-
1Academic Journal
Συγγραφείς: V. V. Shmarin, A. A. Vasilenko, V. V. Zarubina, T. I. Bocharova, E. Yu. Zakharova, В. В. Шмарин, А. А. Василенко, В. В. Зарубина, Т. И. Бочарова, Е. Ю. Захарова
Συνεισφορές: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the RCMG., Исследование выполнено в рамках государственного задания Министерства науки и высшего образования РФ для ФГБНУ МГНЦ.
Πηγή: Medical Genetics; Том 24, № 1 (2025); 3-12 ; Медицинская генетика; Том 24, № 1 (2025); 3-12 ; 2073-7998
Θεματικοί όροι: генная терапия, lysosomal storage disease, gene therapy, лизосомные болезни накопления, лизосфинголипиды, ферментная заместительная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2599/1842; Geberhiwot T., Wasserstein M., Wanninayake S. et al. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann–Pick disease types A, B and A/B). Orphanet J Rare Dis. 2023;18(1):85.; Zampieri S., Filocamo M., Pianta A. et al. SMPD1 Mutation Update: Database and Comprehensive Analysis of Published and Novel Variants: HUMAN MUTATION. Human Mutation. 2016;37(2):139–47.; Hollak C.E.M., De Sonnaville E.S.V., Cassiman D. et al. Acid sphingomyelinase (Asm) deficiency patients in The Netherlands and Belgium: Disease spectrum and natural course in attenuated patients. Molecular Genetics and Metabolism. 2012;107(3):526–33.; Wasserstein M.P., Desnick R.J., Schuchman E.H. et al. The Natural History of Type B Niemann-Pick Disease: Results From a 10-Year Longitudinal Study. Pediatrics. 2004;114(6):e672–7.; McGovern M.M., Aron A., Brodie S.E. et al. Natural history of Type A Niemann-Pick disease: Possible endpoints for therapeutic trials. Neurology. 2006;66(2):228–32.; Wasserstein M.P., Aron A., Brodie S.E. et al. Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann-Pick disease. J Pediatr. 2006;149(4):554–9.; McGovern M.M., Dionisi-Vici C., Giugliani R. et al. Consensus recommendation for a diagnostic guideline for acid sphingomyelinase deficiency. Genetics in Medicine. 2017;19(9):967–74.; Cassiman D., Packman S., Bembi B. et al. Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-Pick disease type B and B variant): Literature review and report of new cases. Mol Genet Metab. 2016;118(3):206–13.; Wasserstein M., Godbold J., McGovern M.M. Skeletal manifestations in pediatric and adult patients with Niemann Pick disease type B. J Inherit Metab Dis. 2013;36(1):123–7.; McGovern M.M., Wasserstein M.P., Giugliani R. et al. A prospective, cross-sectional survey study of the natural history of Niemann-Pick disease type B. Pediatrics. 2008;122(2):e341-349.; Thurberg B.L., Wasserstein M.P., Schiano T. et al. Liver and skin histopathology in adults with acid sphingomyelinase deficiency (Niemann-Pick disease type B). Am J Surg Pathol. 2012;36(8):1234–46.; Mendelson D.S., Wasserstein M.P., Desnick R.J. et al. Type B Niemann-Pick disease: findings at chest radiography, thin-section CT, and pulmonary function testing. Radiology. 2006;238(1):339–45.; Pavlů‐Pereira H., Asfaw B., Poupčtova H. et al. Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty‐five Czech and Slovak patients. A multi‐approach study. J of Inher Metab Disea. 2005;28(2):203–27.; Quinn P.J. Sphingolipid symmetry governs membrane lipid raft structure. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2014;1838(7):1922–30.; Podbielska M., Ariga T., Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. IJMS. 2022;23(10):5330.; Kirkegaard T., Roth A.G., Petersen N.H.T. et al. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature. 2010;463(7280):549–53.; Schuchman E.H., Desnick R.J. Types A and B Niemann-Pick disease. Molecular Genetics and Metabolism. 2017;120(1–2):27–33.; Buccinna B., Piccinini M., Prinetti A. et al. Alterations of myelinspecific proteins and sphingolipids characterize the brains of acid sphingomyelinase‐deficient mice, an animal model of Niemann–Pick disease type A. Journal of Neurochemistry. 2009;109(1):105–15.; Kinnunen P. Sphingomyelinase Activity of LDL A Link between Atherosclerosis, Ceramide, and Apoptosis? Trends in Cardiovascular Medicine. 2002;12(1):37–42.; Charruyer A., Grazide S., Bezombes C. et al. UV-C Light Induces Raft-associated Acid Sphingomyelinase and JNK Activation and Translocation Independently on a Nuclear Signal. Journal of Biological Chemistry. 2005;280(19):19196–204.; Kornhuber J., Muller C.P., Becker K.A. et al. The ceramide system as a novel antidepressant target. Trends in Pharmacological Sciences. 2014;35(6):293–304.; Da Veiga Pereira L., Desnick R.J., Adler D.A. et al.Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1→p15.4. Genomics. 1991;9(2):229–34.; Mihaylova V., Hantke J., Sinigerska I. et al. Highly variable neural involvement in sphingomyelinase-deficient Niemann-Pick disease caused by an ancestral Gypsy mutation. Brain. 2006;130(4):1050–61.; Simonaro C.M., Desnick R.J., McGovern M.M. et al. The Demographics and Distribution of Type B Niemann-Pick Disease: Novel Mutations Lead to New Genotype/Phenotype Correlations. The American Journal of Human Genetics. 2002;71(6):1413–9.; Ferlinz K., Hurwitz R., Vielhaber G. et al. Occurrence of two molecular forms of human acid sphingomyelinase. Biochemical Journal. 1994;301(3):855–62.; McGovern M.M., Pohl-Worgall T., Deckelbaum R.J. et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr. 2004;145(1):77–81.; Wang R., Qin Z., Huang L. et al. SMPD1 expression profile and mutation landscape help decipher genotype–phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas. 2023;160(1):11.; Dardis A., Zampieri S., Filocamo M. et al. Functionalin vitro characterization of 14SMPD1 mutations identified in Italian patients affected by Niemann Pick Type B disease. Hum Mutat. 2005;26(2):164–164.; Pittis M.G., Ricci V., Guerci V.I. et al. Acid sphingomyelinase: Identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon: MUTATIONS IN BRIEF. Hum Mutat. 2004;24(2):186–7.; Jones I., He X., Katouzian F., Darroch P.I., Schuchman E.H. Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol Genet Metab. 2008;95(3):152–62.; Simonaro C.M., Park J.H., Eliyahu E. et al. Imprinting at the SMPD1 Locus: Implications for Acid Sphingomyelinase–Deficient Niemann-Pick Disease. The American Journal of Human Genetics. 2006;78(5):865–70.; Oliva P., Schwarz M., Mechtler T.P. et al. Importance to include differential diagnostics for acid sphingomyelinase deficiency (ASMD) in patients suspected to have to Gaucher disease. Molecular Genetics and Metabolism. 2023;139(1):107563.; Piraud M., Pettazzoni M., Lavoie P. et al. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J of Inher Metab Disea. 2018;41(3):457–77.; Kuchar L., Sikora J., Gulinello M.E. et al. Quantitation of plasmatic lysosphingomyelin and lysosphingomyelin-509 for differential screening of Niemann-Pick A/B and C diseases. Anal Biochem. 2017; 525: 73-77.; Voorink-Moret M., Goorden S.M.I., Van Kuilenburg A.B.P. et al. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature. Molecular Genetics and Metabolism. 2018;123(2):76–84.; Breilyn M.S., Zhang W., Yu C., Wasserstein M.P. Plasma lyso-sphingomyelin levels are positively associated with clinical severity in acid sphingomyelinase deficiency. Mol Genet Metab Rep. 2021;28:100780.; Diaz G.A., Jones S.A., Scarpa M. et al. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency. Genet Med. 2021;23(8):1543–50.; Wasserstein M., Lachmann R., Hollak C. et al. A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: One-year results. Genetics in Medicine. 2022;24(7):1425–36.; Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93(3):1288–92.; Boot R.G., Renkema G.H., Verhoek M. et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273(40):25680–5.; Porter F.D., Scherrer D.E., Lanier M.H. et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010;2(56):56ra81.; Romanello M., Zampieri S., Bortolotti N. et al. Comprehensive Evaluation of Plasma 7-Ketocholesterol and Cholestan-3β,5α,6β-Triol in an Italian Cohort of Patients Affected by Niemann-Pick Disease due to NPC1 and SMPD1 Mutations. Clin Chim Acta. 2016;455:39–45.; Di Rocco M., Vici C.D., Burlina A. et al. Screening for lysosomal diseases in a selected pediatric population: the case of Gaucher disease and acid sphingomyelinase deficiency. Orphanet J Rare Dis. 2023;18(1):197.; Hickey R.E, Baker J. Newborn screening for acid sphingomyelinase deficiency in Illinois: A single center’s experience. J of Inher Metab Disea. J Inherit Metab Dis. 2024;47(6):1363-1370.; McGovern M.M., Wasserstein M.P., Kirmse B. et al. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann–Pick disease type B (acid sphingomyelinase deficiency). Genetics in Medicine. 2016;18(1):34–40.; Wasserstein M.P., Jones S.A., Soran H. et al. Successful within-patient dose escalation of olipudase alfa in acid sphingomyelinase deficiency. Mol Genet Metab. 2015;116(1–2):88–97.; O’Neill R.S., Belousova N., Malouf M.A. Pulmonary Type B Niemann-Pick Disease Successfully Treated with Lung Transplantation. Case Reports in Transplantation. 2019;2019:1–5.; Mannem H., Kilbourne S., Weder M. Lung transplantation in a patient with Niemann–Pick disease. The Journal of Heart and Lung Transplantation. 2019;38(1):100–1.; Uyan Z.S., Karadağ B., Ersu R. et al. Early pulmonary involvement in Niemann‐Pick type B disease: Lung lavage is not useful. Pediatric Pulmonology. 2005;40(2):169–72.; Nicholson A.G., Wells A.U., Hooper J. et al. Successful Treatment of Endogenous Lipoid Pneumonia due to Niemann–Pick Type B Disease with Whole-Lung Lavage. Am J Respir Crit Care Med. 2002;165(1):128–31.; Jin H.K., Carter J.E., Huntley G.W., Schuchman E.H. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest. 2002;109(9):1183–91.; Barbon C.M., Ziegler R.J., Li C. et al. AAV8-mediated hepatic expression of acid sphingomyelinase corrects the metabolic defect in the visceral organs of a mouse model of Niemann-Pick disease. Mol Ther. 2005;12(3):431–40.; Miranda S.R., Erlich S., Friedrich V.L. et al. Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther. 2000;7(20):1768–76.; Samaranch L., Perez-Canamas A., Soto-Huelin B. et al. Adeno-associated viral vector serotype 9–based gene therapy for Niemann-Pick disease type A. Sci Transl Med. 2019;11(506):eaat3738.; Beretta G., Shala A.L. Impact of Heat Shock Proteins in Neurodegeneration: Possible Therapeutical Targets. Annals of Neurosciences. 2022;29(1):71–82.
