Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"радиолокационное изображение движущейся цели"', χρόνος αναζήτησης: 0,41δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συγγραφείς: A. A. Monakov, А. А. Монаков

    Πηγή: Journal of the Russian Universities. Radioelectronics; Том 25, № 3 (2022); 22-38 ; Известия высших учебных заведений России. Радиоэлектроника; Том 25, № 3 (2022); 22-38 ; 2658-4794 ; 1993-8985

    Περιγραφή αρχείου: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/635/618; Cumming I., Bennett J. Digital processing of Seasat SAR data // Proc. IEEE Intern. Conf. on Acoustics, Speech and Signal Proc. 1979. Vol. 4. P. 710-718. doi:10.1109/icassp.1979.1170630; Jin M. Y., Wu Ch. A SAR correlation algorithm which accommodates large range migration // IEEE Transactions on Geoscience and Remote Sensing. 1984. № 6. P. 592-597. doi:10.1109/tgrs.1984.6499176; Chang C. Y., Jin M., Curlander J. C. Squint Mode SAR Processing Algorithms // 12th Canadian Symp. on Remote Sensing Geoscience and Remote Sensing Symp. 1989. Vol. 3. P. 1702-1706. doi:10.1109/igarss.1989.576456; Smith A. M. A new approach to range-Doppler SAR processing // Int. J. of Remote Sensing. 1991. Vol. 12, № 2. P. 235-251. doi:10.1080/01431169108929650; Franceschetti G., Schirinzi G. A SAR processor based on two-dimensional FFT code // IEEE Transactions on Aerospace Electronic Systems. 1990. Vol. 26, № 2. P. 356-366. doi:10.1109/7.53462; Cafforio C., Prati C., Rocca F. SAR data focusing using seismic migration techniques // IEEE Transactions on Aerospace and Electronic Systems. 1991. Vol. 27, № 2. P. 194-207. doi:10.1109/7.78293; Franceschetti G., Lanari R., Marzouk E. S. Aberration free SAR raw data processing via transformed grid predeformation // Proc. of IGARSS '93 - IEEE Intern. Geoscience and Remote Sensing Symp. 1993. Vol. 4. P. 15931595. doi:10.1109/igarss.1993.322306; Stolt R. H. Migration by Fourier transform // Geophysics. 1978. Vol. 43, № 1. P. 23-48. doi:10.1190/1.1440826; Runge H., Bamler R. A Novel High Precision SAR Focussing Algorithm Based on Chirp Scaling // Proc. Article IGARSS '92 Intern. Geoscience and Remote Sensing Symp. 1992. Vol. 1. P. 372-375. doi:10.1109/igarss.1992.576715; Cumming I., Wong F., Raney K. A SAR Processing Algorithm with no Interpolation // Proc. IGARSS '92 Intern. Geoscience and Remote Sensing Symp. 1992. Vol. 1. P. 376-379. doi:10.1109/igarss.1992.576716; Wong F., Cumming I., Raney R. K. Processing simulated RADARSAT SAR data with squint by a high precision algorithm // Proc. of IGARSS '93. IEEE Intern. Geoscience and Remote Sensing Symp. 1993. Vol. 3. P. 1176-1178. doi:10.1109/igarss.1993.322127; Precision SAR processing using chirp scaling / R. K. Raney, H. Runge, R. Bamler, I. G. Cumming, F. H. Wong // IEEE Transactions on Geoscience and Remote Sensing. 1994. Vol. 32, № 4. P. 786-799. doi:10.1109/36.298008; Moreira A., Huang Y. Airbome SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation // IEEE Trans. Geoscience and Remote Sensing. 1994. Vol. 32, № 5. P. 1029-1040. doi:10.1109/36.312891; Moreira A., Mittermayer J., Scheiber R. