Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"краниотазовая диспропорция"', χρόνος αναζήτησης: 0,41δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 17, No 2 (2023); 211-220 ; Акушерство, Гинекология и Репродукция; Vol 17, No 2 (2023); 211-220 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1652/1106; Мочалова М.Н., Пономарева Ю.Н., Мудров В.А., Мудров А.А. Современные методы диагностики и прогнозирования клинически узкого таза. Журнал акушерства и женских болезней. 2016;65(5):82–91. https://doi.org/10.17816/JOWD65582-91.; Skripchenko N.Ya., Nevyshna Yu.V., Lozova L.А. et al. Current aspects of delivery in healthy women in accordance with the data of retrospective analysis. Wiad Lek. 2021;74(10 pt 1):2463–5. https://doi.org/10.36740/WLek202110118.; Pavličev M., Romero R., Mitteroecker P. Evolution of the human pelvis and obstructed labor: new explanations of an old obstetrical dilemma. Am J Obstet Gynecol. 2020;222(1):3–16. https://doi.org/10.1016/j.ajog.2019.06.043.; Ayenew A.A. Incidence, causes, and maternofetal outcomes of obstructed labor in Ethiopia: systematic review and meta-analysis. Reprod Health. 2021;18(1):61. https://doi.org/10.1186/s12978-021-01103-0.; Мудров В.А., Зиганшин А.М., Якимова А.В. Возможности ранней дифференциальной диагностики между аномалиями родовой деятельности и клинически узким тазом. Лечение и профилактика. 2021;11(3):5–13.; Frémondière P., Thollon L., Adalian P. Et al. Which foetal-pelvic variables are useful for predicting caesarean section and instrumental assistance? Med Princ Pract. 2017;26(4):359–67. https://doi.org/10.1159/000477732.; Stalberg K., Bodestedt A., Lyrenäs S., Axelsson O. A narrow pelvic outlet increases the risk for emergency cesarean section. Acta Obstet Gynecol Scand. 2006;85(7):821–4. https://doi.org/10.1080/00016340600593521.; Korhonen U., Taipale P., Heinonen S. Fetal pelvic index to predict cephalopelvic disproportion – a retrospective clinical cohort study. Acta Obstet Gynecol Scand. 2015;94(6):615–21. https://doi.org/10.1111/aogs.12608.; Мудров В.А., Чацкис Е.М., Нижегородцева Д.А., Тттян Е.В. Роль ультразвуковой пельвиометрии в диагностике анатомически и клинически узкого таза. Журнал акушерства и женских болезней. 2017;66(6):20–9. https://doi.org/10.17816/JOWD66620-29.; Pattinson R.C., Cuthbert A., Vannevel V. Pelvimetry for fetal cephalic presentations at or near term for deciding on mode of delivery. Cochrane Database Syst Rev. 2017;3(3):CD000161. https://doi.org/10.1002/14651858.CD000161.; MacEachern S.J., Forkert N.D. Machine learning for precision medicine. Genome. 2020;64(4):416–25. https://doi.org/10.1139/gen-2020-0131.; Pasini A. Artificial neural networks for small dataset analysis. J Thorac Dis. 2015;7(5):953–60. https://doi.org/10.3978/j.issn.2072-1439.2015.04.61.; Siristatidis C.S., Chrelias C., Pouliakis A. et al. Artificial neural networks in gynaecological diseases: current and potential future applications. Med Sci Monit. 2010;16(10):RA231–6.; Ahn K.H., Lee K.-S. Artificial intelligence in obstetrics. Obstet Gynecol Sci. 2022;65(2):113–24. https://doi.org/10.5468/ogs.21234.; Siristatidis C., Pouliakis A., Chrelias C., Kassanos D. Artificial intelligence in IVF: a need. Syst Biol Reprod Med. 2011;57(4):179–85. https://doi.org/10.3109/19396368.2011.558607.; Curchoe C.L., Bormann C.L. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36(4):591–600. https://doi.org/10.1007/s10815-019-01408-x.; Dhombres F., Bonnard J., Bailly K. Et al. Contributions of artificial intelligence reported in Obstetrics and Gynecology Journals: systematic review. J Med Internet Res. 2022;24(4):e35465. https://doi.org/10.2196/35465.; Мудров В.А. Алгоритмы статистического анализа данных иомедицинских исследований с помощью пакета программ SPSS (доступным языком): учебное пособие. М.: Логосфера, 2022. 143 c.; Choi R.Y, Coyner A.S., Kalpathy-Cramer J. et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14. https://doi.org/10.1167/tvst.9.2.14.; Maharaj D. Assessing cephalopelvic disproportion: back to the basics. Obstet Gynecol Surv. 2010;65(6):387–95. https://doi.org/10.1097/OGX.0b013e3181ecdf0c.; Bertini A., Salas R., Chabert S. et al. Using machine learning to predict complications in pregnancy: a systematic review. Front Bioeng Biotechnol. 2022;9:780389. https://doi.org/10.3389/fbioe.2021.780389.; Jaufuraully S., Dromey B., Story L. et al. Magnetic resonance imaging in late pregnancy to improve labour and delivery outcomes – a systematic literature review. BMC Pregnancy Childbirth. 2022;22(1):949. https://doi.org/10.1186/s12884-022-05290-x.; Sarno L., Neola D., Carbone L. et al. Use of artificial intelligence in obstetrics: not quite ready for prime time. Am J Obstet Gynecol MFM. 2022;5(2):100792. https://doi.org/10.1016/j.ajogmf.2022.100792; https://www.gynecology.su/jour/article/view/1652