-
2Academic Journal
Συγγραφείς: Nato D. Vashakmadze, Nataliya V. Zhurkova, Н. Д. Вашакмадзе, Н. В. Журкова
Πηγή: Current Pediatrics; Том 22, № 6 (2023); 572-576 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 572-576 ; 1682-5535 ; 1682-5527
Θεματικοί όροι: лизосомные болезни накопления, types A and B, acid sphingomyelinase deficiency, lysosomal storage diseases, дефицит кислой сфингомиелиназы
Περιγραφή αρχείου: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3357/1351; Schuchman EH, Desnick RJ. Types A and B Niemann-Pick disease. Mol Genet Metab. 2017;120(1-2):27–33. doi: https://doi.org/10.1016/j.ymgme.2016.12.008; Beutler E, Grabowski GA. Gaucher disease. In: The Metabolic and Molecular Bases of Inherited Disease. Vol. 3. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York: McGraw-Hill: 2001. pp. 3635–3668.; Niemann A. Ein unbekanntes Krankheitsbild. Jahrb Kinderheillkd. 1914;79:1.; Pick L. Über die lipoidzellige splenohepatomegalie typus Niemann-Pick als stoffwechselerkrankung. Med Klin (Munich). 1927; 23:1483–1486.; Niemann-Pick disease In: Genes and Disease [Internet]. National Center for Biotechnology Information (US). Bethesda (MD): National Center for Biotechnology Information (US); 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22176. Accessed on December 20, 2023.; Arslan N, Coker M, Gokcay GF, et al. Expert opinion on patient journey, diagnosis and clinical monitoring in acid sphingomyelinase deficiency in Turkey: a pediatric metabolic disease specialist’s perspective. Front Pediatr. 2023;11:1113422. doi: https://doi.org/10.3389/fped.2023.1113422; Jones SA, McGovern M, Lidove O, et al. Clinical relevance of endpoints in clinical trials for acid sphingomyelinase deficiency enzyme replacement therapy. Mol Genet Metab. 2020;131(1-2):116–123. doi: https://doi.org/10.1016/j.ymgme.2020.06.008; Nicholson AG, Florio R, Hansell DM, et al. Pulmonary involvement by Niemann-Pick disease. A report of six cases. Histopathology. 2006;48(5):596–603. doi: https://doi.org/10.1111/j.1365-2559.2006.02355.x; Freitas HMP, Mançano AD, Rodrigues RS, et al. Niemann-Pick disease type B: HRCT assessment of pulmonary involvement. J Bras Pneumol. 2017;43(6):451–455. doi: https://doi.org/10.1590/S1806-37562017000000062; Iaselli F, Rea G, Cappabianca S, et al. Adult-onset pulmonary involvement in Niemann-Pick disease type B. Monaldi Arch Chest Dis. 2011;75(4):235–240. doi: https://doi.org/10.4081/monaldi.2011.211; Ishii H, Takahashi T, Toyono M, et al. Acid sphingomyelinase deficiency: cardiac dysfunction and characteristic findings of the coronary arteries. J Inherit Metab Dis. 2006;29(1):232–234. doi: https://doi.org/10.1007/s10545-006-0226-y; Tassoni JP Jr, Fawaz KA, Johnston DE. Cirrhosis and portal hypertension in a patient with adult Niemann-Pick disease. Gastroenterology. 1991;100(2):567–569. doi: https://doi.org/10.1016/0016-5085(91)90233-b; Lever AM, Ryder JB. Cor pulmonale in an adult secondary to Niemann-Pick disease. Thorax. 1983;38(11):873–874. doi: https://doi.org/10.1136/thx.38.11.873; McGovern MM, Wasserstein MP, Aron A, et al. Ocular manifestations of Niemann-Pick disease type B. Ophthalmology. 2004;111(7): 1424–1427. doi: https://doi.org/10.1016/j.ophtha.2003.10.034; Wasserstein M, Godbold J, McGovern M.M. Skeletal manifestations in pediatric and adult patients with Niemann Pick disease type B. J Inherit Metab Dis. 2013;36(1):123–127. doi: https://doi.org/10.1007/s10545-012-9503-0; Schuchman E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. J Inherit Metab Dis. 2007; 30(5):654–663. doi: https://doi.org/10.1007/s10545-007-0632-9; Schuchman EH, Wasserstein MP. Types A and B Niemann-Pick disease. Best Pract Res Clin Endocrinol Metab. 2015;29(2):237–247. doi: https://doi.org/10.1016/j.beem.2014.10.002; Kingma SD, Bodamer OA, Wijburg FA. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract Res Clin Endocrinol Metab. 2015;29(2):145–157. doi: https://doi.org/10.1016/j.beem.2014.08.004; Prevalence of rare diseases: Bibliographic data. Orphanet Report Series, Rare Diseases collection. 2023 Number 1: Diseases in alphabetical order. Available online: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf. Accessed on December 10, 2023.; Poorthuis HM, Wevers RA, Kleijer WJ, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet. 1999;105(1-2): 151–156. doi: https://doi.org/10.1007/s004399900075; McGovern MM, Schuchman EH. Acid sphingomyelinase deficiency. In: Gene Reviews [Internet]. Pagon RA, Bird TC, Dolan CR, Stephens K, eds. Seattle (WA): University of Washington, Seattle; 1993–2006.; Meikle P, Hopwood JJ, Clague AR, et al. Prevalence of lysosomal storage disorders. JAMA. 1999;281(3):249–254. doi: https://doi.org/10.1001/jama.281.3.249; McGovern MM, Wasserstein MP, Giugliani R, et al. A prospective, cross-sectional survey study of the natural history of Niemann–Pick disease type B. Pediatrics. 2008;122(2):e341–e349. doi: https://doi.org/10.1542/peds.2007-3016; Thurberg BL, Wasserstein MP, Schiano T, et al. Liver and skin histopathology in adults with acid sphingomyelinase deficiency (Niemann–Pick disease type B). Am J Surg Pathol. 2012;36(8): 1234–1246. doi: https://doi.org/10.1097/PAS.0b013e31825793ff; Acuna M, Martínez P, Moraga C, et al. Epidemiological, clinical and biochemical characterization of the p.(Ala359Asp) SMPD1 variant causing Niemann–Pick disease type B. Eur J Hum Genet. 2016; 24(2):208–213. doi: https://doi.org/10.1038/ejhg.2015.89; Cassiman D, Packman S, Bembi B, et al. Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-Pick disease type B and B variant): literature review and report of new cases. Mol Genet Metab. 2016;118(3):206–213. doi: https://doi.org/10.1016/j.ymgme.2016.05.001; McGovern MM, Aron A, Brodie SE, et al. Natural history of type A Niemann–Pick disease: possible endpoints for therapeutic trials. Neurology. 2006;66(2):228–232. doi: https://doi.org/10.1212/01.wnl.0000194208.08904.0c; McGovern MM, Lippa N, Bagiella E, et al. Morbidity and mortality in type B Niemann–Pick disease. Genet Med. 2013;15(8):618–623. doi: https://doi.org/10.1038/gim.2013.4; Faverio P, Stainer A, De Giacomi F, et al. Molecular pathways and respiratory involvement in lysosomal storage diseases. Int J Mol Sci. 2019;20(2):327. doi: https://doi.org/10.3390/ijms20020327; Wasserstein M, Dionisi-Vici C, Giugliani R, et al. Recommendations for clinical monitoring of patients with acid sphingomyelinase deficiency (ASMD). Mol Genet Metab. 2019;126(2):98–105. doi: https://doi.org/10.1016/j.ymgme.2018.11.014; Volders P, Van Hove J, Lories RJ, et al. Niemann–Pick disease type B: an unusual clinical presentation with multiple vertebral fractures. Am J Med Genet. 2002;109(1):42–51. doi: https://doi.org/10.1002/ajmg.10278; McGovern MM, Pohl-Worgall T, Deckelbaum RJ, et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr. 2004;145(1):77–81. doi: https://doi.org/10.1016/j.jpeds.2004.02.048; Walton DS, Robb RM, Crocker AC. Ocular manifestations of group A Niemann-Pick disease. Am J Ophthalmol. 1978;85(2):174–180. doi: https://doi.org/10.1016/s0002-9394(14)75945-8; Libert J, Toussaint D, Guiselings R. Ocular findings in Niemann-Pick disease. Am J Ophthalmol. 1975;80(6):991–1002. doi: https://doi.org/10.1016/0002-9394(75)90327-x; Lowe D, Martin F, Sarks J. Ocular manifestations of adult Niemann-Pick disease: a case report. Aust N Z J Ophthalmol. 1986;14(1):41–47. doi: https://doi.org/10.1111/j.1442-9071.1986.tb00006.x; Hollak CE, de Sonnaville ES, Cassiman D, et al. Acid sphingomyelinase (Asm) deficiency patients in the Netherlands and Belgium: disease spectrum and natural course in attenuated patients. Mol Genet Metab. 2012; 107(3):526–533. doi: https://doi.org/10.1016/j.ymgme.2012.06.015; Geberhiwot T, Wasserstein M, Wanninayake S, et al. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann–Pick disease types A, B and A/B). Orphanet J Rare Dis. 2023;18(1):85. doi: https://doi.org/10.1186/s13023-023-02686-6; Harzer K, Rolfs A, Bauer P, et al. Niemann–Pick disease type A and B are clinically but also enzymatically heterogeneous: pitfall in the laboratory diagnosis of sphingomyelinase deficiency associated with the mutation Q292 K. Neuropediatrics. 2003;34(6):301–306. doi: https://doi.org/10.1055/s-2003-44668; Mihaylova V, Hantke J, Sinigerska I, et al. Highly variable neural involvement in sphingomyelinase-deficient Niemann–Pick disease caused by an ancestral Gypsy mutation. Brain. 2007;130(Pt 4): 1050–1061. doi: https://doi.org/10.1093/brain/awm026; Wasserstein MP, Aron A, Brodie SE, et al. Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann–Pick disease. J Pediatr. 2006;149(4):554–559. doi: https://doi.org/10.1016/j.jpeds.2006.06.034; Pavlu-Pereira H, Asfaw B, Poupctová H, et al. Acid sphingo-myelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty-five Czech and Slovak patients. A multi-approach study. J Inherit Metab Dis. 2005;28(2):203–227. doi: https://doi.org/10.1007/s10545-005-5671-5; Imrie J, Mengel KE, Cassiman D, et al. Cause of death in patients with attenuated acid sphingomyelinase deficiency: Comprehensive literature review and report of new cases. Mol Genet Metab. 2016; 117:S60. doi: https://doi.org/10.1016/j.ymgme.2015.12.298; Sen Sarma M, Tripathi PR. Natural history and management of liver dysfunction in lysosomal storage disorders. World J Hepatol. 2022; 14(10):1844–1861. doi: https://doi.org/10.4254/wjh.v14.i10.1844
-
3Academic Journal
Συγγραφείς: D. R. Sabirova, A. A. Kamalova, A. A. Akhmadullina, N. A. Artykova, L. A. Sabirova, Д. Р. Сабирова, А. А. Камалова, А. А. Ахмадуллина, Н. А. Артыкова, Л. А. Сабирова
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 5 (2024); 100-104 ; Российский вестник перинатологии и педиатрии; Том 69, № 5 (2024); 100-104 ; 2500-2228 ; 1027-4065
Θεματικοί όροι: трансплантация гемопоэтических стволовых клеток, lysosomal diseases of accumulation, impaired glycosaminoglycan metabolism, enzyme replacement therapy, hematopoietic stem cell transplantation, лизосомные болезни накопления, мукополисахаридоз I типа, нарушение обмена гликозаминогликанов, ферментозаместительная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2072/1538; Моногарова Л.И., Шамраева В.В., Колчина Т.Л. Случай мукополисахаридоза 1 типа (синдром Гурлер–Шейне) — история болезни с рождения до 18 лет. Амурский медицинский журнал 2023; 1(11): 52–56.; Мукополисахаридоз I типа. Клинические рекомендации 2021: 66.; Богословская Е.А., Вернигова А.А. Редкий клинический случай мукополисахаридоза I типа. Здравоохранение Югры: опыт и инновации 2022; 32(3): 12–16.; Горбунова В.Н., Бучинская Н.В. Лизосомные болезни накопления: мукополисахаридозы I и II типов. Педиатр 2021; 3(12): 69.; Моисеев С.В., Новиков П.И., Фомин В.В. Мукополисахаридозы — путь к диагнозу. Клиническая фармакология и терапия 2018; 3: 41–47.; Рылова Н.В., Шакирова А.Р., Хусаинова А.Р., Халиуллина Ч.Д., Волкова А.А., Сафиуллина Р.М. и др. Мукополисахаридоз I типа — синдром Гурлер. Практическая медицина 2020; 1(18): 126–129.; Николаева Е.А., Семячкина А.Н. Современные возможности лечения наследственных заболеваний у детей. Российский вестник перинатологии и педиатрии 2018; 4(63): 6–14.; Eisengart J.B., Rudser K.D., Xue Y., Orchard P., Miller W., Lund T. et al. Long-term outcomes of systemic therapies for Hurler syndrome: an international multicenter comparison. Genet Med 2018; 20(11): 1423–1429. DOI:10.1038/gim.2018.29; Magoulas P.L. Mucopolysaccharidosis Type I (MPS 1). Medical Home Portal 2019: 14. https://www.medicalhomeportal.org/diagnoses-and-conditions/mucopolysaccharidosis-type-i / Ссылка активна на 9.09.2024.; Moore D., Connock M.J., Wraith E., Lavery C. The prevalence of and survival in Mucopolysaccharidosis I: Hurler, Hurler-Scheie and Scheie syndromes in the UK. Orphanet J Rare Dis 2008; 16: 3–24. DOI:10.1186/1750–1172–3–24; Вашакмадзе Н.Д., Журкова Н.В., Бабайкина М.А., Доброток А.В., Гордеева О.Б., Намазова-Баранова Л.С. Комбинированная терапия при тяжелых формах мукополисахаридоза, тип I (синдроме Гурлер): описание клинических случаев. Вопросы современной педиатрии 2023; 22(6): 554–559.; Крысанов И.С., Крысанова В.С., Ермакова В.Ю. Клинико-экономическое обоснование скрининга на мукополисахаридоз I типа у детей групп риска. Качественная клиническая практика 2021; 3: 4–15.
