бойко Э.В. Значение периметрии с удвоенной пространственной частотой в профилактике слепоты и инвалидности от глаукомы. Глаукома 2009; 8(3): 11. [Simakova I.L., Volkov V.V., Boiko E.V. Significance of frequency-doubling technology perimetry in prophylaxis of blindness and disablement from glaucoma. Glaucoma 2009; 8(3): 11. (In Russ.)].; Johnson C.A., Cioffi G.A., Van Buskirk E.M. Frequency doubling technology perimetry using a 24-2 stimulus presentation pattern. Optometry Vis Sci 1999; 76(8): 571-581.; Turpin A., McKendrick A.M., Johnson C.A., Vingrys A.J. Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2002; 43(3): 709-715.; Turpin A., McKendrick A.M., Johnson C.A., Vingrys A.J. Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation. Invest Ophthalmol Vis Sci 2002; 43(2): 322-331.; Burgansky-Eliash Z., Wollstein G., Patel A., Bilonick R.A., et al. Glaucoma detection with matrix and standard achromatic perimetry. Brit J Ophthalmol 2007; 91(7): 933-938. doi:10.1136/bjo.2006.110437.; Casson R.J., James B. Effect of cataract on frequency doubling perimetry in the screening mode. J Glaucoma 2006; 15(1): 23-25.; Brusini P., Salvetat M.L., Zeppieri M., Parisi L. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma 2006; 15(2): 77-83.; Burnstein Y., Ellish N.J., Magbalon M., Higginbotham E.J. Comparison of frequency doubling perimetry with humphrey visual field analysis in a glaucoma practice. Am J Ophthalmol 2000; 129(3): 328-333.; Cello K.E., Nelson-Quigg J.M., Johnson C.A. Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol 2000; 129(3): 314-322.; Iester M., Sangermani C., De Feo F., Ungaro N., et al. Sector-based analysis of frequency doubling technology sensitivity and optic nerve head shape parameters. Eur J Ophthalmol 2007; 17(2): 223-229.; Wu L.L., Suzuki Y., Kunimatsu S., Araie M., Iwase A., Tomita G. Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defects. J Glaucoma 2001; 10(4): 256-260.; Iwase A., Tomidokoro A., Araie M., Shirato S. et al. Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study. Ophthalmology 2007; 114(1): 27-32. doi:10.1016/j.ophtha.2006.06.041.; Mansberger S.L., Edmunds B., Johnson C.A., Kent K.J., Cioffi G.A. Community visual field screening: prevalence of follow-up and factors associated with follow-up of participants with abnormal frequency doubling perimetry technology results. Ophthalmic epidemiology 2007; 14(3): 134-140. doi:10.1080/09286580601174060.; Racette L., Medeiros F.A., Zangwill L.M., Ng D., Weinreb R.N., Sample P.A. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci 2008; 49(3): 954-960. doi:10.1167/iovs.07-0493.; Sakata L.M., Deleon-Ortega J., Arthur S.N., Monheit B.E., Girkin C.A. Detecting visual function abnormalities using the Swedish interactive threshold algorithm and matrix perimetry in eyes with glaucomatous appearance of the optic disc. Arch Ophthalmol 2007; 125(3): 340-345. doi:10.1001/archopht.125.3.340.; Spry P.G., Hussin H.M., Sparrow J.M. Clinical evaluation of frequency doubling technology perimetry using the Humphrey Matrix 24-2 threshold strategy. Brit J Ophthalmol 2005; 89(8): 1031-1035. doi:10.1136/bjo.2004.057778.; Horn F.K., Brenning A., Junemann A.G., Lausen B. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. J Glaucoma 2007; 16(4): 363-371. doi:10.1097/IJG.0b013e318032e4c2.; https://www.glaucomajournal.ru/jour/article/view/66

