Εμφανίζονται 1 - 20 Αποτελέσματα από 24 για την αναζήτηση '"клеточная иммунотерапия"', χρόνος αναζήτησης: 0,77δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 23, № 2 (2021); 381-388 ; Медицинская иммунология; Том 23, № 2 (2021); 381-388 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2135/1380; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7002; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7003; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7004; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7005; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7006; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7007; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7008; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2135/7009; Абакушина Е.В., Маризина Ю.В., Каприн А.Д. Морфофункциональная характеристика лимфоцитов человека после активации in vitro // Бюллетень экспериментальной биологии и медицины, 2016. Т. 161, № 5. С. 678-683.; Волков Н.М. Иммунотерапия рака // Практическая онкология, 2018. Т. 19, № 1. С. 38-45.; Ешмолов С.Н., Ситников И.Г., Мельникова И.М. Цитокины ФНО-α, ИФН-γ, ИЛ-1, ИЛ-4, ИЛ-8 и их роль в иммунном ответе при инфекционном поражении ЦНС у детей // Детские инфекции, 2018. Т. 17, № 1. С. 17-22.; Симбирцев А.С. Иммунофармакологические аспекты системы цитокинов Бюллетень сибирской медицины, 2019. Т 18, № 1. С. 84-95.; Юрова К.А., Хазиахматова О.Г., Тодосенко Н.М., Литвинова Л.С. Эффекты γc-цитокинов (IL-2, IL-7 и IL-15) на созревание и дифференцировку CD45RО+CD4+/CD8+Т-лимфоцитов in vitro // Медицинская иммунология, 2018. Т. 20, № 1. С. 45-52. doi:10.15789/1563-0625-2018-1-45-52.; Abakushina E.V., Gelm Yu.V., Pasova I.A., Bazhin A.V. Immunotherapeutic approaches for the treatment of colorectal cancer. Biochemistry, 2019, Vol. 84, no. 7, pp. 720-728.; Chodon T., Comin-Anduix B., Chmielowski B. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res., 2014, Vol. 20, no. 9, pp. 2457-2465.; Dahlberg C.I., Sarhan D., Chrobok M. Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front. Immunol., 2015, Vol. 30, no. 6, 605. doi:10.3389/fimmu.2015.00605.; Forget M.A., Malu S., Liu H. Activation and propagation of tumor-infiltrating lymphocytes on clinicalgrade designer artificial antigen-presenting cells for adoptive immunotherapy of melanoma. Immunotherapy, 2014, Vol. 9, no. 37, pp. 448-460.; Gel’m Yu.V., Kuz’mina E.G., Abakushina E.V. Functional activity of lymphocytes of healthy donors and cancer patients after culturing with IL-2 and IL-15. Bull. Exp. Biol. Med., 2019, Vol. 167, no. 4, pp. 486-491.; Granzin M., Wagner J., Kohl U. Shaping of natural killer cell antitumor activity by ex vivo cultivation. Front. Immunol., 2017, Vol. 8, 458. doi:10.3389/fimmu.2017.00458.; Grivtsova L.Yu. Receptor repertoire of NK-cells as a molecular basis of alloreactivity (literature review). Hematopoiesis Immunol., 2018, Vol. 16, no. 1, pp. 62-108.; Waldmann T.A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect Biol., 2018, Vol. 10, no. 12, a028472. doi:10.1101/cshperspect.a028472.; Zhen Y.H., Liu X.H., Yang Y. Phase I/II study of adjuvant immunotherapy with sentinel lymph node T lymphocytes in patients with colorectal cancer. Cancer Immunol. Immunother., 2015, Vol. 64, no. 9, pp. 1083-1093.; Zhou J. Advances and prospects in cancer immunotherapy. New J. Sci., 2014, no. 1, pp. 1-13, 745808. doi:10.1155/2014/745808.; https://www.mimmun.ru/mimmun/article/view/2135

  3. 3
    Academic Journal

    Συγγραφείς: V. Kozlov A., В. Козлов А.