-
4Academic Journal
Πηγή: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :3-16
Θεματικοί όροι: acid lipase, LIPA, lysosomal acid lipase deficiency, лизосомные болезни накопления, дефицит лизосомной кислой липазы, болезнь Вольмана, 3. Good health, 03 medical and health sciences, RFLP-analysis, 0302 clinical medicine, ПДРФ-анализ, кислая липаза, lysosomal storage diseases, Wolman disease
-
5Academic Journal
Συγγραφείς: Yulia P. Semschikova, Yurii A. Kozlov, Andrei B. Yakovlev, Vera M. Shinkareva, Tatyana V. Barzunova, Natalia I. Manjkova, Evgenii A. Balakirev, Ю. П. Съемщикова, Ю. А. Козлов, А. Б. Яковлев, В. М. Шинкарева, Т. В. Барзунова, Н. И. Манькова, Е. А. Балакирев
Συνεισφορές: Not specified, Не указан
Πηγή: Pediatric pharmacology; Том 19, № 1 (2022); 39-44 ; Педиатрическая фармакология; Том 19, № 1 (2022); 39-44 ; 2500-3089 ; 1727-5776
Θεματικοί όροι: дети раннего возраста, lysosomal storage diseases, Morquio syndrome А, congenital defect of keratin sulfate metabolism, chondroitin 6-sulphate, osteochondrodystrophy, spondiloepiphysial dysplasia, elosulfase, enzyme replacement therapy, infants, лизосомные болезни накопления, синдром Моркио А, врожденный дефект метаболизма кератансульфата, хондроитин-6-сульфата, остеохондродистрофия, спондилоэпифизарная дисплазия, элосульфаза, ферментозаместительная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2129/1341; Атлас редких болезней / под ред. А.А. Баранова, Л.С. Намазовой-Барановой. — 2-е изд., испр. и доп. — М.: ПедиатрЪ; 2016. — 420 с.; Montano AM, Tomatsu S, Gottesman GS, et al. International Morquio A Registry: clinical manifestation and natural course of Morquio A disease. J Inherit Metab Dis. 2007;30(2):165–174. doi: https://doi.org/10.1007/s10545-007-0529-7; Мартынович Н.Н., Барзунова Т.В., Съемщикова Ю.П. Опыт практической подготовки будущих врачей педиатров по дисциплине по выбору «Орфанные заболевания» // Тихоокеанский медицинский журнал. — 2020. — № 1. — С.85–87. — doi: https://doi.org/10.34215/1609-1175-2020-1-85-87; Гуринова Е.Е., Сухомясова А.Л., Семячкина А.Н., Очирова П.В. Лечение препаратом Вимизайм (Vimizim) подростка с синдромом Моркио А (мукополисахаридозом IV A) // Российский вестник перинатологии и педиатрии. — 2021. — Т. 66. — № 4. — С. 109–117. —https://doi.org/10.21508/1027–4065–2021–66–4–109–117; Вашакмадзе Н.Д. Мультидисциплинарные принципы ведения детей с мукополисахаридозами в повышении эффективности их диагностики и лечения: автореф дис. … докт. мед. наук. — Екатеринбург; 2019. — 48 с.; Lyseng-Williamson KA. Elosulfase Alfa: a review of its use in patients with mucopolysaccharidosis type IVA (Morquio A syndrome). BioDrugs. 2014;28(5):465–475. doi: https://doi.org/10.1007/s40259-014-0108-z; Sukegawa K, Nakamura H, Kato Z, et al. Biochemical and structural analysis of missense mutations in N-acetylgalactosamine6-sulfate sulfatase causing mucopolysaccharidosis IVA phenotypes. Hum Mol Genet. 2000;9(9):1283–1290. doi: https://doi.org/10.1093/hmg/9.9.1283; Tuysuz B, Alkaya DU, Toksoy G, et al. Mutation spectrum and pivotal features for differential diagnosis of ucopolysaccharidosis IV A patients with severe and attenuated phenotype. Gene. 2019; 704:59–67. doi: https://doi.org/10.1016/j.gene.2019.04.026; Melbouci M, Mason RW, Suzuki Y, et al. Growth impairment in mucopolysaccharidoses. Mol Genet Metab. 2018;124(1):1–10. doi: https://doi.org/10.1016/j.ymgme.2018.03.004; Montano AM, Tomatsu S, Brusius A, et al. Growth charts for patients affected with Morquio A disease. Am J Med Genet A. 2008;146A(10): 1286–1295. doi: https://doi.org/10.1002/ajmg.a.32281; Lin HY, Chuang CK, Ke YY, et al. Long-term effects of enzyme replacement therapy for Taiwanese patients with muco polysaccharidosis IVA. Pediatr Neonatol. 2019;60(3):342–343. doi: https://doi.org/10.1016/j.pedneo.2018.08.005; Sawamoto K, Suzuki Y, Mackenzie WG, et al. Current therapies for Morquio A syndrome and their clinical outcomes. Expert Opin Orphan Drugs. 2016;4(9):941–951. doi: https://doi.org/10.1080/21678707.2016.1214572; Tomatsu S, Montano AM, Oikawa H, et al. Mucopolysaccharidosis type IVA (Morquio A disease): clinical review and current treatment. Curr Pharm Biotechnol. 2011;12(6):931–945. doi: https://doi.org/10.2174/138920111795542615; Regier D.S., Tanpaiboon P. Role of elosulfase alfa in mucopolysaccharidosis IVA. Appl Clin Genet. 2016;9:67–74. doi: https://doi.org/10.2147/TACG.S69080; Tomatsu S, Sawamoto K, Shimada T, et al. Enzyme replace ment therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations. Expert Opin Orphan Drugs. 2015;3(11):1279–1290. doi: https://doi.org/10.1517/21678707.2015.1086640; Erazo-Narvaez AF, Munoz-Vidal JM, Rodriguez-Velez GH, AcostaAragon MA. Clinical outcomes in elderly patients with Morquio a syndrome receiving enzyme replacement therapy — experience in a Colombian center. Mol Genet Metab Rep. 2020;25:100679. doi: https://doi.org/10.1016/j.ymgmr.2020.100679; https://www.pedpharma.ru/jour/article/view/2129
-
6Academic Journal
Συγγραφείς: B. A. Kobrinskii, N. A. Blagosklonov, N. S. Demikova, E. A. Nikolaeva, Y. Y. Kotalevskaya, L. P. Melikyan, Y. M. Zinovieva, Б. А. Кобринский, Н. А. Благосклонов, Н. С. Демикова, Е. А. Николаева, Ю. Ю. Коталевская, Л. П. Меликян, Ю. М. Зиновьева
Συνεισφορές: The study was carried out within the state assignment “Artificial intelligence systems, knowledge extraction, and text analysis 2019–2023” (No. 0063-2019-0001)
Πηγή: Bulletin of Siberian Medicine; Том 21, № 2 (2022); 67-73 ; Бюллетень сибирской медицины; Том 21, № 2 (2022); 67-73 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-2
Θεματικοί όροι: факторы уверенности, orphan diseases, lysosomal storage diseases, differential diagnosis, expert system, decision support, certainty factors, орфанные болезни, лизосомные болезни накопления, дифференциальная диагностика, экспертная система, поддержка принятия решений
Περιγραφή αρχείου: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/4815/3203; Platt F.M., d’Azzo A., Davidson B.L. et al. Lysosomal storage diseases. Nature Reviews Disease Primers. 2018;4(1):27. DOI:10.1038/s41572-018-0025-4.; Goyal M., Gupta A. Lysosomal storage disorders: clinical, biochemical and molecular profile from Rare disease centre, India. Ann. Indian Acad. Neurol. 2021;24(5):686–692. DOI:10.4103/aian.AIAN_1009_20.; Назаренко Л.П., Назаренко М.С. Особенности раннего проявления лизосомных болезней накопления. Медицинская генетика. 2013;12(9):20–24.; Carbajal-Rodríguez L.M., Pérez-García M., Rodríguez-Herrera R., Rosales H.S., Olaya-Vargas A. Long-term evolution of mucopolysaccharidosis type I in twins treated with enzyme replacement therapy plus hematopoietic stem cells transplantation. Heliyon. 2021;7(8):e07740. DOI:10.1016/j.heliyon.2021.e07740.; Николаева Е.А., Семячкина А.Н. Современные возможности лечения наследственных заболеваний у детей. Российский вестник перинатологии и педиатрии. 2018;63(4):6– 14. DOI:10.21508/1027–4065–2018–63–4–6–14.; Gabrielli O., Clarke L.A., Ficcadenti A., Santoro L., Zampini L., Volpi N., Coppa G.V. 12 year follow up of enzyme-replacement therapy in two siblings with attenuated mucopolysaccharidosis I: the important role of early treatment. BMC Medical Genetics. 2016;17:19. DOI:10.1186/s12881-016-0284-4.; Mohammad S.S., Paget S.P., Dalre R.C. Current therapies and therapeutic decision making for childhood-onset movement disorders. Movement Disorders. 2019;34(5):637–656. DOI:10.1002/mds.27661.; Colmenares-Bonilla D., Colin-Gonzalez Ch., Gonzalez-Segoviano A., Garcia E.E., Vela-Huerta M.M., Lopez-Gomez F.G. Diagnosis of mucopolysaccharidosis based on history and clinical features: evidence from the Bajio region of Mexico. Cureus. 2018;10(11):e3617. DOI:10.7759/cureus.3617.; Kuiper G.-A., Meijer O.L.M., Langereis E.J., Wijburg F.A. Failure to shorten the diagnostic delay in two ultra-orphan diseases (mucopolysaccharidosis types I and III): potential causes and implications. Orphanet Journal of Rare Diseases. 2018;13(1):2. DOI:10.1186/s13023-017-0733-y.; Кобринский Б.А. Компьютерная поддержка врачебных решений в педиатрии: регистр и диагностическая система по наследственным болезням. Вестник ВОИВТ. 1991;(1):20–25.; Gouvernet J., Caraboenf M., Ayme S. GENDIAG: A computer assisted facility in medical genetics based on belief functions. Methods of Information in Medicine. 1985;24(4):177–180.; Fryer A. POSSUM (pictures of standard syndromes and undiagnosed malformations). Journal of Medical Genetics. 1991;28(1):66–67. DOI:10.1136/jmg.28.1.66-a.; Allanson J.E., Cunniff C., Hoyme H.E., McGaughran J., Muenke M., Neri G. Elements of morphology: standard terminology for the head and face. American Journal of Medical Genetics Part A. 2009;149A(1):6–28. DOI:10.1002/ajmg.a.32612.; Ronicke S., Hirsch M.C., Türk E., Larionov K., Tientcheu D., Wagner A.D. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet Journal of Rare Diseases. 2019;14(1):69. DOI:10.1186/s13023-019-1040-6.; Kobrinskii B.A., Demikova N.S., Blagosklonov N.A. Knowledge engineering in construction of expert systems on hereditary diseases. Artificial Intelligence. 16th Russian Conference, RCAI 2018, Moscow, Russia, September 24–27, 2018, Proceedings. 2018;934:35–45. DOI:10.1007/978-3-030-00617-4_4.; Гаврилова Т.А., Кудрявцев Д.В., Муромцев Д.И. Инженерия знаний. Модели и методы. СПб: Лань, 2021:324.; Blagosklonov N.A., Kobrinskii B.A. Model of integral evaluation of expert knowledge for the diagnosis of lysosomal storage diseases. CEUR Workshop Proceedings. 2020; 2648:250–264.; Байдакова Г.В., Бобрынина В.О., Бочков Н.П., Воскобоева Е.Ю., Гинтер Е.К., Голихина Т.А. и др. Наследственные болезни: Национальное руководство: краткое издание. М.: ГЭОТАР-Медиа, 2017:464.; https://bulletin.tomsk.ru/jour/article/view/4815
-
7Academic Journal
Συγγραφείς: Nato D. Vashakmadze, Natalia V. Zhurkova, Leyla S. Namazova-Baranova, Nina V. Fedorova, Marina A. Babaykina, Н. Д. Вашакмадзе, Н. В. Журкова, Л. С. Намазова-Баранова, Н. В. Федорова, М. А. Бабайкина
Συνεισφορές: The article has been funded by TAKEDA., Статья опубликована при финансовой поддержке компании TAKEDA.