  8. 8
    Academic Journal

    Συγγραφείς: Tszin Dan, Цзинь Дань

    Πηγή: Ophthalmology in Russia; Том 12, № 1 (2015); 16-23 ; Офтальмология; Том 12, № 1 (2015); 16-23 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2015-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/220/242; Kurysheva N. I. [Glaucomatous optic neuropathy]. Glaukomnaja opticheskaja nejropatija. Мoscow, MEDpress-inform; 2006. (in Russ.).; Nesterov A. P. [Glaucoma]. Glaukoma. Мoscow, MIA, 2008. (in Russ.).; Avetisov S.E., Egorov E.A., Moshetova L.K., Neroev V.V., Takhchidi Kh.P. [Ophthalmology: National guidelines]. Oftal’mologija: Nacional’noe rukovodstvo. Мoscow, GEOTAR-Media, 2008. (in Russ.).; Schacknow P.N., Samples J.R. The glaucoma book: a practical, evidence-based approach to patient care. NewYork, Springer; 2010.; Fedorov S.N., Ivashina A.I., Mihaylova G.D. [Pathogenesis and treatment of glaucoma]. Voprosy patogeneza i lechenija glaukomy. Мoscow, 1981. (in Russ.).; Nesterov A.P., Cherkasova I.N. [The role of risk factors in open-angle glaucoma diagnostics]. Rol’ faktorov riska pri diagnostike otkrytougol’noj glaukomy. [Annals of Ophthalmology]. Vestnik oftal’mologii. 1987; 103 (5): 18-20. (in Russ.).; Boland M.V., Quigley H.A. Risk factors and open-angle glaucoma: classification and application. J. Glaucoma. 2007; 16 (4): 406-418.; Coleman A.L., Miglior S. Risk factors for glaucoma onset and progression. Surv. Ophthalmol. 2008; 53 (1): 3-10.; De Moraes C.G., Juthani V.J., Liebmann J.M., Teng C.C., Tello C, Susanna R.Jr., Ritch R. Risk factors for visual field progression in treated glaucoma. Arch. Ophthalmol. 2011; 129 (5): 562-568.; Ekstrom C. Risk factors for incident open-angle glaucoma: a population-based 20-year follow-up study. Acta Ophthalmol. 2012; 90 (4): 316-321.; Leske M.C., Wu S.Y., Hennis A., Honkanen R., Nemesure B., Group BES. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008; 115 (1): 85-93.; Topouzis F., Wilson M.R., Harris A., Founti P., Yu F., Anastasopoulos E., Pappas T., Koskosas A., Salonikiou A., Coleman A.L. Risk factors for primary openangle glaucoma and pseudoexfoliative glaucoma in the Thessaloniki Eye Study. Am. J. Ophthalmol. 2011; 152 (2): 219-228.; Yanagi M., Kawasaki R., Wang J.J., Wong T.Y., Crowston J., Kiuchi Y. Vascular risk factors in glaucoma: a review. Clin. Ex. Ophthalmol. 2011; 39 (3): 252-258.; Volkov V.V. [Open angle glaucoma]. Otkrytougol’naja glaukoma. Мoscow, MIA, 2008. (in Russ.).; ShmyrevaV.F. [Risk factors and target pressure in glaucomatous optic neuropathy]. Faktory riska i celevoe vnutriglaznoe davlenie pri glaukomnoj opticheskoj nejropatii. [Glaucoma: reality and perspective: collection of scientific papers] Glaukoma: real’nost’ i perspektivy: sb. nauch. statei. Мoscow, 2008. (in Russ.).; Volkov V.V. [Glaucoma with pseudo-normal intraocular pressure]. Glaukoma pri psevdonormal’nom davlenii. Мoscow, Medicine, 2001. (in Russ.).; Nucci C., Tartaglione R., Rombola L., Morrone L.A., Fazzi E., Bagetta G. Neurochemical evidence to implicate elevated glutamate in the mechanisms of high intraocular pressure (IOP) — induced retinal ganglion cell death in rat. Neurotoxicology. 