Εμφανίζονται 1 - 20 Αποτελέσματα από 77 για την αναζήτηση '"магнетосопротивление"', χρόνος αναζήτησης: 0,79δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συγγραφείς: J. A. Fedotova, Ю. А. Федотова

    Συνεισφορές: The work is supported by the Belarusian Republican Foundation for Fundamental Research (grant no. Ф20ПТИ-014). Author is also grateful to Prof. Y. Chen from Beijing Institute of Technology (China) for the supplying of b-As crystals for research, Работа поддержана Белорусским республиканским фондом фундаментальных исследований (договор № Ф20ПТИ-014). Автор выражает благодарность профессору Я. Чену, Пекинский технологический институт (Китай), за предоставление для исследований кристалла b-As

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 66, № 1 (2022); 26-34 ; Доклады Национальной академии наук Беларуси; Том 66, № 1 (2022); 26-34 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2022-66-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1034/1031; Thickness-Dependent Carrier Transport Characteristics of a New 2D Elemental Semiconductor: Black Arsenic / M. Z. Zhong [et al.] // Adv. Funct. Mater. – 2018. – Vol. 28, N 43. – Art. 1802581. https://doi.org/10.1002/adfm.201802581; Arsenic K4 crystal: A new stable direct-gap semiconductor allotrope / C. Wang [et al.] // Solid State Communications. – 2021. – Vol. 323. – Art. 114128. https://doi.org/10.1016/j.ssc.2020.114128; Atomically thin binary V–V compound semiconductor: a first-principles study / W. Y. Yu [et al.] // J. Mater. Chem. C. – 2016. – Vol. 4, N 27. − P. 6581–6587. https://doi.org/10.1039/c6tc01505k; Stöhr, H. Beiträge zur Kenntnis der Allotropie des Arsens / H. Stöhr // Z. Anorg. Allg. Chem. – 1939. – Vol. 242, N 2. − P. 138–144. https://doi.org/10.1002/zaac.19392420204; Seidl, M. The Chemistry of Yellow Arsenic / M. Seidl, G. Balazs, M. Scheer // Chem. Rev. – 2019. – Vol. 119, N 14. − P. 8406–8434. https://doi.org/10.1021/acs.chemrev.8b00713; Lattice dynamics and anomalous bonding in rhombohedral As: First-principles supercell method / S. Shang [et al.] // Physical Review B. – 2007. – Vol. 76, N 5. − Art. 052301. https://doi.org/10.1103/physrevb.76.052301; Silas, P. Density-functional investigation of the rhombohedral to simple-cubic phase transition of arsenic / P. Silas, J. R. Yates, P. D. Haynes // Physical Review B. – 2008. – Vol. 78, N 17. – Art. 174101. https://doi.org/10.1103/physrevb.78.174101; Quantum effect enhanced magnetism of C-doped phosphorene nanoribbons: first-principles calculations / X. L. Cai [et al.] // Phys. Chem. Chem. Phys. – 2017. – Vol. 19, N 41. − P. 28354–28359. https://doi.org/10.1039/c7cp05277d; Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide / L. Kou [et al.] // J. Phys. Chem. C. – 2015. – Vol. 119, N 12. – P. 6918–6922. https://doi.org/10.1021/acs.jpcc.5b02096; Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene / Z. Zhang [et al.] // Applied Physics Express. – 2015. – Vol. 8, N 5. – Art. 055201. https://doi.org/10.7567/apex.8.055201; Kamal, C. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems / C. Kamal, M. Ezawa // Physical Review B. – 2015. – Vol. 91, N 8. – Art. 085423. https://doi.org/10.1103/physrevb.91.085423; Roisnel, T. WinPLOTR: a Windows tool for powder diffraction pattern analysis / T. Roisnel, J. Rodríquez-Carvajal // Mater. Sci. Forum. – 2001. – Vol. 378–381. – P. 118–123. https://doi.org/10.4028/www.scientific.net/msf.378-381.118; Shklovskii, B. I. Electronic properties of doped semiconductors / B. I. Shklovskii, A. L. Efros. – Springer Series in Solid-State Sciences, 1984. – 390 p. https://doi.org/10.1007/978-3-662-02403-4; Shik, A. Y. Electronic Properties of Inhomogeneous Semiconductors / A. Y. Shik. – Electrocomponent Science Monographs, 1995. – 152 p.; Electric Properties of Black Phosphorus Single Crystals / A. K. Fedotov [et al.] // IX Intern. Scient. Conf. Actual Problems of Solid State Physics: Book of abstracs. – 2021. – Vol. 2. – P. 47–51.; Altshuler, B. L. Effects of electron-electron collisions with small energy transfers on quantum localization / B. L. Altshuler, A. G. Aronov, D. E. Khmelnitsky // Journal of Physics C: Solid State Physics. – 1982. – Vol. 15. – Art. 7367. https://doi.org/10.1088/0022-3719/15/36/018; Pudalov, V. M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid / V. M. Pudalov // Proceedings of the International School of Physics “Enrico Fermi”. – 2004. – Vol. 157. – P. 335–356. https://doi.org/10.3254/978-1-61499-013-0-335; Полянская, Т. А. Квантовые поправки к проводимости в полупроводниках с двумерным и трехмерным электронным газом / Т. А. Полянская, Ю. В. Шмарцев // Физика и техника полупроводников. – 1989. – Т. 23, № 1. – C. 3–32.; https://doklady.belnauka.by/jour/article/view/1034

