Εμφανίζονται 1 - 20 Αποτελέσματα από 27 για την αναζήτηση '"ситуационная осведомленность"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Civil Aviation High Technologies; Том 28, № 1 (2025); 20-38 ; Научный вестник МГТУ ГА; Том 28, № 1 (2025); 20-38 ; 2542-0119 ; 2079-0619

    Περιγραφή αρχείου: application/pdf

    Relation: https://avia.mstuca.ru/jour/article/view/2498/1421; Bolstad C.A., Riley J.M. Using goal directed task analysis with Army brigade officer teams // Proceedings of the Human Factors and Ergonomics Society Annual Meeting. SAGE Publications. 2002. Vol. 46, no.3. Pp. 472–476. DOI:10.1177/154193120204600354; Stanton N.A., Chambers P.R.G., Piggott J. Situational awareness and safety // Safety science. 2001. Vol. 39, no. 3. Pp. 189–204. DOI:10.1016/S0925-7535(01)00010-8; Sarter N.B., Woods D.D. Situation awareness: A critical but Ill-defined phenomenon // The International Journal of Aviation Psychology. 1991. Vol. 1, no. 1. Pp. 45–57. DOI:10.1207/s15327108ijap0101_4; Стрелков Ю.К. Инженерная и профессиональная психология: учеб. пособие. М.: Академия; Высшая школа, 2001. 360 с.; De Gooijer J.G., Hyndman R.J. 25 years of time series forecasting // International Journal of Forecasting. 2006. Vol. 22, no. 3. Pp. 443–473. DOI:10.1016/j.ijforecast.2006.01.001; Stevenson S. A comparison of the forecasting ability of ARIMA models // Journal of Property Investment & Finance. 2007. Vol. 25, no. 3. Pp. 223–240. DOI:10.1108/14635780710746902; Chatfield C. A new look at models for exponential smoothing / C. Chatfield, A.B. Koehler, J.K. Ord, R.D. Snyder // Journal of the Royal Statistical Society: Series D (The Statistician). 2001. Vol. 50, no. 2. Pp. 147–159. DOI:10.1111/1467-9884.00267; Bentéjac C., Csörgő A., Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms // Artificial Intelligence Review. 2021. Vol. 54. Pp. 1937–1967. DOI:10.1007/s10462-020-09896-5; Faloutsos C. Classical and contemporary approaches to big time series forecasting / C. Faloutsos, J. Gasthaus, T. Januschowski, Y. Wang // SIGMOD '19: Proceedings of the 2019 International Conference on Management of Data, 2019. Pp. 2042–2047. DOI:10.1145/3299869.3314033; Makridakis S., Spiliotis E., Assimakopoulos V. The M4 Competition: Results, findings, conclusion and way forward // International Journal of Forecasting. 2018. Vol. 34, iss. 4. Pp. 802–808. DOI:10.1016/j.ijforecast.2018.06.001; Taieb S.B., Sorjamaa A., Bontempi G. Multiple-output modeling for multi-step-ahead time series forecasting // Neurocomputing. 2010. Vol. 73, iss. 10–12. Pp. 1950–1957. DOI:10.1016/j.neucom.2009.11.030; Sutskever I., Vinyals O., Quoc V.L. Sequence to sequence learning with neural networks // Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014. No. 2. Pp. 3104–3112. DOI:10.48550/arXiv.1409.3215; Caterini A.L. Recurrent neural networks / A.L. Caterini, D.E. Chang, A.L. Caterini, D.E. Chang. In book: Deep Neural Networks in a Mathematical Framework. Springer Briefs in Computer Science. Springer, Cham, 2018. Pp. 59–79. DOI:10.1007/978-3-319-75304-1_5; Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by backpropagating errors // Nature. 1986. No. 323. Pp. 533–536. DOI:10.1038/323533a0; Rasamoelina A.D., Adjailia F., Sinčák P. A review of activation function for artificial neural network // 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI). Slovakia, Herlany, 2020. Pp. 281–286. DOI:10.1109/SAMI48414.2020.9108717; Toharudin T. Employing long shortterm memory and Facebook prophet model in air temperature forecasting / T. Toharudin, R.S. Pontoh, R.E. Caraka, S. Zahroh, Y. Lee Y, R.C. Chen // Communications in Statistics-Simulation and Computation. 2023. Vol. 52, iss. 2. Pp. 279–290. DOI:10.1080/03610918.2020.1854302; Schmidhuber J., Hochreiter S. Long short-term memory // Neural Computation. 1997. Vol. 9, iss. 8. Pp. 1735–1780. DOI:10.1162/neco.1997.9.8.1735; De Mulder W., Bethard S., Moens M.F. A survey on the application of recurrent neural networks to statistical language modeling / Computer Speech & Language. 2015. Vol. 30, iss. 1. Pp. 61–98. DOI:10.1016/j.csl.2014.09.005; Shi X. Convolutional LSTM network: A machine learning approach for precipitation nowcasting / X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W.C. Woo // NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015. Vol. 1. Pp. 802–810. DOI:10.48550/arXiv.1506.04214; Li Z. A survey of convolutional neural networks: analysis, applications, and prospects / Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou // IEEE transactions on neural networks and learning systems. 2021. Vol. 33, no. 12. Pp. 6999–7019. DOI:10.1109/TNNLS.2021.3084827; Ballas N. Delving deeper into convolutional networks for learning video representations / N. Ballas, L. Yao, C.J. Pal, A. Courville [Электронный ресурс] // 4th International Conference on Learning Representations (ICLR 2016), 2016. 2 p. DOI:10.48550/arXiv.1511.06432 (дата обращения: 08.10.2024).; Mahafza B.R. Radar systems analysis and design using MATLAB. 2nd ed. Chapman and Hall, CRC, 2005. 638 p. DOI:10.1201/9781420057072; Van Dyk D.A., Meng X.L. The art of data augmentation // Journal of Computational and Graphical Statistics. 2001. Vol. 10, no. 1. Pp. 1–50. DOI:10.1198/10618600152418584; Masters D., Luschi C. Revisiting small batch training for deep neural networks [Электронный ресурс] // Computer Science and Machine Learning. 2018. Pp. 1–18. DOI:10.48550/arXiv.1804.07612 (дата обращения: 08.10.2024).; Werbos P.J. Backpropagation through time: what it does and how to do it // Proceedings of the IEEE. 1990. Vol.78, no. 10. Pp. 1550–1560. DOI:10.1109/5.58337; Llugsi R. Comparison between Adam, AdaMax and Adam W optimizers to implement a weather forecast based on neural networks for the Andean city of Quito / R. Llugsi, S.E. Yacoubi, A. Fontaine, P. Lupera // 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), 2021. Pp. 1–6. DOI:10.1109/ETCM53643.2021.9590681; Bejani M.M., Ghatee M. A systematic review on overfitting control in shallow and deep neural networks // Artificial Intelligence Review. 2021. Vol. 54. Pp. 6391–6438. DOI:10.1007/s10462-021-09975-1; Passos D., Mishra P. A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks [Электронный ресурс] // Chemometrics and Intelligent Laboratory Systems. 2022. Vol. 223. ID: 104520. DOI:10.1016/j.chemolab.2022.10 4520 (дата обращения: 08.10.2024).; Koloskova A., Hendrikx H., Stich S.U. Revisiting gradient clipping: Stochastic bias and tight convergence guarantees // International Conference on Machine Learning. 2023. Pp. 17343–17363. DOI:10.48550/arXiv.2305. 01588; Endsley M.R. Toward a theory of situation awareness in dynamic systems // Human factors. 1995. Vol. 37, no. 1. Pp. 32–64. DOI:10.1518/001872095779049543; Kaikkonen L. Bayesian networks in environmental risk assessment: A review / L. Kaikkonen, T. Parviainen, M. Rahikainen, L. Uusitalo, A. Lehikoinen // Integrated environmental assessment and management. 2021. Vol. 17, no. 1. Pp. 62–78. DOI:10.1002/ieam.4332; Kovalenko G.V., Yadrov I.A., Kuts K.A. Intelligent adaptive flight crew decision support system for thunderstorm avoidance // Russian Aeronautics. 2023. Vol. 66. Pp. 552–559. DOI:10.3103/S1068799823030170; https://avia.mstuca.ru/jour/article/view/2498