2005; 26 (5): 935-941.; Sharma S.C. Cell death in glaucoma. Arch.Soc. Esp. Oftalmol. 2000; 75 (3): 141-2.; Krasnov M.M. [Intraocular blood flow]. O vnutriglaznom krovoobrashhenii pri glaukome. [Annals of Ophthalmology]. Vestnik oftal’mologii 1997; 113 (5): 5-7. (in Russ.).; Kugoeva E. E., Podgornaja N. N., Sherstneva L. V. [Eye hemodynamics and somatic status research in patients with primary open angle glaucoma]. Izuchenie gemodinamiki glaza i obshhesomaticheskogo statusa bol’nyh s pervichnoj otkrytougol’noj glaukomoj. [Annals of Ophthalmology]. Vestnik oftal’mologii 2000; 116 (4): 26-27. (in Russ.).; Shmyreva V. F., Petrov S. Yu., Antonov A. A., Stratonnikov A. A., Savel’eva T. A., Shevchik S. A., Ryabova A. A. [The research of metabolism of the anterior eye segment according to hemoglobin oxygenation levels in the venous bed in patients with primary open angle glaucoma]. Issledovanie metabolizma tkanej perednego otrezka glaza po urovnju oksigenacii gemoglobina v venoznom rusle pri pervichnoj otkrytougol’noj glaukome. [Glaucoma]. Glaukoma. 2008; 3: 3-10. (in Russ.).; Egorov E. A., Egorov A. E., Brezhnev A. Yu. [Modern aspects of glaucoma neuroprotective treatment]. Sovremennye aspekty nejroprotektornoj terapii glaukomy. Мoscow, April’, 2014. (in Russ.).; Shields M. B., Tombran-Tink J., Barnstable C. J. Mechanisms of the glaucomas: disease processes and therapeutic modalities. Totowa, NJ: Humana Press: Springer distributor; 2008.; Avetisov S.E., Bubnova I.A., Petrov S.Yu., Antonov A.A. [The role of corneal resistance factor, defined by means of bidirectional pneumoapplanation, in tonometry assessment]. Znachenie faktora rezistentnosti rogovicy, opredeljaemogo metodom dvunapravlennoj pnevmoapplanacii, v traktovke rezul’tatov tonometrii. [Glaucoma]. Glaukoma. 2012 (1): 12-15. (in Russ.).; Akopyan A.I., Erichev V.P., Iomdina E.N. [The role of of biomechanical properties of the eye in the assessment of the progression of glaucoma, myopia and combined pathology]. Cennost’ biomehanicheskih parametrov glaza v traktovke razvitija glaukomy, miopii i sochetannoj patologii. [Glaucoma]. Glaukoma. 2008; 1: 9-14. (in Russ.).; Vodovozov A.M., Boriskina M.G. [True target pressure in patients with glaucoma,cular hypertension and normal-pressure glaucoma]. Istinnoe tolerantnoe vnutriglaznoe davlenie pri glaukome, glaznoj gipertenzii i glaukome s nizkim davleniem. [Annals of Ophthalmology]. Vestnik oftal’mologii. 1989; 105 (1): 5-7. (in Russ.).; Avetisov S. E., Mamikonyan V. R., Kazaryan E. E., Shmeleva-Demir O. A., Mazurova Yu. V., Ryzhkova E. G., Antonov A. A., Tatevosyan A. A. [New screening method of defining target pressure]. Novyj skriningovyj metod opredelenija tolerantnogo vnutriglaznogo davlenija. [Annals of Ophthalmology]. Vestnik oftal’mologii. 2007; 5: 3-7. (in Russ.).; Avetisov S. E., Bubnova I. A., Petrov S. Yu., Antonov A. A., Reshhikova V. S. [Specifics of the biomechanicas properties of the fibrous layer of the eye in patients with primary open-angle glaucoma]. Osobennosti biomehanicheskih svojstv fibroznoj obolochki glaza pri pervichnoj otkrytougol’noj glaukome. [Glaucoma]. Glaukoma. 