  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Mìkrosistemi, Elektronìka ta Akustika, Vol 23, Iss 3 (2018)
    Microsystems, Electronics and Acoustics; Том 23, № 3 (2018); 6-13
    Микросистемы, Электроника и Акустика; Том 23, № 3 (2018); 6-13
    Мікросистеми, Електроніка та Акустика; Том 23, № 3 (2018); 6-13

    Περιγραφή αρχείου: application/pdf

  7. 7
  8. 8
  9. 9
    Academic Journal

    Συνεισφορές: This work was financially supported by the State Program «Photonics, Optoelectronics and Microelectronics» (assignment 3.3.01), the State Committee for Science and Technology of the Republic of Belarus (project BRFFR F18PLSHG-005), and contract No. 08626319/182161170.-74 with JINR (Russian Federation). S. L. Prishchepa and I. V. Komissars are grateful for the financial support of the «Competitiveness Enhancement Program» of the National Research Nuclear University MEPhI. The authors are grateful to Ph.D. I. A. Svito (BSU) for taking measurements of electrical properties and graduate student A. V. Pashkevich (INP BSU) for help in preparing the article.

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 22, № 2 (2019); 73-83 ; Известия высших учебных заведений. Материалы электронной техники; Том 22, № 2 (2019); 73-83 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2019-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/337/278; Ferrari A. C., Bonaccorso F., Fal’ko V., Novoselov K. S., Roche S., Bøggild P. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems // Nanoscale. 2015. V. 7, N 11. P. 4598—4810. DOI:10.1039/c4nr01600a; Liu Y., Liu Z., Lew W. S., Wang Q. J. Temperature dependence of the electrical transport properties in few-layer graphene interconnects // Nanoscale Res. Lett. 2013. V. 8. P. 335—340. DOI:10.1186/1556-276X-8-335; Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of grapheme // Rev. Mod. Phys. 2009. V. 81, N 1. P. 109—115. DOI:10.1103/RevModPhys.81.109; Asshoff P. U., Sambricio J. L., Rooney A. P., Slizovskiy S., Mishchenko A., Rakowski A. M., Hill E. W., Geim A. K., Haigh S. J., Fal’ko V. I., Vera-Marun I. J., Grigorieva I. V. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene // 2D Mater. 2017. V. 4, N 3. P. 031004. DOI:10.1088/2053-1583/aa7452; Iqbal M. Z., Iqbal M. W., Lee J. H., Kim Y. S., Chun S.-H., Eom J. Spin valve effect of NiFe/graphene/NiFe junctions // Nano Research. 2013. V. 6. P. 373—380. DOI:10.1007/s12274-013-0314-x; De Franco V. C., Castro G. M. B., Corredor J., Mendes D., Schmidt J. E. In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si // Carbon Lett. 2017. V. 21. P. 16—22. DOI:10.5714/CL.2017.21.016; Khatami Y., Li H., Xu C., Banerjee K. Metal-to-multilayer-graphene contact. Part I: Contact resistance modeling // IEEE Trans. Electron. Devices. 2012. V. 59, Iss. 9. P. 2444—2452. DOI:10.1109/TED.2012.2205256; Ruhl G., Wittmann S., Koenig M., Neumaier D. The integration of graphene into microelectronic devices // Beilstein J. Nanotechnol. 