    Πηγή: Bulletin of Siberian Medicine; Том 18, № 1 (2019); 7-17 ; Бюллетень сибирской медицины; Том 18, № 1 (2019); 7-17 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2166/1533; Prendergast G.C., Metz R., Muller A.J., Merlo L.M., Mandik-Nayak L. IDO2 in immunomodulation and autoimmune disease. Front Immunol. 2014; 5: 585. DOI: 0.3389/fimmu.2014.00585.; Kawashiri S.-Y., Kawashiri A., Okada A., Koga T., Tamai M., Yamasaki S., Nakamura H., Origuchi T., Ida H., Eguchi K. CD4+CD25highCD127low/- Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J. Rheumatol. 2011; 38 (12): 2517–2521. DOI:10.3899/jrheum.110283.; Valencia X., Stephens G., Goldbach-Mansky R., Wilson M., Shevach E.M., Lipsky P.E. TNF downmodulation the function of human CD4+CD25hi T-regulatory cells. Blood. 2006; 108 (1): 253–261. DOI:10.1182/blood-2005-11-4567.; Nakano S., Morimoto S., Suzuki S., Tsushima H., Yamanaka K., Sekigawa I., Takasaki Y. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology (Oxford). 2015; 54 (8): 1498–1506. DOI:10.1093/rheumatology/keu528.; Chan J.L., Tang K.C., Patel A.P., Bonilla L.M., Pierobon N., Ponzo N.M., Rameshwar P. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood. 2006; 107 (12): 4817–4824. DOI:10.1182/blood-2006-01-0057 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895812/.; Yoshizaki A., Miyagaki T., DiLillo D.J., Matsushita T., Horikawa M., Kountikov E.I., Spolski R., Poe J.C., Leonard W.J., Tedder T.F. Regulatory B cells control T cell autoimmunity through IL-21-dependent cognate interactions. Nature. 2012; 491 (7423): 264–268. DOI:10.1038/nature11501.; Kalampokis I., Yoshizaki A., Tedder T.F. IL-10-producing regulatory B cells (B10 cells) in autoimmune diseases. Arthriyis Research & Therapy. 2013; 15 (1): 1. DOI:10.1186/ar3907.; Herrero C., Perez-Simon J.A. Immunomodulatory effect of mesenchymal stem cells. Braz. J. Med. Biol. Res. 2010; 43 (5): 425–430. PMID: 20490429. https://www.ncbi.nlm.nih.gov/pubmed/20490429.; Noёl D., Djouad F., Bouffi C., Mrugala D., Jorgensen C. Multipotent mesenchymal stromal cells and immune tolerance. Leukemia & Lymphoma. 2007; 48 (7): 1283–1289. DOI:10.1080/10428190701361869.; Djouad F., Bouffi C., Ghannam S., Noёl D., Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat. Rev. Rheumatol. 2009; 5 (7): 392–399. DOI:10.1038/nrrheum.2009.104. http://www.nature.com/articles/nrrheum.2009.104; Bouffi C., Djouad F., Mathieu M., Noёl D., Jorgensen C. Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit. Rheumatology. 2009; 48 (10): 1185–1189. DOI:10.1093/rheumatology/kep162.; Liotta F., Angeli R., Cosmi L., Filм L., Manuelli C., Frosali F., Mazzinghi B., Maggi L., Pasini A., Lisi V., Santarlasci V., Consoloni L., Angelotti M.L., Romagnani P., Parronchi P., Krampera M., Maggi E., Romagnani S., Annunziato F. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008; 26 (1): 279– 289. DOI:10.1634/stemcells.2007-0454.; Bacigalupo A., Valle M., Podesta M., Bacigalupo A., Valle M., Podesta M., Pitto A., Zocchi E., De Flora A., Pozzi S., Luchetti S., Frassoni F., Van Lint M.T., Piaggio G. T-cell suррression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp. Hematology. 2005; 33 (7): 819–827. DOI:10.1016/j.exphem.2005.05.006.; Liu L.H., Chen B., Sun Z., Ye L.P., Shi B., Jin J.G., Zhao C.H. Immuno-suppressive effects on T cells mediated by mesenchymal stem cells from patients with myelodysplastic syndrome. J. Exp. Hematology. 2008; 16 (2): 299–304. https://wwImmuno-suppressiveeffectsonTcellsw.ncbi.nlm.nih.gov/pubmed/18426653.; Perez-Simon J.A., Tabera S., Sarasquete M.E., Diez-Campelo M., Canchado J., Sánchez-Abarca L.I., Blanco B., Alberca I., Herrero-Sánchez C., Caсizo C., San Miguel J.F. Mesenchymal stem cells are fuctionally abnormal in patients with immune thrombocytopenic purpura. Cytotherapy. 2009; 11 (6): 1–8. DOI:10.3109/14653240903051558.; Eusebio M., Kuna P., Kraszula L., Kurczyk M., Pietruczuk M. Allergy-related changes in levels of CD8+CD25+Foxp3 (bright) Treg cells and Foxp3 mRNA expression in peripheral blood: the role of IL-10 or TGF-β. J. Biol. Regul. Homeost. Agents. 2014; 28 (3): 461–470. PMID: 25316133 https://www.ncbi.nlm.nih.gov/pubmed/25316133.; Kanamori M., Nakatsukasa H., Okada M., Lu Q., Yoshimura A. Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends Immunol. 2016; 37 (11): 803–811. DOI:10.1016/j.it.2016.08.012.; Gupta P., Vijaean V.K., Bansal S.K. Changes in protein profile of erythrocyte membrane in bronchial asthma. J. Asthma. 2012; 49 (2): 129–133. DOI:10.3109/02770903.2011.649873.; Taleb S., Tedgui A., Mallat Z. Adaptive T cell immune responses and atherogenesis. Current Opinion in Pharmacology. 