2012; 4: 7-11. (in Russ.).; Erichev V. P., Eremina M. V., Yakubova L. V., Aref’eva Yu.A. [The analyzer of biomechanicas properties of the eye in the assessment of viscoelastic properties of the cornea in healthy eyes]. Analizator biomehanicheskih svojstv glaza v ocenke vjazko-jelasticheskih svojstv rogovicy v zdorovyh glazah. [Glaucoma]. Glaukoma. 2007; 1: 11-15. (in Russ.).; Avetisov S. E., Bubnova I. A., Antonov A. A. [Once more on the diagnostic capability of elastotonometry] Eshhe raz o diagnosticheskih vozmozhnostjah jelastotonometrii. [Annals of Ophthalmology]. Vestnik oftal’mologii 2008; 5: 19-22. (in Russ.).; Аvetisov S. E., Bubnova I. A., Antonov A. A. [The study of the effect of the corneal biomechanical properties on the intraocular pressure measurement]. Issledovanie vliyaniya biomehanicheskih svoistv rogovicy na pokazateli tonometrii. [Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences]. Bulleten’ Sibirskogo otdeleniya Rossiyskoi akademii medicinskih nauk. 2009; 29 (4): 30-33. (in Russ.).; Kozlova I.V., Akopyan A.I., Reshhikova V.S. [Administration of Betoftan 0,5% in patients with primary open-angle glaucoma] Primenenie preparata betoftan 0,5% u bol’nyh pervichnoj otkrytougol’noj glaukomoj. [Glaucoma]. Glaukoma. 2011; 2: 17-20. (in Russ.).; Kozlova I. V., Akopjan A. I., Reshhikova V. S. [The use of new fixed form of Dorzopt plus in treatment of patients with primary open-angle glaucoma]. Opyt primenenija novoj fiksirovannoj formy dorzopt pljus v lechenii pacientov s pervichnoj otkrytougol’noj glaukomoj. [Glaucoma]. Glaukoma. 2012; 2: 50-54. (in Russ.).; Egorov A. E., Obruch B. V., Kasimov E. M. [The use of Mexidol in patients with optic neuropathies]. Primenenie Meksidola u bol’nyh s opticheskimi nejropatijami. [Clinical Ophthalmology]. Klinicheskaja oftal’mologija. 2002; 3 (2): 28-31. (in Russ.).; Alekseev V.N., Morozova N.V. [The use of Retinalamin in patients with primary open-angle glaucoma]. Primenenie Retinalamina u bol’nyh s pervichnoj otkrytougol’noj glaukomoj. [Glaucoma]. Glaukoma. 2013; 1: 49-52. (in Russ.).; Kamenskih T. G. [Clinical research of parabulbar and subtenon Retinalamin in patients with open-angle glaucoma]. Klinicheskoe issledovanie dejstvija preparata «Retinalamin» u bol’nyh otkrytougol’noj glaukomoj pri parabul’barnom i subtenonovom vvedenii. [Clinical Ophthalmology]. Klinicheskaja oftal’mologija. 2006; 7 (4): 142-143. (in Russ.).; Erichev V. P., Shamshinova A. M., Lovpache D. N. [Comparative assessment of peptide bioregulators neuroprotective action in patients with various stages of primary open-angle glaucoma]. Sravnitel’naja ocenka nejroprotektornogo dejstvija peptidnyh bioreguljatorov u pacientov s razlichnymi stadijami pervichnoj otkrytougol’noj glaukomy. [Glaucoma]. Glaukoma. 2005; 1: 18-24. (in Russ.).; Alekseev I.B., Lomakina O.E., Shinalieva O.N., Alekseeva G.N. [The efficacy of 0,1% Semax as neuroprotective therapy in patients with glaucoma]. Effektivnost’ ispol’zovanija preparata Semaks 0,1% v kachestve nejroprotektornoj terapii u glaukomnyh bol’nyh. [Glaucoma]. Glaukoma. 2012; 1: 48-52. (in Russ.).; Kurysheva N. I., Shpak A. A., Iopleva E. E. [Semax in treatment of glaucomatous optic neuropathy in patients with normal range IOP]. «Semaks» v lechenii glaukomatoznoj opticheskoj nejropatii u bol’nyh s normalizovannym oftal’motonusom. [Annals of Ophthalmology]. Vestnik oftal’mologii. 