2017. V. 8. P. 1056—1064. DOI:10.3762/bjnano.8.107; Bayev V. G., Fedotova J. A., Kasiuk J. V., Vorobyova S. A., Sohor A. A., Komissarov I. V., Kovalchuk N. G., Prischepa S. L., Kargin N. I., Andrulevičius M., Przewoznik J., Kapusta Cz., Ivashkevich O. A., Tyutyunnikov S. I., Kolobylina N. N., Guryeva P. V. CVD graphene sheets electrochemically decorated with «core-shell» Co/CoO nanoparticles // Appl. Surf. Sci. 2018. V. 440. P. 1252—1260. DOI:10.1016/j.apsusc.2018.01.245; Tuček J., Sofer Z., Bouša D., Pumera M., Holá K., Malá A., Poláková K., Havrdová M., Čépe K., Tomanec O., Zbořil R. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix // Nature Commun. 2016. V. 7. P. 12879. DOI:10.1038/ncomms12879; Zhidkov I. S., Skorikov N. A., Korolev A. V., Kukharenko A. I., Kurmaev E. Z., Fedorov V. E., Cholakh S. O. Electronic structure and magnetic properties of graphene/Co composite // Сarbon. 2015. V. 91. P. 298—303. DOI:10.1016/j.carbon.2015.04.086; Sokolik A. A., Zabolotskiy A. D., Lozovik Yu. E. Many-body effects of Coulomb interaction on Landau levels in graphene // Phys. Rev. B. 2017. V. 95, Iss. 12. P. 125402-1—4. DOI:10.1103/PhysRevB.95.125402; Majumder C., Bhattacharya S., Saha S. K. Anomalous large negative magnetoresistance in transition-metal decorated graphene: Evidence for electron-hole puddles // Phys. Rev. B. 2019. V. 99, Iss. 4. P. 045408-1—13. DOI:10.1103/PhysRevB.99.045408; Fedotov А. K., Prischepa S. L., Fedotova J. A., Bayev V. G., Ronassi A. A., Komissarov I. V., Kovalchuk N. G., Vorobyova S. A., Ivashkevich O. A. Electrical conductivity and magnetoresistance in twisted graphene electrochemically decorated with Co particles // Physica E: Low-dimensional Systems and Nanostructures. 2020. V. 117. P. 113790. DOI:10.1016/j.physe.2019.113790; Jobst J., Waldmann D., Gornyi I. V., Mirlin A. D., Weber H. B. Electron-electron interaction in the magnetoresistance of graphene // Phys. Rev. Lett. 2012. V. 108, Iss. 10. P. 106601. DOI:10.1103/PhysRevLett.108.106601; Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Ponomarenko L. A., Jiang D., Geim A. K. Strong suppression of weak localization in graphene // Phys. Rev. Lett. 2006. V. 97, Iss. 1. P. 016801-1—4. DOI:10.1103/PhysRevLett.97.016801; Gorbachev R. V., Tikhonenko F. V., Mayorov A. S., Horsell D. W., Savchenko A. K. Weak localization in bilayer grapheme // Phys. Rev. Lett. 2007. V. 98, Iss. 17. P. 176805-1—4. DOI:10.1103/PhysRevLett.98.176805; Kechedzhi K., McCann E., Fal’ko V. I., Suzuura H., Ando T., Altshuler B. L. Weak localization in monolayer and bilayer grapheme // Eur. Phys. J. Spec. 2007. V. 148. P. 39—54. DOI:10.1140/epjst/e2007-00224-6; Shlimak I., Butenko A. V., Zion E., Richter V., Kaganovski Yu., Wolfson L., Sharoni A., Haran A., Naveh D., Kogan E., Kaveh D. Structure and electron transport in irradiated monolayer graphene / In: Future Trends in Electronics: Journey into Unknown. John Wiley & Sons, Inc.: Hoboken (New Jersey), 2016. P. 217—231. DOI:10.1002/9781119069225.ch2-9; Shlimak I., Haran A., Zion E., Havdala T., Kaganovskii Yu., Butenko A. V., Wolfson L., Richter V., Naveh D., Sharoni A., Kogan E., Kaveh M. Raman scattering and electrical resistance of highly disordered graphene // Phys. Rev. 2015. V. 91, Iss. 4. P. 045414-1—4. DOI:10.1103/PhysRevB.91.045414; Shlimak I., Zion E., Butenko A. V., Wolfson L., Richter V., Kaganovskii Yu., Sharoni A., Haran A., Naveh D., Kogan E., Kaveh M. Hopping magnetoresistance in ion irradiated monolayer graphene // Physica E: Low-dimensional Systems and Nanostructures. 2016. V. 76. P. 158—163. DOI:10.1016/j.physe.2015.10.025; Isacsson A., Cummings A. W., Colombo L., Colombo L., Kinaret J. M., Roche S. Scaling properties of polycrystalline graphene: a review // 2D Mater. 2017. V. 4, Iss. 1. P. 012002-1—13. DOI:10.1088/2053-1583/aa5147; Huang P. Y., Ruiz-Vargas C. S., van der Zande A. M., Whitney W. S., Levendorf M. P., Kevek J. W., Garg S., Alden J. S., Hustedt C. J., Zhu Y., Park J., McEuen P. L., Muller D. A. Grains and grain boundaries in single-layer graphene atomic patchwork quilts // Nature. 2011. V. 469. P. 389—392. DOI:10.1038/nature09718; Wang C., Wang J., Barber A. H. Stress concentrations in nanoscale defective grapheme // AIP Advance. 2017. V. 7, Iss. 11. P. 115001. DOI:10.1063/1.4996387; Lebedev A. A., Agrinskaya N. V., Lebedev S. P., Mynbaeva M. G., Petrov V. N., Smirnov A. N., Strel’chuk A. M., Titkov A. N., Shamshur D. V. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation // Semiconductors. 2011. V. 45. P. 623—627. DOI:10.1134/S1063782611050186; Ramnani P., Neupane M. R., Ge S., Balandin A. A., Lake R. K., Mulchandani A. Raman spectra of twisted CVD bilayer grapheme // Carbon. 2017. V. 123. P. 302—306. DOI:10.1016/j.carbon.2017.07.064; Altshuler B. L., Aronov A. G., Khmelnitsky D. E. Effects of electron-electron collisions with small energy transfers on quantum localisation // J. Phys. C: Solid State Phys. 1982. V. 15, N 36. P. 7367—7386. DOI:10.1088/0022-3719/15/36/018; Shklovskii B. I., Efros A. L. Electronic properties of doped semiconductors. Springer Series in Solid-State Sciences. V. 45. Berlin; Heidelberg: Springer-Verlag, 1984. 388 p. DOI:10.1007/978-3-662-02403-4; Shklovskii B. I. Hopping conductivity of semiconductors in strong magnetic fields // JETP. 1972. V. 34, N 5. P. 1084 —1088. URL: http://www.jetp.ac.ru/cgi-bin/dn/e_034_05_1084.pdf; Mikoshiba N. Weak-field magnetoresistance of hopping conduction in simple semiconductors // J. Phys. Chem. Solids. 1963. V. 24, Iss. 3. P. 341—346. DOI:10.1016/0022-3697(63)90192-6; Bayev V., Fedotova J., Humennik U., Vorobyova S., Konakow A., Fedotov A., Svito I., Rybin M., Obraztsova E. Modification of electric transport properties of CVD graphene by electrochemical deposition of cobalt nanoparticles // Intern. J. Nanoscience. 