Πηγή: Current Pediatrics; Том 20, № 1 (2021); 72-80 ; Вопросы современной педиатрии; Том 20, № 1 (2021); 72-80 ; 1682-5535 ; 1682-5527
Θεματικοί όροι: идурсульфаза, lysosomal storage diseases, mucopolysaccharidosis type II, non-neuropathic form, enzyme replacement therapy, idursulfase, лизосомные болезни накопления, мукополисахаридоз II типа, ненейропатическая форма, ферментозаместительная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/2561/1024; Demydchuk M, Hill C., Zhou A, et al. Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Nat Commun. 2017; 8:15786. doi:10.1038/ncomms15786; Nan H, Park C, Maeng S. Mucopolysaccharidoses I and II: Brief Review of Therapeutic Options and Supportive/Palliative Therapies. Biomed Res Int. 2020;2020:2408402. doi:10.1155/2020/2408402; Khan SA, Peracha H, Ballhausen D, et al. Epidemiology of mucopolysaccharidoses. Mol Genet Metab. 2017;121(3):227-240. doi:10.1016/j.ymgme.2017.05.016; Parini R, Deodato F. Intravenous Enzyme Replacement Therapy in Mucopolysaccharidoses: Clinical Effectiveness and Limitations. Int J Mol Sci. 2020;21(8):2975. doi:10.3390/ijms21082975; Scarpa M, Almassy Z, Beck M, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011; 6:72. https://doi.org/10.1186/1750-1172-6-72.; Young ID, Harper PS. The natural history of the severe form of Hunter's syndrome: a study based on 52 cases. Dev Med Child Neurol. 1983;25(4):481-489. doi:10.1111/j.1469-8749.1983.tb13794.x; Froissart R, Moreira da Silva I, Guffon N, et al. Mucopoly sac cha-ridosis type II — genotype/phenotype aspects. Acta Paediatr Suppl. 2002;91(439):82-87. doi:10.1111/j.1651-2227.2002.tb03116.x; Rigoldi M, Verrecchia E, Manna R, Mascia MT. Clinical hints to diagnosis of attenuated forms of Mucopolysaccharidoses. Ital J Pediatr. 2018;44(Suppl 2):132. doi:10.1186/s13052-018-0551-4; Shapiro EG, Jones SA, Escolar ML. Developmental and behavioral aspects of mucopolysaccharidoses with brain manifestations — Neurological signs and symptoms. Mol Genet Metab. 2017;122S:1-7. doi:10.1016/j.ymgme.2017.08.009; Young ID, Harper PS. Mild form of Hunter's syndrome: clinical delineation based on 31 cases. Arch Dis Child. 1982;57(11): 828-836. doi:10.1136/adc.57.11.828; Manara R, Priante E, Grimaldi M, et al. Brain and spine MRI features of Hunter disease: Frequency, natural evolution and response to therapy. J Inherit Metab Dis. 2011;34(3):763-780. doi:10.1007/s10545-011-9317-5; Lin HY, Lee CL, Chang CY, et al. Survival and diagnostic age of 175 Taiwanese patients with mucopolysaccharidoses (19852019). Orphanet J Rare Dis. 2020;15(1)314. doi:10.1186/s13023-020-01598-z; Jones SA, Almassy Z, Beck M, et al. Mortality and cause of death in mucopolysaccharidosis type II-a historical review based on data from the Hunter Outcome Survey (HOS). J Inherit Metab Dis. 2009;32(4):534-543. doi:10.1007/s10545-009-1119-7; Sohn YB, Choi EW, Kim SJ, et al. Retrospective analysis of the clinical manifestations and survival of Korean patients with mucopolysaccharidosis type II: emphasis on the cardiovascular complication and mortality cases. Am J Med Genet A. 2012;158A(1):90-96. doi:10.1002/ajmg.a.34371; Chakraborty PP, Patra S, Biswas SN, et al. Attenuated form of type II mucopolysaccharidoses (Hunter syndrome): pitfalls and potential clues in diagnosis. BMJ Case Rep. 2018;2018: bcr-2018224392. doi:10.1136/bcr-2018-224392; Castillo Racoma MJ, Calibag MKKB, Chiong MAD, et al. A Review Of The Clinical Outcomes In Idursulfase-Treated And Untreated Filipino Patients With Mucopolysaccharidosis Type II: Data From The Local Lysosomal Storage Disease Registry. Research Square. November, 03 2020. Preprint (Version 1). doi.org/10.21203/rs.3.rs-98874/v1; Okuyama T, Tanaka A, Suzuki Y, et al. Japan Elaprase® Treatment (JET) study: Idursulfase enzyme replacement therapy in adult patients with attenuated Hunter syndrome (Mucopolysaccharidosis II, MPS II). Mol Genet Metab. 2010;99(1):18-25. doi:10.1016/j.ymgme.2009.08.006; Вашакмадзе Н.Д., Намазова-Баранова Л.С., Журкова Н.В. и др. Мукополисахаридоз II типа: эффективность ферментозаместительной терапии // Вопросы современной педиатрии. — 2019. — Т. 18. — № 6. — С. 485-490. doi:10.15690/vsp.v18i6.2070
-
8Academic Journal
Συγγραφείς: B. A. Kobrinskiy, N. A. Blagosklonov, N. S. Demikova, Б. А. Кобринский, Н. А. Благосклонов, Н. С. Демикова
Συνεισφορές: The study was carried out within the framework of state Funding «Artificial Intelligence Systems, Knowledge Extraction and Text Analysis 2019–2023» (No. 0063-2019-0001)., Исследование проведено в рамках финансирования Госзадания «Системы искусственного интеллекта, извлечение знаний и анализ текстов 2019–2023» (№ 0063-2019-0001).
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 2 (2021); 85-91 ; Российский вестник перинатологии и педиатрии; Том 66, № 2 (2021); 85-91 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2021-66-2
Θεματικοί όροι: проектирование системы компьютерной поддержки, mental retardation, lysosomal storage diseases, mucopolysaccharidoses, pre-laboratory diagnostics, certainty factor, sign modality coefficient, expert diagnostic system, computer-aided design, умственная отсталость, лизосомные болезни накопления, мукополисахаридозы, долабораторная диагностика, фактор уверенности, коэффициент модальности признака, экспертная диагностическая система
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1378/1077; Connor J.M. Genetics of mental handicap. Curr Obstetr Gynaecol 1993; 3(2): 97–101. DOI:10.1016/S09575847(06)80022-3; Stern J. Hereditary and acquired mental retardation. Princ Med Biol 2000: 14: 379–436. DOI:10.1016/S15692582(00)80019-7; Rauch A., Hoyer J., Guth S., Zweier C., Kraus C., Becker C. et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A 2006; 140(19): 2063–2074. DOI:10.1002/ajmg.a.31416; Bellettato C.M., Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J Inher Metab Dis 2010; 33(4): 347–362. DOI:10.1007/s10545-010-9075-9; Николаева Е.А. Значение достижений медицинской генетики для решения проблемы нарушения развития у детей. Российский вестник перинатологии и педиатрии 2016; 61(2): 5–11. [Nikolaeva E.A. Value of achievements in genet- ics in solving the problems of children with developmental disorders. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2016; 61(2): 5–11. (In Russ.)] DOI:10.21508/1027-4065-2016-61-2-5-11; Tomatsu S., Fujii T., Fukushi M., Oguma T., Shimada T., Maeda M. et al. Newborn screening and diagnosis of mucopolysaccharidoses. Mol Genet Metab 2013; 110(1–2): 42–53. DOI:10.1016/j.ymgme.2013.06.007; Kawamoto K., Houlihan C.A., Balas E.A., Lobach D.F. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ 2005; 330(7494): 765–772. DOI:10.1136/bmj.38398.500764.8F; Alves R., Piñol M., Vilaplana J., Teixidó I., Cruz J., Comas J. et al. Computer-assisted initial diagnosis of rare diseases. Peer J 2016; 4: e2211. DOI:10.7717/peerj.2211; Fryer A. POSSUM (Pictures of Standard Syndromes and Undiagnosed Malformations). J Med Genet 1991; 28(1): 66–67; Baraitser M., Winter R. London Dysmorphology Database, London Neurogenetics Database & Dysmorphology Photo Library on CD-ROM. 3rd ed. Oxford: Oxford University Press, 2001. (Windows CD-ROM); Allanson J.E., Cunniff C., Hoyme H.E., McGaughran J., Muenke M., Neri G. Elements of morphology: standard terminology for the head and face. Am J Med Genet A 2009; 149A(1): 6–28. DOI:10.1002/ajmg.a.32612; Краснопольская К.Д., Евдокименков В.Н., Тишканина С.В. Информационно-поисковая диагностическая система для наследственных болезней обмена веществ. Вестник Российской академии медицинских наук 2000; 5: 11–19 [Krasnopol’skaja K.D., Evdokimenkov V.N., Tishkanina S.V. Information retrieval diagnostic system for hereditary metabolic diseases. Vestnik Rossiiskoi akademii meditsinskikh nauk 2000; 5: 11–19. (In Russ.)]; Bavisetty S., Grody W.W., Yazdani S. Emergence of pediatric rare diseases: Review of present policies and opportunities for improvement. Rare Dis 2013; 1: e23579. DOI:10.4161/rdis.23579; Кобринский Б.А. Нечеткость в клинической медицине и необходимость ее отражения в экспертных системах. Врач и информационные технологии 2016; 5: 6–14. [Kobrinskii B.A. Fuzzy in clinical medicine and the need to reflect in expert systems. Vrach i informatsionnye tekhnologii 2016; 5: 6–14. (In Russ.)]; Batyrshin I. Towards a general theory of similarity and association measures: similarity, dissimilarity and correlation functions. J Intell Fuzzy Syst 2019; 36(4): 2977–3004. DOI:10.3233/JIFS-181503; Kobrinskii B.A., Blagosklonov N.A. Hybrid approach to knowledge extraction: textual analysis and evaluations of experts. Open Semantic Technologies for Intelligent Systems: Materials of the International Scientific and Technical Conference. Minsk, 2018; 191–194; Shortliffe E.H., Buchanan B.G. A Model of Inexact Reasoning in Medicine. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading, London, Amsterdam, Sydney: Addison-Wesley Publishing Company, 1984; 233–262; Кобринский Б.А. Триединство факторов уверенности в задачах медицинской диагностики. Искусственный интел- лект и принятие решений 2018; 2: 62–72. [Kobrinskii B.A. Certainty factor triunity in medical diagnostics tasks. Iskusstvennyi intellekt i prinyatie reshenii 2018; 2: 62–72. (In Russ.)] DOI:10.14357/20718594180205; Ronicke S., Hirsch M.C., Türk E., Larionov K., Tientcheu D., Wagner A.D. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orph J Rare Dis 2019;14(1): 69. DOI:10.1186/s13023-019-1040-6
-
9Academic Journal
Συγγραφείς: Natalia V. Zhurkova, Nato D. Vashakmadze, Natella V. Sukhanova, Olga B. Gordeeva, Natalia S. Sergienko, Ekaterina Yu. Zaharova, Н. В. Журкова, Н. Д. Вашакмадзе, Н. В. Суханова, О. Б. Гордеева, Н. С. Сергиенко, Е. Ю. Захарова
Πηγή: Pediatric pharmacology; Том 17, № 6 (2020); 529-535 ; Педиатрическая фармакология; Том 17, № 6 (2020); 529-535 ; 2500-3089 ; 1727-5776
Θεματικοί όροι: ген HEXA, type I, Tay-Sachs disease, lysosomal storage disease, macular pallor with prominence of fovea centralis (cherry red spot), hexosaminidase A deficiency, HEXA gene, тип I, болезнь Тея – Сакса, лизосомные болезни накопления, симптом вишневой косточки на глазном дне, недостаточность гексозаминидазы А