2001; 117 (4): 5-8. (in Russ.).; Efimova M. N., Yakubova L. B. [The effect of calcium channel blockers systemic administration on the field of vision of patients with primary open-angle glaucoma]. Neposredstvennye rezul’taty vlijanija sistemnogo priema antagonistov kal’cija na polja zrenija bol’nyh pervichnoj otkrytougol’noj glaukomoj s normalizovannym davleniem. [Glaucoma]. Glaukoma. 1994; 82-84. (in Russ.).; Kaiser H. J., Flammer J., Stumpfig D. [Significance of the peripheral visual field for diagnosis of glaucoma]. Klin. Monatsbl. Augenheil. 1992; 200 (1): 17-20.; Kuroedov A. V., Golubev S. Yu., Shafranov G. V. [The study of morphometric criteria of optic nerve head in the light of modern laser diagnostic methods]. Issledovanie morfometricheskikh kriteriev diska zritel’nogo nerva v svete vozmozhnostey sovremennoy lazernoy diagnosticheskoy tekhniki. [Glaucoma]. Glaukoma. 2005; 2: 7-18. (in Russ.).; Erichev V.P., Akopyan A.I. [Several correlations between retina tomography parameters]. Nekotorye korreljacionnye vzaimootnoshenija parametrov retinotomograficheskogo issledovanija. [Glaucoma]. Glaukoma. 2006; 2: 24-28. (in Russ.).; Toth M., Kothy P., Hollo G. Accuracy of scanning laser polarimetry, scanning laser tomography, and their combination in a glaucoma screening trial. J. Glaucoma. 2008; 17 (8): 639-646.; Cox T.A. Laser polarimetry in the detection of glaucoma. Ophthalmology. 2002; 109 (2): 216-217.; Jonas J. B., Fernandez M. C., Naumann G. O. Glaucomatous optic nerve atrophy in small discs with low cup-to-disc ratios. Ophthalmology. 1990; 97 (9): 1211-1215.; Bowd C., Zangwill L. M., Berry C. C., Blumenthal E. Z., Vasile C., Sanchez-Galeana C., Bosworth C. F., Sample P. A., Weinreb R. N. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest. Ophthalmol. Vis. Sci. 2001; 42 (9): 1993-2003.; Hougaard J. L., Heijl A., Bengtsson B. Glaucoma detection by Stratus OCT. J. Glaucoma. 2007; 16 (3): 302-6.; Shpak A. A., Ogorodnikova S. N. [High resolution three-dimensional optic coherence tomography]. Trehmernaja opticheskaja kogerentnaja tomografija vysokogo razreshenija. [Ophthalmosurgery]. Oftal’mokhirurgiya. 2007 (3): 61-65. (in Russ.).; Wheat J. L., Rangaswamy N. V., Harwerth R. S. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J. Glaucoma. 2012; 21 (2): 95-101.; Silva F.R., Vidotti V.G., Cremasco F., Dias M., Gomi E.S., Costa V.P. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry. Arq. Bras. Oftalmol. 2013; 76 (3): 170-174.; Cvenkel B., Kontestabile A.S. Correlation between nerve fibre layer thickness measured with spectral domain OCT and visual field in patients with different stages of glaucoma. Graefe’s archive for clinical and experimental ophthalmology. Graefes Arch. Clin. Exp. Ophthalmol. 2011; 249 (4): 575-584.; Shamshinova A. M., Volkov V. V. [Functional diagnostic techniques in ophthalmology]. Funkcional’nye metody issledovanija v oftal’mologii. Мoscow, Medicine, 1998. (in Russ.).; Egorova I. V., Shamshinova A. M., Erichev V. P. [Functional studies in glaucoma diagnostics]. Funkcional’nye metody issledovanija v diagnostike glaukomy. [Annals of Ophthalmology]. Vestnik oftal’mologii. 2001; 117 (6): 38-39. (in Russ.).; https://www.ophthalmojournal.com/opht/article/view/220

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13