  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: Сборник научных трудов Центра военно-стратегических исследований НУОУ имени Ивана Черняховского; №1(74) 2022; 86-92
    Збірник наукових праць Центру воєнно-стратегічних досліджень НУОУ імені Івана Черняховського; №1(74) 2022; 86-92
    Collection of the scientific papers of the Centre for Military and Strategic Studies of the National Defence University; №1(74) 2022; 86-92

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://znp-cvsd.nuou.org.ua/article/view/260364

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Συγγραφείς: Kovbasiuk, Serhii, Vyporkhaniuk, Dmytro

    Πηγή: Sučasnì Informacìjnì Tehnologìï u Sferì Bezpeki ta Oboroni, Vol 34, Iss 1, Pp 76-82 (2019)
    Modern Information Technologies in the Sphere of Security and Defence; Том 34, № 1 (2019); 76-82
    Современные информационные технологии в сфере безопасности и обороны; Том 34, № 1 (2019); 76-82
    Сучасні інформаційні технології у сфері безпеки та оборони; Том 34, № 1 (2019); 76-82

    Περιγραφή αρχείου: application/pdf

  10. 10
  11. 11
    Academic Journal

    Πηγή: Збірник наукових праць Харківського національного університету Повітряних Сил. — 2017. — № 2(51). 59-63 ; Сборник научных трудов Харьковского национального университета Воздушных Сил. — 2017. — № 2(51). 59-63 ; Scientific Works of Kharkiv National Air Force University. — 2017. — № 2(51). 59-63 ; 2073-7378

    Περιγραφή αρχείου: application/pdf

  12. 12
  13. 13
    Academic Journal

    Πηγή: Eastern-European Journal of Enterprise Technologies; Том 1, № 4(79) (2016): Mathematics and Cybernetics-applied aspects; 19-27
    Восточно-Европейский журнал передовых технологий; Том 1, № 4(79) (2016): Математика и кибернетика-прикладные аспекты; 19-27
    Східно-Європейський журнал передових технологій; Том 1, № 4(79) (2016): Математика та кібернетика-прикладні аспекти; 19-27

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journals.uran.ua/eejet/article/view/60828

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20