2019. V. 18, N 03n04. P. 1940041-1—4. DOI:10.1142/S0219581X19400416; Solin S. A., Tineke Thio, Hines D. R., Heremans J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors // Science. 2000. V. 289, Iss. 5484. P. 1530—1532. DOI:10.1126/science.289.5484.1530; Komissarov I. V., Kovalchuk N. G., Labunov V. A., Girel K. V., Korolik O. V., Tivanov M. S., Lazauskas A., Andrulevičius M., Tamulevičius T., Grigaliūnas V., Meškinis Š., Tamulevičius S., Prischepa S. L. Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor // Beilstein J. Nanotechnol. 2017. V. 8. P. 145—158. DOI:10.3762/bjnano.8.15; Kovalchuk N. G., Nigerish K. A., Mikhalik M. M., Kargin N. I., Komissarov I. V., Prischepa S. L. Possibility of determining the graphene doping level using Raman spectra // J. Appl. Spectrosc. 2018. V. 84. P. 995—998. DOI:10.1007/s10812-018-0576-x; Chung T.-F., Xu Y., Chen Y. P. Transport measurements in twisted bilayer graphene: Electron-phonon coupling and Landau level crossing // Phys. Rev. B. 2018. V. 98, Iss. 3. P. 035425. DOI:10.1103/PhysRevB.98.035425; Shih C.-J., Vijayaraghavan A., Krishnan R., Sharma R., Han J.-H., Ham M.-H., Jin Z., Lin S., Paulus G. L. C., Reuel N. F., Wang Q. H., Blankschtein D., Strano M. S. Bi- and trilayer graphene solutions // Nat. Nanotechnol. 2011. V. 6, Iss. 7. P. 439—445. DOI:10.1038/nnano.2011.94; Pudalov V. M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid / In: Proceedings of the International School of Physics «Enrico Fermi». V. 157: The Electron Liquid Paradigm in Condensed Matter Physics. IOS Press, 2004. P. 335—356. DOI:10.3254/978-1-61499-013-0-335; Tikhonenko F. V., Horsell D. W., Gorbachev R. V., Savchenko A. K. Weak localization in graphene flakes // Phys. Rev. Lett. 2008. V. 100, Iss. 5. P. 056802. DOI:10.1103/PhysRevLett.100.056802; McCann E., Kechedzhi K., Fal’ko V. I., Suzuura H., Ando T., Altshuler B. L. Weak-localization magnetoresistance and valley symmetry in graphene // Phys. Rev. Lett. 2006. V. 97, Iss. 14. P. 146805. DOI:10.1103/PhysRevLett.97.146805; Kechedzhi K., Fal’ko V. I., McCann E., Altshuler B. L. Influence of trigonal warping on interference effects in bilayer graphene // Phys. Rev. Lett. 2007. V. 98, Iss. 17. P. 176806. DOI:10.1103/PhysRevLett.98.176806; Tikhonenko F. V., Kozikov A. A., Savchenko A. K., Gorbache R. V. Transition between electron localization and antilocalization in graphene // Phys. Rev. Lett. 2009. V. 103, Iss. 22. P. 226801-1—4. DOI:10.1103/PhysRevLett.103.226801; Araujo E. N. D., Brant J. C., Archanjo B. S., Medeiros-Ribeiro G., Alves E. S. Quantum corrections to conductivity in graphene with vacancies // Physica E: Low-dimensional Systems and Nanostructures. 2018. V. 100. P. 40—44. DOI:10.1016/j.physe.2018.02.025; Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. М.: Наука, 1977. 672 с.; https://met.misis.ru/jour/article/view/337