Περιγραφή αρχείου: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/1924/1198; Tay W. Symmetrical changes in the region of the yellow spot in each eye of an infant. Transactions of the Ophthalmological Society. 1881;1:55–57.; Sachs B. On arrested cerebral development with special reference to cortical pathology. Journal of Nervous and Mental Disease. 1887;14(9):541–554. doi:10.1097/00005053-188714090-00001; Okada S, O’Brien JS. Tay – Sachs disease: generalized absence of a beta-D-N-acetyl hexosaminidase component. Science. 1969;165(3894):698–700. doi:10.1126/ science.165.3894.698; Platt FM, d’Azzo A, Davidson BL, et al. Lysosomal storage diseases? Nat Rev Dis Primers. 2018;4(1):27–38. doi:10.1038/s41572-018-0025-4; Rozenberg R, Pereira LV. The frequency of Tay–Sachs disease causing mutations in the Brazilian Jewish population justifies a carrier screening program. Sao Paulo Med J. 2001;119(4):146– 149. doi:10.1590/s1516-31802001000400007; Sillon G, Allard P, Drury S, et al. The incidence and carrier frequency of Tay – Sachs disease in the French-Canadian population of Quebec based on retrospective data from 24 years, 1992–2015. J Genet Couns. 2020;29(6):1–13. doi: org/10.1002/jgc4.1284; Lew RM, Burnett L, Proos AL, Delatycki MB. Tay – Sachs disease: current perspectives from Australia. Appl Clin Genet. 2015;8:19–25. doi:10.2147/TACG.S49628; Lazarin GA, Haque IS, Nazareth S, et al. An empirical estimate of carrier frequencies for 400+ causal Mendelian variants: results from an ethnically diverse clinical sample of 23,453 individuals. Genet Med. 2013;15(3):178–186. doi; 10.1038/gim.2012.114; OMIM #272800 Tay – Sachs disease. GM2-gangliosidosis, type I. Available online: https://omim.org/entry/272800. Accessed on December 17, 2020.; Sandhoff K. Neuronal sphingolipidoses: Membrane lipid sandsphingolipid activator proteins regulate lysosomal sphingolipid catabolism. Biochimie. 2016:130;146–151. doi:10.1016/j.biochi.2016.05.004; Solovyeva VV, Shaimardanova AA, Chulpanova DS, et al. New Approaches to Tay – Sachs Disease. Therapy. Front Physiol. 2018;9:1663–1670. doi:10.3389/fphys.2018.01663; Hall P, Minnich S, Teigen C, Raymond K. Diagnosing Lysosomal Storage Disorders: The GM2 Gangliosidoses. Curr Protoc Hum Genet. 2014;83:17.16.1–17.16.8. doi:10.1002/0471142905.hg1716s83; Михайлова С.В., Захарова Е.Ю., Петрухин А.С. Нейрометаболические заболевания у детей и подростков: диагностика и подходы к лечению. — 2-е изд. — М.: Литтерра; 2019. — С. 174–179.; Breiden B, Sandhoff K. Mechanism of secondary ganglioside and lipid accumulation in lysosomal disease. Int J Mol Sci. 2020;21:2566. doi:10.3390/ijms21072566; Gravel R, Kaback MM, Proia RL, et al. The GM2 gangliosidoses. In: Metabolic and Molecular Bases of Inherited Disease. 8th Ed. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York, NY, USA: McGraw-Hill; 2001. pp. 3827–3876.; Tutor JC. Biochemical characterization of the GM2 gangliosidosis B1 variant. Braz J Med Biol Res. 2004;37(6):777–783. doi:10.1590/S0100-879X2004000600001; Miller GL, Somani S, Malgorzata J, et al. The Ocular Manifestations of Jacobsen Syndrome: A Report of Four Cases and a Review of the Literature. Ophthalmic Genet. 2006;27(1):1–7. doi:10.1080/13816810500481832; Nestrasil I, Ahmed A, Utz JM, et al. Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: Volumetric quantitative MRI study. Mol Genet Metab. 2018;123(2):97–104. doi:10.1016/j.ymgme.2017.12.432; Семенова О.В., Клюшников С.А, Павлов Э.В. и др. Клинический случай болезни Тея – Сакса с поздним началом // Нервные болезни. — 2016. — № 3. — С. 57–60.; Deuse T, Hu X, Gravina A, et al. Hypoimmunogenic Derivatives of Induced Pluripotent Stem Cells Evade Immune Rejection in Fully Immunocompetent Allogeneic Recipients. Nat Biotechnol., 2019;37(3):252–258. doi:10.1038/s41587-019-0016-3; Vu M, Li R, Baskfield A, et al. Neural Stem Cells for Disease Modeling and Evaluation of Therapeutics for Tay – Sachs Disease. Orphanet J Rare Dis. 2018;13(1):152–158. doi:10.1186/s13023-018-0886-3; Pulido Z, Cifuentes J, Benincore E, et al. Recombinant Hexosaminidases Conjugated to Magnetite Nanoparticles: Alternative Therapeutic Treatment Routes in GM2 Fibroblasts. Mol Genet Metab. 2020;129(2):S132–S133. doi:10.1016/j.ymgme.2019.11.347; Han X, Wang M, Duan S, et al. Generation of Hypoimmunogenic Human Pluripotent Stem Cells. Proc Natl Acad Sci U S A. 2019;116(21):10441–10446. doi:10.1073/pnas.1902566116; Jacobs JF, Willemsen MA, Groot-Loonen JJ, et al. Allogeneic BMT followed by substrate reduction therapy in a child with subacute Tay – Sachs disease. Bone Marrow Transpl. 2005;36(10):925–926. doi:10.1038/sj.bmt.1705155; Osher E, Fattal-Valevski A, Sagie L, et al. Effect of cyclic, low dose Pyrimethamine treatment in patients with late onset Tay – Sachs: an open label, extended pilot study. Orphanet J Rare Dis. 2015;10:45. doi:10.1186/s13023-015-0260-7; Вашакмадзе Н.Д., Намазова-Баранова Л.С., Журкова Н.В. и др. Результаты ферментозаместительной терапии и трансплантации гемопоэтических стволовых клеток у пациентов с синдромом Гурлер: клинические случаи // Вопросы современной педиатрии. — 2019. — Т. 18. — № 3. — С. 196–202.; Kato A., Nakagome I., Nakagawa S., et al. In silico analyses of essential interactions of iminosugars with the Hex A active site and evaluation of their pharmacological chaperone effects for Tay-Sachs disease. Org Biomol Chem. 2017;15(44):9297–9304. doi:10.1039/C7OB02281F; Chen Y, Jian. J, Hettinghouse A, et al. Progranulin associates with Hexosaminidase A and Ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay – Sachs Disease. J Mol Med. 2018;96(12):1359–1373. doi:10.1007/s00109-018-1703-0; Maegawa GH, Banwell BL, Blaser S, et al. Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol Genet Metab. 2009;98(1–2):215–224. doi:10.1016/j.ymgme.2009.06.005; Ornaghi F, Sala D, Tedeschi F, et al. Novel Bicistronic Lentiviral Vectors Correct Β-Hexosaminidase Deficiency in Neural and Hematopoietic Stem Cells and Progeny: Implications for In Vivo And Ex Vivo Gene Therapy of GM2 Gangliosidosis. Neurobiol Dis. 2020;134:1046–1067. doi:10.1016/j.nbd.2019.104667; Zhurkova NV, Savostyanov KV, Pushkov AA, et al. Russian patients with GM1-gangliosidosis. Mol Genet Metab. 2020;129(2):S166. doi:10.1016/j.ymgme.2019.11.443; Ali A, Akram F, Khan G, Hussain S. Paediatrics brain imaging in epilepsy: common presenting symptoms and spectrum of abnormalities detected on MRI. J Ayub Med Coll Abbottabad. 2017;29(2):215–218.; Tanpaiboon P. Practical management of lysosomal storage disorders (LSDs) Translational Science of Rare Diseases. 2019;4(3– 4):133–157. doi:10.3233/trd-190047; Toro C., Shirvan L., Tifft C. HEXA Disorders. In: Gene Reviews. Adam MP, Ardinger HH, Pagon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2020.; https://www.pedpharma.ru/jour/article/view/1924
-
10Academic Journal
Συγγραφείς: N. N. Mazanova, A. Yu. Asanov, M. I. Bakanov, I. G. Chebelyaev, K. V. Savostyanov, Н. Н. Мазанова, А. Ю. Асанов, М. И. Баканов, И. Ю. Чебеляев, К. В. Савостьянов
Πηγή: Medical Genetics; Том 20, № 6 (2021); 3-13 ; Медицинская генетика; Том 20, № 6 (2021); 3-13 ; 2073-7998
Θεματικοί όροι: мутация гена GLA, lysosomal storage disease, enzyme α-galactosidase A, globotriaosylsphingosine, neonatal screening, mutations of the GLA gene, лизосомные болезни накопления, фермент α-галактозидаза А, глоботриаозилсфингозин, неонатальный скрининг
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1938/1493; Clarke J. et al. Clinical Guide to Inherited Metabolic Diseases. Cambridge University Press. 2005. P. 358.; Fabry J. Ein Beitrag zur Kenntnis der Purpura Haemorrhagica nodularis (Purpura papulosa haemorrhagica Hebrae). Archiv fur Dermatologie und syphilis. Berlin, 1898. No. 43. Pp. 187-200.; Anderson W.E., Griffing G.T. Type VI Glycogen Storage Disease. Medscape. 2019 (Feb). Available at: https:emedicine.medscape.com. articl.119873-overview.; Пулин А.А., Фомин В.В, Бровко М.Ю. и др. Трудности диагностики и лечения болезни Фабри. Клин фармакол тер. 2014; 23(2): 62-68.; http://www.hgmd.cf.ac.uk/ac/gene.php?gene=GLA; Bernstein H.S., Bishop D.F., Astrin K.H., et al. Fabry disease: six gena rearrangements and an exonic point mutation in the alphagalactosidase gene. J Clin Invest 1989; 83: 1390-1399.; Wang R.Y., Lelis A., Mirocha J,. et.al. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet. Med. 2007; 9(1):34-45.; Кобринский Б.А. Континуум переходных состояний организма и мониторинг динамики здоровья детей: Монография. 2-е изд. Москва-Берлин: Direct-Media, 2016. 220 c.; Ortiz A., Germain D.P., Desnick R.J. et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Molecular Genetics and Metabolism. 2018;123(4): 416-27.; Van der Veen S.J., Hollak C.E.M., van Kuilenburg et al. Developments in the treatment of Fabry disease. J Inherit Metab Dis. 2020 Sep;43(5):908-921. doi:10.1002/jimd.12228.; Meikle P.J. et al. Prevalence of lysosomal storage disorders. Journal of the American Medical Association. 1999; 281(3):249-254.; Wittmann J., Karg E., Turi S. et al. Newborn Screening for Lysosomal Storage Disorders in Hungary. JIMD Rep. 2012; 6:117-125.; Poorthuis B.J., Wevers R.A., Kleijer W.J. et al. The frequency of lysosomal storage diseases in Netherlands. Hum Genet. 1999; 105:151-156.; Spada M. et al. High incidence of later-onset Fabry disease revealed by newborn screening. American Journal of Human Genetics. 2006;79(1): 31-40.; MacDermot K.D., Holmes A., Miners A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. Journal of Medical Genetics. 2001; 38(11):750-760.; Popli S. et al. Demonstration of Fabry’s disease deposits in placenta. American Journal of Obstetrics and Gynecology. 1990; 162(2): 464-465.; Hwu W.L. et al. Newborn screening for fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Human Mutation. 2009; 30(10): 1397-1405.; Asuman Özkara H., Topçu M. Sphingolipidoses in Turkey. Brain and Development. 2004; 26(6): 363-366.; Pinto R. et al. Prevalence of lysosomal storage diseases in Portugal. European Journal of Human Genetics. 2004; 12(2):87-92.; Colon C. et al. Newborn screening for Fabry disease in the north-west of Spain. European Journal of Pediatrics. 2017; 176(8):1075-1081.; Mechtler T.P. et al. Neonatal screening for lysosomal storage disorders: feasibility and incidence from a nationwide study in Austria. Lancet. 2012; 9813 (379): 335-41.; Burton B.K. et al. Newborn Screening for Lysosomal Storage Disorders in Illinois: The Initial 15-Month Experience. The Journal of pediatrics. 2017;190:130-135.; Sakuraba H. et al. Fabry disease in a Japanese population-molecular and biochemical characteristics. Molecular genetics and metabolism reports. 2018;17:73-79.; Spada M., Pagliardini S., Yasuda M. et al. High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening. Am. J. Hum. Gemet. 2006; 79(1): 31-40.; Hwu W.L., Chien Y.H., Lee N.C. et al. Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum. Mutat. 2009; 30(10): 1397-1405.; Sims K., Politei J., Banikazemi M. et al. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke 2009; 40:788-794.; Metha A., Ricci R., Widmer U., Dehoul F., Garcia de Lorenzo A., Kampmann C., et.al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest 2004; 34(3):236-242.; Nakao S., Kodama C., Takenaka T. et.al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a ‘‘renal variant’’ phenotype. Kidney Int. 2003; 64(3):801-807.; Ishii S., Nakao S., Nakao., Minamikawa Tachino R. et al. Alternative splicing in the α-Galactosidase a gene: increased exon inclusion results in the Fabry cardiac phenotype. Am. J. Hum Genet. 2002; 70(4): 994-1002.; Biegstraaten M. et al. Small fiber neuropathy in Fabry disease. Mol genet Metab 2012; 106(2):135-41.; Germain D.P. Fabrys disease (alpha-galactosidase-A deficiency): physiopathology, clinical signs, and genetic aspects J Soc Biol 2002; 196: 161-173.; Rost N.S., Cloonan L., Kanakis A.S. et al. Determinants of wile matter hyperintensity burden in patients with Fabry disease. Neurology 2016; 86(2):1880-6.; Моисеев С.