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scanSAR imaging modes // IEEE Transactions on Geoscience and Remote Sensing. 1996. Vol. 34, № 5. P. 1123-1136. doi:10.1109/36.536528; Mittermayer J., Moreira A., Loffeld O. Spotlight SAR data processing using the frequency scaling algorithm // IEEE Transactions on Geoscience and Remote Sensing. 1999. Vol. 37, № 5. P. 2198-2214. doi:10.1109/36.789617; Zhu D., Shen M., Zhu Z. Some Aspects of Improving the Frequency Scaling Algorithm for Dechirped SAR Data Processing // IEEE Transactions on Geoscience and Remote Sensing. 2008. Vol. 46, № 6. P. 1579-1588. doi:10.1109/tgrs.2008.916468; Perry R. P., DiPietro R. C., Fante R. L. SAR imaging of moving targets // IEEE Transactions on Aerospace Electronic Systems. 1999. Vol. 35, № 1. P. 188-200. doi:10.1109/7.745691; Perry R. P., DiPietro R. C., Fante R. L. Coherent Integration with Range Migration Using Keystone Formatting // IEEE Radar Conf. 2007. Waltham, USA, 17-20 Apr. 2007. IEEE, 2007. P. 863-868. doi:10.1109/radar.2007.374333; Zhu D., Li Y., Zhu Z. A Keystone Transform without Interpolation for SAR Ground Moving Target Imaging // IEEE Geoscience and Remote Sensing Lett. 2007. Vol. 4, № 1. P. 18-22. doi:10.1109/lgrs.2006.882147; Monakov A. A. A Simple Algorithm for Compensation of the Range Cell Migration in a Stripmap SAR // J. of the Russian Universities. Radioelectronics. 2021. Vol. 24, № 2. P. 27-37. doi:10.32603/19938985-2021-24-2-27-37; Approach for single channel SAR ground moving target imaging and motion parameter estimation / F. Zhou, R. Wu, M. Xing, Z. Bao // IET Radar, Sonar & Navigation. 2007. Vol. 1, № 1. P. 59-66. doi:10.1049/iet-rsn:20060040; Kirkland D. Imaging moving targets using the second-order keystone transform // IET Radar, Sonar & Navigation. 2011. Vol. 5, № 8. P. 902-910. doi:10.1049/iet-rsn.2010.0304; Kirkland D. An alternative range migration correction algorithm for focusing moving targets // Progress in Electromagnetics Research. 2012. Vol. 131. P. 227-241. doi:10.2528/PIER12060711; Djurovi'c I., Thayaparan T., Stankovi'c L. SAR Imaging of Moving Targets using Polynomial FT // IET Signal Processing. 2008. Vol.2,№3.P. 1436-1447. doi:10.1049/iet-spr:20070114; Монаков А. А. Оценка параметров сигнала с полиномиальным законом фазовой модуляции // Изв. вузов России. Радиоэлектроника. 2020. Т. 23, № 5. С. 24-36. doi:10.32603/1993-8985-2020-23-5-24-36; Li G., Xia X.-G., Peng Y.-N. Doppler keystone transform for SAR imaging of moving targets // Proc. of the 2008 Congress on Image and Signal Processing. 2008. Vol. 4. P. 716-719. doi:10.1109/CISP.2008.600; Cohen L. Time-frequency distributions - a review // Proc. of the IEEE. 1989. Vol. 77, № 7. P. 941981. doi:10.1109/5.30749; Hlawatsch F., Boudreaux-Bartels G. F. Linear and quadratic time-frequency signal representations // IEEE Signal Processing Magazine. 1992. Vol. 9, № 2. P. 21-67. doi:10.1109/79.127284; Claasen T. A. C. M., Mecklenbrauker W. F G. The Wigner distribution - a tool for time-frequency signal analysis. Pt. I: continuous-time signals // Philips J. Res. 1980. Vol. 35, № 3. P. 217-250.; Boashash B. Note on the use of the Wigner distribution for time-frequency signal analysis // IEEE Transactions on Acoustics, Speech and Signal Processing. 