  10. 10
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Science Foundation (Grant No. 17-12-01345). A. P. Kuzmenko thanks the Ministry of Education and Science of the Russian Federation for supporting the research of Raman scattering (Grant No. 16.2814.2017/PC)., Работа была поддержана Российским научным фондом (грант № 17−12−01345). А. П. Кузьменко благодарит Министерство образования и науки РФ за поддержку исследований комбинационного рассеяния света (грант № 16.2814.2017/ПЧ).

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 20, № 2 (2017); 134-141 ; Известия высших учебных заведений. Материалы электронной техники; Том 20, № 2 (2017); 134-141 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2017-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/311/248; Armitage N. P., Mele E. J., Vishwanath A. Weyl and Dirac semimetals in three dimensional solids // Rev. Mod. Phys. 2018. V. 90, Iss. 1. P. 015001. DOI:10.1103/RevModPhys.90.015001; He L. P., Hong X. C., Dong J. K., Pan J., Zhang Z., Zhang J., Li S. Y. Quantum transport evidence for three−dimensional Dirac semimetal phase in Cd3As2// Phys. Rev. Lett. 2014. V. 113, N 24. P. 246402. DOI:10.1103/PhysRevLett.113.246402; Feng J., Pang Y., Wu D., Wang Z., Weng H., Li J., Dai X., Fang Z., Shi Y., Lu L. Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points // Phys. Rev. B. 2015. V. 92, Iss. 8. P. 081306(R). DOI:10.1103/PhysRevB.92.081306; Zhang K., Pan H., Zhang M., Wei Z., Gao M., Song F., Wang X., Zhang R. Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures // RSC Advances. 2017. V. 7, N 29. P. 17689—17696. DOI:10.1039/c7ra02847d; Li C.−Z., Zhu R., Ke X., Zhang J.−M., Wang L. X., Zhang L., Liao Z.−M., Yu D.−P. Synthesis and photovoltaic properties of Cd3As2 faceted nanoplates and nano−octahedrons // Cryst. Growth Design. 2015. V. 15, N 7. P. 3264—3270. DOI:10.1021/acs.cgd.5b00399; Galeeva A. V., Krylov I. V., Drozdov K. A., Knjazev A. F., Kochura A. V., Kuzmenko A. P., Zakhvalinskii V. S., Danilov S. N., Ryabova L. I., Khokhlov D. R. Electron energy relaxation under terahertz excitation in (Cd1−x Znx)3As2 Dirac semimetals // Belstein J. Nanotechnology. 2017. V. 8, N 1. P. 167—171. DOI:10.3762/bjnano.8.17; Wang Q., Li C.−Z., Ge S., Li J.−G., Lu W., Lai J., Liu X., Ma J., Yu D.−P., Liao Z.−M., Sun D. Ultrafast broadband photodetectors based on three−dimensional Dirac semimetal Cd3As2 // Nano Lett. 2017. V. 17, N 2. P. 834—841. DOI:10.1021/acs.nanolett.6b04084; Walowski J., Munzenberg M. Perspective: Ultrafast magnetism and THz spintronics // J. Appl. Phys. 2016. V. 120, N 14. P. 140901. DOI:10.1063/1.4958846; Arushanov E. K. Crystal growth and characterization of II3V2 compounds // Prog. Crystal. Growth. Charact. 1981. V. 3, N 2–3. P. 211—255. DOI:10.1016/0146-3535(80)900200-9; Володина Г. Ф., Захвалинский В. С., Кравцов В. Х. Кристаллическая структура α′′′−(Zn1−xCdx)3As2 (x = 0.26) // Кристаллография. 2013. Т. 58, № 4. С. 561—565. DOI:10.7868/ S0023476113040231; Arushanov E. K. II3V2 Compounds and Alloys// Prog. Crystal. Growth. Charact. 1992. V. 25, N 3. P. 131—201. DOI:10.1016/0960− 8974(92)90030−T; Белогорохов А. И., Захаров И. С., Князев А. Ф., Кочура А. В. Фотоэлектрические явления в кристаллах Cd1,23Zn1,77As2, легированных селеном // Неорганические материалы. 2000. Т. 36, № 7. С. 788—791.; Liang T., Gibson Q., Ali M. N., Liu M., Cava R. J., Ong N. P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 // Nature Materials. 2015. V. 14, N 3. P. 280—284. DOI:10.1038/nmat4143; Lovett D. R. Semimetals and narrow band semiconductors. London: Pion Limited, 1977. 