В. Поражение сердца при болезни Фабри: как заподозрить, диагностировать и лечить? Клин фармакол тер 2012;21(3):72-7.; Hughes D., Elliott P., Shah J. et al. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomized, double βlind, placebo controlled clinical trial of agalsidase alfa. Heart 2008; 94(2):153-8.; Fervenza F.C., Torra R., Lager D.J. Fabry disease: an underrecognized cause of proteinuria. Kidney Int 2008; 73:1193-1199.; Schiffmann R., Warnock D.G., Banikazemi M., et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant 2009; 24:2102-2111.; Sodi A., Ioannidis A.S., Mehta A., et al. Ocular manifestations of Fabry’s disease: data from the Fabry Outcome Survey. Br J Ophthalmol 2007; 91:210-214.; Sakurai Y., Kojima H., Shiwa M., et al. The hearing status in 12 female and 15 male Japanese Fabry patients. Auris Nasus Larynx 2009; 36:627-632.; Zampetti et al. Angiokeratoma decision-making and for the diagnosis of Fabry disease. British J of Dermat 2012; 166:712-720.; Hoffmann B., Schwarz M., Mehta A. et al. Gastrointestinal symptoms in 342 patients with Fabry disease: prevalence and response to enzyme replacement therapy. Clin Gastroenterol Hepatol 2007; 5:1447-1453.; Magage S., Lubanda J.C., Susa Z., et al. Natural history of the respiratory involvement in Anderson-Fabry disease. J Interit Metab Dis 2007; 30:790-799.; Germain D.P. Bone and muscle involvement in Fabry disease. NewYork, 2010:293-298.; Charrow J. A 14-year-old boy with pain in hands and feet. Pediatr Ann. 2009; 38:190-192.; MacDermot K.D., Holmes A., Miners A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. Journal of Medical Genetics. 2001; 38(11):769-775.; Papaxanthos-Roche A., Deminiere C., Bauduer F., et al. Azoospermia as a new feature of Fabry disease. Fertil Steril 2007; 88:212.e215-218.; Hauser A.C., Gessl A., Lorenz M., et al. High prevalence of subclinical hypothyroidism in patients with Anderson-Fabry disease. J Inherit Metab Dis 2005; 28:715-722.; Oliveira J.P., Valbuena C., Baldaia Moreira A., et al. Splenomegaly, hypersplenism and peripheral blood cytopaenias in patients with classical Anderson-Fabry disease. Virchows Arch 2008; 453:291-300.; Ries M., Gupta S., Moore D.F., et al. Pediatric Fabry disease. Pediatrics 2005; 115:e344-355.; Ramaswami U. et al. Clinical manifestations of Fabry disease in children: Data from the Fabry Outcome Survey. Acta Paediatrica, International Journal of Paediatrics. 2006; 95(1): 86-92.; Meikle J., Hopwood J.J., A. Clague E. et al. Prevalence of lysosomal storage disorders. JAMA. 1999; 281(3):249-254.; Olivova P., der Veen K.V., Culien E. et al. Effect of sample collection on alpha-galactosidase A enzyme activity measurements in dried blood spots on filter paper. Clin Chim Acta 2009; 403: 159-162.; Merchesoni C.L., Roa N., Pardal M. et al. Misdiagnosis in Fabry disease. J. Pediatr. 2010; 156(5):828-831.; Sakuraba H., Togawa T., Tsukimura T. et al. Plasma lyso-Gb3: a biomarker for monitoring Fabry patients during enzyme replacement therapy. Clin Exp Nephrol. 2018;22(4): 843-9.; Heather J.M., Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107(1): 1 - 8.; Oliveira J.P., Ferreira S. Multiple phenotypic domains of Fabry disease and their relevance for establishing genotype- phenotype correlations. Appl Clin Genet. 2019; 12:35-50. doi:10.2147/TACG.S146022.; Kotanko P., Kramar R., Devrnja D. et al. Results of a Nationwide Screening for Anderson-Fabry J. Am. Soc. Nephrol. 2004; 15(5):1323-1329.; Merta M., Reiterova J., Ledvinova J. et al. A nationwide blood spot screening study for Fabry disease in the Czech Republic haemodialysis patient population. Nephrol Dial Transplant. 2007 Jan; 22(1):179-86.; Porsch D.B., Nunes A.C., Milani V. et al. Fabry disease in hemodialysis patients in southern Brazil: prevalence study and clinical report. Ren. Fail. 2008; 30(9): 825-830.; Gaspar P., Herrera J., Rodriguesу D. et al. Frequency of Fabry disease in male and female haemodialysis patients in Spain. BMC Med Genet. 2010; 11: 19.; Maruyama H., Takata T., Tsubata Y. et al. Screening of Male Dialysis Patients for Fabry Disease by Plasma Globotriaosylsphingosine. Clin J Am Soc Nephrol. 2013 Apr 5; 8(4): 629-636.; Moiseev S., Fomin V., Savostyanov K. et al. The Prevalence and Clinical Features of Fabry Disease in Hemodialysis Patients: Russian Nationwide Fabry Dialysis Screening Program. Clin Pract. 2019 Apr; 141(4): 249-255.; Sadasivan C., Chow J.T.Y., Sheng B., et al. Screening for Fabry Disease in patients with unexplained left ventricular hypertrophy. PLoS One. 2020 Sep 28;15(9):e0239675. doi:10.1371/journal.pone.0239675.; Sakuraba H., Murata-Ohsawa M., Kawashima I. et al. Comparison of the effects of agalsidasa alfa and agalsidasa beta on cultured human Fabry fibroblasts and Fabry mice. J Hum Genet 2006; 51:180-188.; Pisani A., Spinelli L., Visciano B. et al. Effects of switching from agalsidase beta to agalsidase alfa in 10 patients with Anderson-Fabry disease. JIMD Rep. 2013; 9:41-48.; Neufeld E.F. Lysosomal Storage Diseases. Annual Review of Biochemistry. 1991; 60(1): 257-280.
-
11Academic Journal
Πηγή: Ukrainian Therapeutical Journal; No. 4 (2021); 52—58
Украинский терапевтический журнал; № 4 (2021); 52—58
Український терапевтичний журнал; № 4 (2021); 52—58Θεματικοί όροι: диагностика, лечение, treatment, сердечно‑сосудистая системасердечно‑сосудистая система, mucopolysaccharidosis, лизосомные болезни накопления, лізосомні хвороби накопичення, серцево-судинна система, мукополісахаридози, діагностика, 3. Good health, lysosomal storage disease, лікування, cardiovascular system, diagnostics, мукополисахаридозы
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://utj.com.ua/article/view/246983
-
12Academic Journal
Συγγραφείς: A. N. Semyachkina, E. A. Nikolaeva, E. Yu. Voskoboeva, M. A. Dantseva, E. Yu. Zakharova, А. Н. Семячкина, Е. А. Николаева, Е. Ю. Воскобоева, М. А. Данцева, Е. Ю. Захарова
Συνεισφορές: The study was carried out within the framework of state Funding «Analysis of clinical and genetic polymorphism of disabled monogenic diseases in children to predict their course and identify molecular targets for optimizing treatment» АААА-А18-118051790107-2, Исследование проведено в рамках финансирования Госзадания «Анализ клинико-генетического полиморфизма инвалидизирующих моногенных заболеваний у детей для прогнозирования их течения и определения молекулярных мишеней для оптимизации лечения» АААА-А18-118051790107-2
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 4 (2020); 142-149 ; Российский вестник перинатологии и педиатрии; Том 65, № 4 (2020); 142-149 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-4
Θεματικοί όροι: велманаза альфа, rare (orphan) diseases, lysosomal storage diseases, alpha-mannosidosis, clinical manifestations, MAN2B1 gene, enzyme replacement therapy, velmanase alpha, редкие (орфанные) болезни, лизосомные болезни накопления, альфа-маннозидоз, клинические проявления, ген MAN2B1, заместительная ферментная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1213/968; Malm D., Nilssen O. Alpha-mannosidosis. Orphanet J Rare Dis 2008; 3: 21. DOI:10.1186/1750-1172-3-21; Menendez-Sainz C., Gonzalez-Quevedo A., Gonzalez-Gar-cia S., Pena-Sanchez M., Giugliani R. High proportion of mannosidosis and fucosidosis among lysosomal storage diseases in Cuba. Genet Mol Res 2012; 11(3): 2352-2359. DOI:10.4238/2012.August.13.9; HGMD® Professional, 2015. https://www.portal.biobase-in-ternational.com/hgmd/pro/gene.php?gene=MAn2B1.; Borgwardt L., Stensland H.M., Olsen K.J., Wibrand F, Kle-now H.B., Beck M. et al. Alpha-mannosidosis: correlation between phenotype, genotype and mutant MAN2B1 subcellular localization. Orphanet J Rare Dis 2015; 10: 70. DOI:10.1186/s13023-015-0286-x; Borgwardt L., Lund A.M., Dali C.I. Alpha-mannosidosis — a review of genetic, clinical findings and options of treatment. Pediatr Endocrinol Rev 2014; 12(Suppl. 1): 185—191.; Beck M., Olsen K.J., Wraith J.E., Zeman J., Michals-ki J.C., Saftig P. et al. Natural history of alpha mannosidosis a longitudinal study. Orphanet J Rare Dis 2013; 8: 88. DOI:10.1186/1750-1172-8-88; Borgwardt L., Danielsen E.R., Thomsen C., Mansson J.E., Taouatas N., Thuesen A.M. et al. Alpha-mannosidosis: characterization of CNS pathology and correlation between CNS pathology and cognitive function. Clin Genet 2016; 89 (2016) 489—494. DOI:10.1111/cge.12642; Guffon N., Tylki-Szymanska A., Borgwardt L., Lund A.M., Gil-Campos M., Parini R., Hennermann J.B. Recognition of Alpha-Mannosidosis in Paediatric and Adult Patients: Presentation of a Diagnostic Algorithm From an International Working Group. Mol Genet Metab 2019; 126(4) 470—474. DOI:10.1016/j.ymgme.2019.01.024; Ceccarini M.R., Codini M., Conte C., Patna F., Cataldi S., Ber-telli M. et al. Alpha-Mannosidosis: Therapeutic Strategies. Int J Mol Sci 2018; 19(5): 1500. DOI:10.3390/ijms19051500; Mynarek M., Tolar J., Albert M.H., Escolar M.L., Boelens J.J., Cowan M.J. et al. Allogeneic hematopoietic SCT for al-pha-mannosidosis: an analysis of 17 patients. Bone Marrow Transplant 2012; 47(3): 352—359. DOI:10.1038/bmt.2011.99; Borgwardt L., Guffon N., Amraoui Y., Dali C.I., De Meirleir L., Gil-Campos M. et al. Efficacy and safety of Vfelmanase alfa in the treatment of patients with alpha-mannosidosis: results from the core and extension phase analysis of a phase III multicentre, double-blind, randomised, placebo-controlled trial. J Inherit Metab Dis 2018; 41(6): 1215—1223. DOI:10.1007/s10545-018-0185-0; Lund A.M., Borgwardt L., Cattaneo F., Ardigo D., Geraci S., Gil-Campos M. et al. Comprehensive long-term efficacy and safety of recombinant human alpha-mannosidase (velmanase alfa) treatment in patients with alpha-mannosidosis. J Inherit Metab Dis 2018; 41(6): 1225-1233. DOI:10.1007/s10545-018-0175-2; Phillips D., Hennermann J.B., Tylki-Szymanska A., Borgwardt L, Gil-Campos M., Guffon N. et al. Use of the Bruininks-Os-eretsky Test of Motor Proficiency (BOT-2) to Assess Efficacy of Vfelmanase Alfa as Enzyme Therapy for Alpha-Mannosido-sis. Mol Genet Metab Rep 2020; 23: 100586. DOI:10.1016/j.ymgmr.2020.100586; Рoenaru L., Girard S., Thepot F., Madelenat P., Huraux-Ren-du C., Vinet M.-C., Dreyfus J.-C. Antenatal diagnosis in three pregnancies at risk for mannosidosis. Clin Genet 1979; 16: 428-432.; Malm D., Nilssen O. Alpha-Mannosidosis. In: M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, A. Amemiya (eds). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020 [updated 2020 May 18]. https://rarediseases.org/rare-diseases/alpha-mannosidosis/
-
13Academic Journal
Συγγραφείς: Nina V. Fedorova, Natalia V. Zhurkova, Nato D. Vashakmadze, Marina A. Babaykina, Grigory V. Revunenkov, Kirill V. Savostyanov, Olga B. Gordeeva, Leyla S. Namazova-Baranova, Н. В. Федорова, Н. В. Журкова, Н. Д. Вашакмадзе, М. А. Бабайкина, Г. В. Ревуненков, К. В. Савостьянов, О. Б. Гордеева, Л. С. Намазова-Баранова
Συνεισφορές: Not specified., Отсутствует.