1988. Vol. 36, № 9. P. 1518-1521. doi:10.1109/29.90380; Barbarossa S., Farina A. Detection and imaging of moving objects with synthetic aperture radar. Pt. 2: Joint time-frequency analysis by Wigner-Ville distribution // IEE Proc. F Radar Signal Process. 1992. Vol. 139, № 1. P. 89-97. doi:10.1049/ip-f-2.1992.0011; Wood J. C., Barry D. T. Radon transformation of time-frequency distributions for analysis of multicomponent signals // IEEE Transactions on Signal Processing. 1994. Vol. 42, № 11. P. 3166-3177. doi:10.1109/78.330375; Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform // IEEE Transactions on Signal Processing. 1995. Vol. 43, № 6. P. 1511-1515. doi: 0.1109/78.388866; Sejdic E., Djurovic I., Jiang J. Time-frequency feature representation using energy concentration: An overview of recent advances // Digital Signal Processing. 2009. Vol. 19, № 1. P. 153-183. doi:10.1016/j.dsp.2007.12.004; Almeida L. B. The fractional Fourier transform and time-frequency representations // IEEE Transactions on Signal Processing. 1994. Vol. 42, № 11. P. 3084-3091. doi:10.1109/78.330368; Sejdic' E., Djurovic' I., Stankovic' L. Fractional Fourier transform as a signal processing tool: An overview of recent developments // Signal Processing. 2011. Vol. 91, № 6. P. 1351-1369. doi:10.1016/j.sigpro.2010.10.008; Keystone transformation of the Wigner-Ville distribution for analysis of multicomponent LFM signals / X. L. Lv, M. D. Xing, S. H. Zhang, Z. Bao // Signal Processing. 2009. Vol. 59. P. 791-806. doi:10.1016/j.sigpro.2008.10.029; ISAR imaging of maneuvering targets based on the range centroid Doppler technique / X. L. Lv, M. D. Xing, C. R. Wan, S. H. Zhang // IEEE Trans. on Image Process. 2010. Vol. 19, № 1. P. 141-153. doi:10.1109/TIP.2009.2032892; Lv's distribution: principle, implementation, properties, and performance / X. L. Lv, G. A. Bi, C. R. Wan, M. D. Xing // IEEE Trans. on Signal Process. 2011. Vol. 59, № 8. P. 3576-3591. doi:10.1109/TSP.2011.2155651; Luo S., Lv X., Bi G. Lv's distribution for timefrequency analysis // Proc. of 2011 Int. Conf. on Circuits, Systems, Control, Signals. 2011. P. 110-115.; Performance analysis on Lv distribution and its applications /Sh. Luo, G. Bi, X. Lv, F. Hu // Digital Signal Process. 2013. Vol. 23, № 3. P. 797-807. doi:10.1016/j.dsp.2012.11.011; Монаков А. А. Применение масштабно-инвариантных преобразований при решении некоторых задач цифровой обработки сигналов // Успехи современной радиоэлектроники. 2007. Т. 65, № 11. С. 65-72.; Монаков А. А. Согласованный фильтр Меллина // Успехи современной радиоэлектроники. 2013. Т. 67, № 2. С. 56-62.; Monakov A. The Mellin matched filter // IEEE J. of Selected Topics in Signal Processing. 2015. Vol. 9, № 8. P. 1451-1459. doi:10.1109/JSTSP.2015.2465309; De Sena A., Rocchesso D. A fast Mellin transform with applications in DAF // Proceedings of the 7th Int. Conf. on Digital Audio Effects (DAFx '04). 2004. P. 65-69.; De Sena A., Rocchesso D. A fast Mellin and scale transform // EURASIP J. on Advances in Signal Processing. 2007. P. 1-9. doi:10.1155/2007/89170; https://re.eltech.ru/jour/article/view/635