256 p.; Арушанов Э. К., Князев А. Ф., Натепров А. Н., Радауцан С. И. Зависимость ширины запрещенной зоны Cd3−x ZnxAs2 от состава // ФТП. 1983. Т. 17, № 7. С. 1202—1204.; Lu H., Zhang X., Bian Y., Jia S. Topological phase transition in single crystals of (Cd1−x Znx)3As2 // Scientific Reports. 2017. V. 7, N 1. P. 3148. DOI:10.1038/s41598−017−03559−2; Sankar R., Neupane N., Xu S.−Y., Butler C. J., Zeljkovic I., Muthuselvam I. P., Huang F.−T., Guo S.−T., Karna S. K., Chu M.−W., Lee W.L., Lin M.−T., Jayavel R., Madhavan V., Hasan M. Z., Chou F. C. Large single crystal growth, transport property, and spectroscopic characterization of three−dimensional Dirac semimetal Cd3As2 // Scientific Reports. 2015. V. 5. P. 12966. DOI:10.1038/srep12966; Ali M. N., Gibson Q., Jeon S., Zhou B. B., Yazdani A., Cava R. J. The crystal and electronic structures of Cd3As2, the three− dimensional electronic analogue of graphene // Inorganic Chemistry. 2014. V. 53. P. 4062—4067. DOI:10.1021/ic403163d; Schonher P., Hesjedal T. Structural properties and growth mechanism of Cd3As2 nanowires // Appl. Phys. Lett. 2015. V. 106, N 1. P. 013115. DOI:10.1063/1.4905564; Cheng P., Zhang C., Liu Y., Yuan X., Song F., Sun Q., Zhou P., Zhang D. W., Xiu F. Thickness−dependent quantum oscillations in Cd3As2 thin films // New J. Phys. 2016. V. 18, N 8. P. 083003. DOI:10.1088/1367−2630/18/8/083003; Kochura A. V., Marenkin S. F., Ril A. I., Zheludkevich A. L., Abakumov P. V., Knjazev A. F., Dobromyslov M. B. Growth and characterization of Cd3As2 + MnAs composite // J. Nano− and Electron. Phys. 2015. V. 7, N 4. P. 04079. URL: http://essuir.sumdu.edu.ua/ handle/123456789/44550; Sharafeev A., Gnezdilov V., Sankar R., Chou F. C., Lemmens P. Optical phonon dynamics and electronic fluctuations in the Dirac semimetal Cd3As2 // Phys. Rev. B. 2017. V. 95, N 23. P. 235148. DOI:10.1103/PhysRevB.95.235148; Abrikosov A. A. Quantum linear magnetoresistance; solution of an old mystery // J. Phys. A: Math. Gen. 2003. V. 36, N 35. P. 9119—9131. DOI:10.1088/0305−4470/36/35/301; Parish M. M., Littlewood P. B. Non−saturating magnetoresistance in heavily disordered semiconductors // Nature. 2003. V. 426, N 6963. P. 162—166. DOI:10.1038/nature02073; Zhao Y., Liu H., Zhang C., Wang H., Wang J., Lin Z., Xing Y., Lu H., Liu J., Wang Y., Brombosz S. M., Xiao Z., Jia S., Xie X. C., Wang J. Anisotropic Fermi surface and quantum limit transport in high mobility three−dimensional Dirac semimetal Cd3As2 // Phys. Rev. X. 2015. V. 5, N 3. P. 031037. DOI:10.1103/PhysRevX.5.031037; Narayanan A., Watson M. D., Blake S. F., Bruyant N., Drigo L., Chen Y. L., Prabhakaran D., Yan B., Felser C., Kong T., Canfield P. C., Coldea A. I. Linear magnetoresistance caused by mobility fluctuations in n−doped Cd3As2 // Phys. Rev. Lett. 2015. V. 114, N 11. P. 117201. DOI:10.1103/PhysRevLett.114.117201; Li H., He H., Lu H.−Z., Zhang H., Liu H., Ma R., Fan Z., Shen S.−Q., Wang J. Negative magnetoresistance in Dirac semimetal Cd3As2// Nature Comm. 2016. V. 7. P. 10301. DOI:10.1038/ ncomms10301; https://met.misis.ru/jour/article/view/311

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Влияние атмосферного кислорода на состав и кинетические свойства тонких плёнок висмута / М. В. Добротворская [и др.] // Металофізика та новітні технології = Metallophysics and Advanced Technologies. – 2017. – Т. 39, № 10. – С. 1307-1319.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/52164

  19. 19
    Academic Journal

    Πηγή: Вестник Харьковского национального университета имени В. Н. Каразина. Серия «Физика»; № 24 (2016); 17-19 ; Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Фізика»; № 24 (2016); 17-19 ; ‎2073-3771 ; 2222-5617

    Περιγραφή αρχείου: application/pdf

  20. 20