Πηγή: Pediatric pharmacology; Том 17, № 5 (2020); 459-466 ; Педиатрическая фармакология; Том 17, № 5 (2020); 459-466 ; 2500-3089 ; 1727-5776
Θεματικοί όροι: гипоплазия брюшного отдела аорты, lysosomal storage disease, gene GNPTAB, I-cell disease, neonatal hyperparathyroidism, abdominal aortic hypoplasia, лизосомные болезни накопления, ген GNPTAB, I-клеточная болезнь, ICD, неонатальный гиперпаратиреоз
Περιγραφή αρχείου: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/1907/1191; Харрисон Т.Р. Лизосомные болезни накопления // Внутренние болезни: в 10 книгах; книга 8; пер. с англ. — М.: Медицина; 1996. — С. 250–273.; Leroy JG, DeMars RI. Mutant enzymatic and cytological phenotypes in cultured human fibroblasts. Science. 1967;157(3790):804–806. doi:10.1126/science.157.3790.804.; De Mars RI, Leroy JG. The remarkable cells cultured from a human with Hurler’s syndrome: An approach to visual selection for in vitro genetic studies. In Vitro. 1966;2:107–118.; Leroy JG, Spranger JW, Feingold M, et al. I-cell disease: a clinical picture. J Pediatr. 1971;79(3):360–365. doi:10.1016/s00223476(71)80142-7.; Spranger JW, Wiedemann HR. The genetic mucolipidoses. Diagnostic and differential diagnosis. Humangenetik. 1970;9(2):113–139. doi:10.1007/BF00278928.; Международная классификация болезней 10-го пересмотра (МКБ-10). Available online: MKB-10.com. Accessed on November 03,2020.; Mucolipidosis, type II alpha/beta. OMIM. #252500. Available online: https://omim.org/entry/252500. Accessed on November 03,2020.; Cathey SS, Kudo M, Tiede S, et al. Molecular order in mucolipidosis II and III nomenclature. Am J Med Genet. 2008;146A(4):512–513. doi:10.1002/ajmg.a.32193.; Kudo M, Brem MS, Canfield WM. Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-hurler polydystrophy) are caused by mutations in the GlcNAcphosphotransferase alpha/beta-subunits precursor gene. Am J Hum Genet. 2006;78(3):451–463. doi:10.1086/500849.; De Braekeleer M. Hereditary disorders in Saguenay-Lac-StJean (Quebec, Canada). Hum Hered. 1991;41(3):141–146. doi:10.1159/000153992.; Leroy JG, Cathey SS, Friez MJ. GNPTAB-Related Disorders. GeneReviews® [Internet] Seattle (WA): University of Washington, Seattle; 1993–2020. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1828. Accessed on November 03,2020.; Leyva C, Buch M, Wierenga KJ, et al. A neonate with mucolipidosis II and transient secondary hyperparathyroidism. J Pediatr Endocrinol Metab, 2019;32(12):1399–1402. doi:10.1515/jpem2019-0162.; Семячкина А.Н., Воскобоева Е.Ю., Букина Т.М. и др. Клинико-генетическая характеристика муколипидоза II и IIIA типов у детей // Российский вестник перинатологии и педиатрии. — 2017. — Т. 62. — № 3. — С. 71–78. doi:10.21508/1027-4065-2017-62-3-71-78.; Cathey SS, Leroy JG, Wood T, et al. Phenotype and genotype in mucolipidoses II and III alpha/beta: a study of 61 probands. J Med Genet. 2010;47(1):38–48. doi:10.1136/jmg.2009.067736.; Mueller P, Moeckel A, Daehnert T. Severe dilated cardiomyopathy as an unusual finding in a young infant with mucolipidosis type 2. Images Paediatr Cardiol. 2006;8(4):1–6.; Siles A, Mitchell G, Dahdah N. An Infant with Mucolipidosis-II and an Atretic orifice of the Left Coronary Artery. Cardiol Young. 2010;20(1):97–99. doi:10.1017/S1047951109991843.; Daimon M, Yamagishi M. Surgical treatment of marked mitral valvar deformity combined with I-cell disease ‘Mucolipidosis II’. Cardiol Young. 2005;15(5):517–519. doi:10.1017/S104795110500140X.; Bounds RL, Kuebler J, Cholette JM, et al. Left Main Coronary Artery Atresia in an Infant With Inclusion-Cell Disease. World J Pediatr Congenit Heart Surg. 2018;9(2):246–250. doi:10.1177/2150135116664701.; Alfadhel M, AlShehhi W, Alshaalan H, et al. Mucolipidosis II: first report from Saudi Arabia. Ann Saudi Med. 2013;33(4):382–386. doi:10.5144/0256-4947.2013.382.; Velho RV, Harms FL, Danyukova T, et al. The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: Update on GNPTAB and GNPTG mutations. Hum Mutat. 2019;40(7):842–864. doi:10.1002/humu.23748.; Singh A, Prasad R, Gupta AK, et al. I Cell Disease (Mucolipidosis II Alpha/Beta): From Screening to Molecular Diagnosis. Indian J Pediatr. 2017;84(2):144–146. doi:10.1007/s12098-016-2243-7.; Lund TC, Cathey SS, Miller WP, et al. Outcomes after Hematopoietic Stem Cell Transplant for Children with I-Cell Disease. Biol Blood Marrow Transplant. 2014;20(11):1847–1851. doi:10.1016/j.bbmt.2014.06.019.; https://www.pedpharma.ru/jour/article/view/1907
-
14Academic Journal
Συγγραφείς: Natalya N. Martynovich, Yulia P. Semshchikova, Natalya Yu. Rudenko, Vera M. Shinkareva, Kristina V. Egorycheva, Н. Н. Мартынович, Ю. П. Съемщикова, Н. Ю. Руденко, В. М. Шинкарева, К. В. Егорычева
Συνεισφορές: Not specified., Не указан.
Πηγή: Pediatric pharmacology; Том 17, № 5 (2020); 455-458 ; Педиатрическая фармакология; Том 17, № 5 (2020); 455-458 ; 2500-3089 ; 1727-5776
Θεματικοί όροι: дети раннего возраста, lysosomal storage diseases, Hunter syndrome, congenital defect of glycosaminoglycans metabolism, idursulfase, iduronate-2-sulfatase, enzyme replacement therapy, infants, лизосомные болезни накопления, болезнь Хантера, врожденный дефект метаболизма гликозаминогликанов, идурсульфаза, идуронат-2-сульфатаза, ферментзаместительная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/1905/1189; Атлас редких болезней / под ред. А.А. Баранова, Л.С. Намазовой-Барановой. — 2-е изд., испр. и доп. — М.: ПедиатрЪ; 2016. — 420 с.; Мартынович Н.Н., Барзунова Т.В., Съемщикова Ю.П. Опыт практической подготовки будущих врачей педиатров по дисциплине по выбору «Орфанные заболевания» // Тихоокеанский медицинский журнал. — 2020. — № 1(79). — С. 85–87. doi:10.34215/1609-1175-2020-1-85-87.; Martin R, Beck M, Eng C, et al. Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome). Pediatrics. 2008;121(2):377–386. doi:10.1542/peds.2007-1350.; Thappa DM, Singh A, Jaisankar TJ, et al. Pebbling of the Skin: A Marker of Hunter’s Syndrome. Pediatr Dermatol.1998;15(5):370–373. doi:10.1046/j.1525-1470.1998.1998015370.x.; https://www.pedpharma.ru/jour/article/view/1905
-
15Academic Journal
Συγγραφείς: N. N. Mazanova, A. A. Pushkov, A. V. Pachomov, A. Y. Asanov, K. V. Savostyanov, Н. Н. Мазанова, А. А. Пушков, А. В. Пахомов, А. Ю. Асанов, К. В. Савостьянов
Πηγή: Medical Genetics; Том 19, № 7 (2020); 81-82 ; Медицинская генетика; Том 19, № 7 (2020); 81-82 ; 2073-7998
Θεματικοί όροι: мутации гена GLА, α-galactosidase A, glycosphingolipid, globotriaosylsphingosine, lysosomal storage disease, tandem mass-spectrometry, sequencing, mutations of the GLA gene, α-галактозидаза А, гликозилсфинголипиды, глоботриаозилсфингозин, лизосомные болезни накопления, тандемная масс-спектрометрия, секвенирование
Περιγραφή αρχείου: application/pdf
-
16Academic Journal
Συγγραφείς: O. I. Gumeniuk, Y. V. Chernenkov, A. N. Andreeva, T. A. Ilyasova, О. И. Гуменюк, Ю. В. Черненков, А. Н. Андреева, Т. А. Илясова
Πηγή: Medical Genetics; Том 19, № 7 (2020); 78-80 ; Медицинская генетика; Том 19, № 7 (2020); 78-80 ; 2073-7998
Θεματικοί όροι: акропарестезия, lysosomal storage diseases, alpha-galactosidase, acroparesthesia, лизосомные болезни накопления, альфа-галактозидаза
Περιγραφή αρχείου: application/pdf
-
17Academic Journal
Συγγραφείς: V. I. Ignatyeva, S. V. Moiseev, N. M. Bulanov, E. A. Karovajkina, A S. Moiseev, В. И. Игнатьева, С. В. Моисеев, Н. М. Буланов, Е. А. Каровайкина, А. С. Моисеев
Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 11, No 4 (2018); 38-46 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 11, No 4 (2018); 38-46 ; 2070-4933 ; 2070-4909
Θεματικοί όροι: ферментозаместительная терапия, lysosomal storage diseases, rare diseases, agalsidase alpha, agalsidase beta, enzyme replacement therapy, лизосомные болезни накопления, редкие заболевания, агалсидаза альфа, агалсидаза бета
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmacoeconomics.ru/jour/article/view/265/267; Brady R. O., Gal A. E., Bradley R. M., Martensson E., Warshaw A. L., Laster L. Enzymatic defect in Fabry’s disease. Ceramidetrihexosidase deficiency. N Engl J Med. 1967; 276 (21): 1163-7.; Kint J. A. Fabry’s disease: alpha-galactosidase deficiency. Science. 1970; 167 (3922): 1268-9.; Мухин Н., Моисеев В., Моисеев С., Фомин В., Кобалава Ж., Пулин А. Диагностика и лечение болезни Фабри. Клиническая фармакология и терапия. 2013; 22 (2): 11-20.; Кузенкова Л. М., Намазова-Баранова Л., Подклетнова Т., Геворкян А., Вашакмадзе Н., Савостьянов К., Студеникин В., Пушков С. Болезнь Фабри: особенности заболевания у детей и подростков. Вопросы современной педиатрии. 2015; 14 (3): 341-8.; Warnock D.G., West M.L. Diagnosis and management of kidney involvement in Fabry disease. Adv Chronic Kidney Dis. 2006; 13 (2): 138-47.; Basic-Jukic N., Kes P., Coric M., Basic-Kes V. Renal complications of Fabry disease. Curr Pharm Des. 2013; 19 (33): 6046-50.; Desnick R., Ioannou Y., Eng C. α-galactosidase A deficiency: Fabry disease. The metabolic and molecular bases of inherited disease. (eds Scriver CR, Beaudet AL, Sly WS, Valle D.) p3733-3774. Book α-galactosidase A deficiency: Fabry disease. The metabolic and molecular bases of inherited disease. (eds Scriver CR, Beaudet AL, Sly WS, Valle D.) p3733-3774. Editor McGraw-Hill. New York. 2001.; Beck M. Demographics of FOS – the Fabry Outcome Survey. Fabry Disease: Perspectives from 5 Years of FOS. Mehta A. et al. Oxford. 2006.; Ginsberg L. Nervous system manifestations of Fabry disease: data from FOS – the Fabry Outcome Survey. Fabry Disease: Perspectives from 5 Years of FOS. Mehta A. et al. Oxford. 2006.; Schiffmann R., Warnock D. G., Banikazemi M., Bultas J., Linthorst G. E., Packman S., Sorensen S. A., Wilcox W. R., Desnick R. J. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009; 24 (7): 2102-11.; Федеральные клинические рекомендации по диагностике и лечению болезни Фабри. 2015 [Электронный ресурс] URL: http://мороздгкб.рф/wp-content/uploads/2017/03/Федеральные-клинические-рекомендации-по-диагностике-и-лечению-болезни-Фабри-2015г.pdf. Дата обращения: 06.06.2018.; Mehta A., Beck M., Eyskens F., Feliciani C., Kantola I., Ramaswami U., Rolfs A., Rivera A., Waldek S., Germain D. P. Fabry disease: a review of current management strategies. Qjm. 2010; 103 (9): 641-59.; El Dib R., Gomaa H., Carvalho R. P., Camargo S. E., Bazan R., Barretti P., Barreto F. C. Enzyme replacement therapy for AndersonFabry disease. Cochrane Database Syst Rev. 2016; 7: Cd006663.; Schiffmann R., Kopp J. B., Austin H. A., 3rd, Sabnis S., Moore D. F., Weibel T., Balow J. E., Brady R. O. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. Jama. 2001; 285 (21): 2743-9.; Hughes D. A., Elliott P. M., Shah J., Zuckerman J., Coghlan G., Brookes J., Mehta A. B. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomised, doubleblind, placebo-controlled clinical trial of agalsidase alfa. Heart. 2008; 94 (2): 153-8.; Banikazemi M., Bultas J., Waldek S., Wilcox W. R., Whitley C. B., McDonald M., Finkel R., Packman S., Bichet D. G., Warnock D. G., Desnick R. J. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med. 2007; 146 (2): 77-86.; Bierer G., Balfe D., Wilcox W. R., Mosenifar Z. Improvement in serial cardiopulmonary exercise testing following enzyme replacement therapy in Fabry disease. J Inherit Metab Dis. 2006; 29 (4): 572-9.; Eng C. M., Guffon N., Wilcox W. R., Germain D. P., Lee P., Waldek S., Caplan L., Linthorst G. E., Desnick R. J. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med. 2001; 345 (1 ): 9-16.; Sirrs S.M., Bichet D.G., Casey R., Clarke J.T., Lemoine K., Doucette S., West M.L. Outcomes of patients treated through the Canadian Fabry disease initiative. Mol Genet Metab. 2014; 111 (4): 499-506.; Vedder A. C., Linthorst G. E., Houge G., Groener J. E., Ormel E. E., Bouma B. J., Aerts J. M., Hirth A., Hollak C. E. Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One. 2007; 2 (7): e598.; Wyatt K., Henley W., Anderson L., Anderson R., Nikolaou V., Stein K., Klinger L., Hughes D., Waldek S., Lachmann R., Mehta A., Vellodi A., Logan S. The effectiveness and cost-effectiveness of enzyme and substrate replacement therapies: a longitudinal cohort study of people with lysosomal storage disorders. Health Technol Assess. 2012; 16 (39): 1-543.; Beck M., Hughes D., Kampmann C., Larroque S., Mehta A., Pintos-Morell G., Ramaswami U., West M., Wijatyk A., Giugliani R. Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: A Fabry Outcome Survey analysis. Mol Genet Metab Rep. 2015; 3: 21-7.; Linhart A., Hughes D., Gurevich A., Joseph A., Kerstens R., Feriozzi S. (2017) Prompt agalsidase alfa therapy initiation after symptom onset is associated with improved renal and cardiovascular outcomes in the Fabry Outcome Survey. Presented at: 13th Annual Research Meeting on We’re Organizing Research for Lysosomal Diseases (WORLD), San Diego, CA.; Diaby V., Adunlin G., Montero A. J. Survival modeling for the estimation of transition probabilities in model-based economic evaluations in the absence of individual patient data: a tutorial. Pharmacoeconomics. 2014; 32 (2): 101-8.; Guyot P., Ades A. E., Ouwens M. J., Welton N. J. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol. 2012; 12: 9.; https://www.pharmacoeconomics.ru/jour/article/view/265
-
18Academic Journal
-
19Academic Journal
Θεματικοί όροι: лізосомні хвороби накопичення, не нейропатична форма, аутоантитіла, нейроспецифічні білки, лизосомные болезни накопления, не нейропатическая форма, аутоантитела, нейроспецифические белки, lysosomal storage diseases, non neuropathic form, autoantibodies, neurospecific proteins
Περιγραφή αρχείου: application/pdf
Relation: Пічкур Н. О. Нейроаутоімунні реакції у хворих з не нейропатичною формою лізосомних хвороб накопичення / Н. О. Пічкур // Вісник проблем біології і медицини. – 2018. – Вип. 1, т. 1 (142). – С. 156–162.; https://repository.pdmu.edu.ua/handle/123456789/10615
-
20Academic Journal
Συγγραφείς: G. V. Baydakova, T. A. Ivanova, E. Yu. Zakharova, O. S. Kokorina, Г. В. Байдакова, Т. А. Иванова, Е. Ю. Захарова, О. С. Кокорина
Συνεισφορές: INVITRO, Medical company, INVITRO, медицинская компания
Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 5, № 3 (2018); 96-105 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 5, № 3 (2018); 96-105 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2018-5-3
Θεματικοί όροι: лизосомные болезни накопления, tandem mass spectrometry, newborn screening, lysosomal storage disorders, тандемная масс-спектрометрия, скрининг новорожденных
Περιγραφή αρχείου: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/412/405; Schulze A., Lindner M., Kohlmüller D. et al. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics 2003;111(6 Pt 1):1399–406. PMID: 12777559.; Garg U., Dasouki M. Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects. Clin Biochem 2006;39(4):315–32. doi:10.1016/j.clinbiochem.2005.12.009.; Gelb M.H., Turecek F., Scott C.R., Chamoles N.A. Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders. J Inherit Metab Dis 2006;29(2–3):397–404. doi:10.1007/s10545-006-0265-4.; Wilcken B., Wiley V., Hammond J., Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 2003;348(23):2304–12. doi:10.1056/NEJMoa025225.; Yu C.L., Gu X.F. Newborn screening of inherited metabolic disease by tandem mass spectrometry. Beijing Da Xue Xue Bao Yi Xue Ban 2006;38(1):103–6. PMID: 16415979.; Dooley K.C. Tandem mass spectrometry in the clinical chemistry laboratory. Clin Biochem 2003;36(6):471–81. PMID: 12951172.; Griffiths W.J. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev 2003;22(2):81–152. doi:10.1002/mas.10046.; Carpenter K.H., Wiley V. Application of tandem mass spectrometry to biochemical genetics and newborn screening. Clin Chim Acta 2002;322(1–2):1–10. PMID: 12104075.; Green A., Pollitt R.J. Population newborn screening for inherited metabolic disease: current UK perspectives. J Inherit Metab Dis 1999;22(4):572–9. PMID: 10407789.; la Marca G., Malvagia S., Pasquini E. et al. Rapid 2nd-tier test for measurement of 3-OH-propionic and methylmalonic acids on dried blood spots: reducing the false-positive rate for propionylcarnitine during expanded newborn screening by liquid chromatography-tandem mass spectrometry. Clin Chem 2007;53(7):1364–9. doi:10.1373/clinchem.2007.087775.; Janzen N., Terhardt M., Sander S. et al. Towards newborn screening for ornithine transcarbamylase deficiency: fast non-chromatographic orotic acid quantification from dried blood spots by tandem mass spectrometry. Clin Chim Acta 2014;430:28–32. doi:10.1016/j.cca.2013.12.020.; Zytkovicz T.H., Fitzgerald E.F., Marsden D. et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two year summary from the New England Newborn Screening Program. Clin Chem 2001;47(11):1945–55. PMID: 11673361.; Allard P., Grenier A., Korson M.S., Zytkovicz T.H. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: analysis of succinylacetone extracted from dried blood spots. Clin Biochem 2004;37(11):1010–5. doi:10.1016/j.clinbiochem.2004.07.006.; Chace D.H., Hillman S.L., Millington D.S. et al. Rapid diagnosis of homocystinuria and other hypermethioninemias from newborns’ blood spots by tandem mass spectrometry. Clin Chem1996;42(3):349–55. PMID: 8598094.; Chace D.H., Hillman S.L., Millington D.S. et al. Rapid diagnosis of maple syrup urine disease in blood spots from newborns by tandem mass spectrometry. Clin Chem 1995;41(1):62–8. PMID: 7813082.; Smith W.E., Millington D.S., Koeberl D.D., Lesser P.S. Glutaric acidemia, type I, missed by newborn screening in an infant with dystonia following promethazine administration. Pediatrics 2001;107(5):1184–7. PMID: 11331707.; Chace D.H., DiPerna J.C., Kalas T.A. et al. Rapid diagnosis of methylmalonic and propionic acidemias: quantitative tandem mass spectrometric analysis of propionylcarnitine in filter-paper blood specimens obtained from newborns. Clin Chem 2001;47(11):2040–4. PMID: 11673377.; Kuhara T., Matsumoto I. Studies on the urinary acidic metabolites from three patients with methylmalonic aciduria. Biomed Mass Spectrom 1980;7(10):424–8. PMID: 6111361.; Wang H., Wang X., Li Y. et al. Screening for inherited metabolic diseases using gas chromatography-tandem mass spectrometry (GC-MS/MS) in Sichuan, China. Biomed Chromatogr 2017;31(4). doi:10.1002/bmc.3847.; Van Hove J.L., Zhang W., Kahler S.G. et al. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood. Am J Hum Genet 1993;52(5):958–66. PMID: 8488845. PMCID: PMC1682046.; Koeberl D.D., Young S.P., Gregersen N. et al. Rare disorders of metabolism with elevated butyryl- and isobutyryl-carnitine detected by tandem mass spectroscopy newborn screening. Pediatr Res 2003;54(2):219–23. doi:10.1203/01.PDR.0000074972.36356.89.; Matern D., Strauss A.W., Hillman S.L. et al. Diagnosis of mitochondrial trifunctional protein deficiency in a blood spot from the newborn screening card by tandem mass spectrometry and DNA analysis. Pediatr Res 1999;46(1):45–9. PMID: 10400133.; Abdenur J.E., Chamoles N.A., Guinle A.E. et al. Diagnosis of isovaleric acidaemia by tandem mass spectrometry: false positive result due to pivaloylcarnitine in a newborn screening programme. J Inherit Metab Dis 1998;21(6):624–30. PMID: 9762597.; Chace D.H., Sherwin J.E., Hillman S.L. et al. Use of phenylalanine-to-tyrosine ratio determined by tandem mass spectrometry to improve newborn screening for phenylketonuria of early discharge specimens collected in the first 24 hours. Clin Chem 1998;44(12):2405–9. PMID: 9836704.; Hampe M.H., Panaskar S.N., Yadav A.A., Ingale P.W. Gas chromatography/mass spectrometry-based urine metabolome study in children for inborn errors of metabolism: An Indian experience. Clin Biochem 2017;50(3):121–6. doi:10.1016/j.clinbiochem.2016.10.015.; Chen H., Yu C. Urinary Succinylacetone Analysis by Gas Chromatography-Mass Spectrometry (GC-MS). Methods Mol Biol 2016;1378:281–90. doi:10.1007/978-1-4939-3182-8_30.; Kubaski F., Mason R.W., Nakatomi A. et al. Newborn screening for mucopolysaccharidoses: a pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J Inherit Metab Dis 2017;40(1):151–8. doi:10.1007/s10545-016-9981-6.; Sluiter W., van den Bosch J.C., Goudriaan D.A. et al. Rapid ultraperformance liquid chromatography-tandem mass spectrometry assay for a characteristic glycogen-derived tetrasaccharide in Pompe disease and other glycogen storage diseases. Clin Chem 2012;58(7):1139–47. doi:10.1373/clinchem.2011.178319.; Dekker N., van Dussen L., Hollak C.E. et al. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood 2011;118(16):e118–27. doi:10.1182/blood-2011-05-352971.; Togawa T., Kodama T., Suzuki T. et al. Plasma globotriaosylsphingosine as a biomarker of Fabry disease. Mol Genet Metab 2010;100(3):257–61. doi:10.1016/j.ymgme.2010.03.020.; Polo G., Burlina A.P., Kolamunnage T.B. et al. Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS. Clin Chem Lab Med 2017; 55(3):403–14. doi:10.1515/cclm-2016-0340.; Liu Y., Yi F., Kumar A.B. et al. Multiplex Tandem Mass Spectrometry Enzymatic Activity Assay for Newborn Screening of the Mucopolysaccharidoses and Type 2 Neuronal Ceroid Lipofuscinosis. Clin Chem 2017;63(6):1118–26. doi:10.1373/clinchem.2016.269167.; Gan-Schreier H., Okun J.G., Kohlmueller D. et al. Measurement of bile acid CoA esters by high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS). J Mass Spectrom 2005;40(7):882–9. doi:10.1002/jms.864.; John C., Werner P., Worthmann A. et al. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. J Chromatogr A 2014;1371:184–95. doi:10.1016/j.chroma.2014.10.064.; Bootsma A.H., Overmars H., van Rooij A. et al. Rapid analysis of conjugated bile acids in plasma using electrospray tandem mass spectrometry: application for selective screening of peroxisomal disorders. J Inherit Metab Dis 1999;22(3):307–10. PMID: 10384393.; Wu C., Iwamoto T., Igarashi J. et al. Application of a diagnostic methodology by quantification of 26:0 lysophosphatidylcholine in dried blood spots for Japanese newborn screening of X-linked adrenoleukodystrophy. Mol Genet Metab Rep 2017;12:115–8. doi:10.1016/j.ymgmr.2017.06.004.; Hartmann S., Okun J.G., Schmidt C. et al. Comprehensive detection of disorders of purine and pyrimidine metabolism by HPLC with electrospray ionization tandem mass spectrometry. Clin Chem 2006;52(6):1127–37. doi:10.1373/clinchem.2005.058842.; https://journal.nodgo.org/jour/article/view/412