2010; 10: 197–202. DOI:10.1016/j.coph.2010.02.003.; Nilsson J., Hansson G.K. Autoimmunity in atherosclerosis: a protective response losing control? J. Intern. Med. 2008; 263: 464–478. DOI:10.1111/j.1365-2796.2008.01945.x.; Platten M., Youssel S., Hur E.M., Ho P.P., Han M.H., Lanz T.V., Phillips L.K., Goldstein M.J., Bhat R., Raine C.S., Sobel R.A., Steinman L. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates Th1- and Th17-mediated autoimmunity. PNAS. 2009; 106 (35): 14948–14953. DOI:10.1073/pnas.0903958106.; Ait-Oufella H., Salomon B.L., Potteaux S., Robertson A.K., Gourdy P., Zoll J., Merval R., Esposito B., Cohen J.L., Fisson S., Flavell R.A., Hansson G.K., Klatzmann D., Tedgui A., Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006; 12 (2): 178–180. DOI:10.1038/nm1343.; Taleb S., Tedgui A., Mallat Z. Regulatory T-cell immunity and its relevance to atherosclerosis J. Intern. Med. 2008; 263 (5): 489–499. DOI:10.1111/j.1365-2796.2008.01944.x.; Mor A., Philips M.R., Pillinger M.H. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin. Immunol. 2007; 125 (3): 215–223. DOI:10.1016/j.clim.2007.08.008.; McLaren J.E., Ramji D.P. Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev. 2009; 20 (2): 125–135. DOI:10.1016/j.cytogfr.2008.11.003.; Mezrich J.D., Fechner J.H., Zhang X., Johnson B.P., Burlingham W.J., Bradfield C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 2010; 185 (6): 3190–3198. DOI:10.4049/jimmunol.0903670. http://www.jimmunol.org/content/185/6/3190.; Feng J., Zhang Z., Kong W., Liu B., Xu Q., Wang X. Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/-mice. Cardiovascular Res. 2009; 84: 155–163. DOI:10.1093/cvr/cvp182.; McCully K.S. Homocysteine metabolism, atherosclerosis and diseases of aging. Compr. Physiol. 2016; 6: 471–505. DOI:10.1002/cphy.c150021 https://www.ncbi.nlm.nih.gov/pubmed/26756640.; Wang J., van Dongen H., Scherer H.U., Huizinga T.W.J., Toes R.E. Suppressor activity among CD4, CD25 T cells is discriminated by membrane-bound tumor necrosis factor. Arthritis & Rheumatism. 2008; 58 (6): 1609–1618. DOI:10.1002/art.23460.; Barhoumi T., Kasal D.A., Li M.W., Barhoumi T., Kasal D.A., Li M.W., Shbat L., Laurant P., Neves M.F., Paradis P., Schiffrin E.L. T regulatory lymphocytes prevent angiotensisn II-induced hypertension and vascular injury. Hypertension. 2011; 57 (3): 469–476. DOI:10.1161/HYPERTENSIONAHA.110.162941.; Sasaki N., Yamashita T., Takeda M., Shinohara M., Nakajima K., Tawa H., Usui T., Hirata K-i. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation. 2009; 120: 1996–2005. DOI:10.1161/CIRCULATIONAHA.109.863431.; Bardhan K., Anagnostou T., Boussiotis V.A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front immunol. 2016; 7: 1–17. DOI:10.3389/fimmu.2016.00550 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149523/.; Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006; 6: 295–307. DOI:10.1038/nri1806; Byrne W.L., Mills K.H., Lederer J.A., O’Sullivan G.C. Targeting regulatory T cells in cancer. Cancer Res. 2011; 71 (22): 6915–6920. DOI:10.1158/0008-5472.CAN-11-1156. http://cancerres.aacrjournals.org/content/71/22/6915.; Chang L.Y., Lin Y.C., Mahalingham J., Huang C.T., Chen T.W., Kang C.W., Peng H.M., Chu Y.Y., Chiang J.M., Dutta A., Day Y.J., Chen T.C., Yeh C.T., Lin C.Y. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res. 2012; 72 (5): 1092–1102. DOI:10.1158/0008-5472.can-11-2493. http://cancerres.aacrjournals.org/content/72/5/1092.; Becker D.M., Jones S.D., Levine H.L. The therapeutic monoclonal antibody market. MAbs. 2015; 7 (1): 9–14. DOI:10.4161/19420862.2015.989042.; Amedei A., Prisco D., D’ Elios M.M. The use of cytokines and chemokines in the cancer immunotherapy. Recent. Pat. Anticancer. Drug. Discov. 2013; 8 (2): 126–142. PMID: 22894642. https://www.ncbi.nlm.nih.gov/pubmed/22894642.; Holdsworth S.R., Gan P.Y. Cytokines: names and numbers you should care about. Clin. J. Am. Soc. Nephrol. 2015; 10 (12): 2243–2254. DOI:10.2215/cjn.07590714. http://cjasn.asnjournals.org/content/10/12/2243.; Mullen L., Adams G., Layward L., Vessillier S., Annenkov A., Mittal G., Rigby A., Sclanders M., Baker D., Gould D., Chernajovsky Y. Latent cytokines for targeted therapy of inflammatory disorders. Expert Opin Drug Deliv. 2014; 11 (1): 101–110. DOI:10.1517/17425247.2014.863872.; Sennikov S.V., Khantakova J.N., Kulikova E.V., Obleukhova I.F., Shevechenko J.A. Modern strategies and capabilities for activation of the immune response against tumor cells. Tumour Biol. 2017; 39 (5): 98380. DOI:10.1177/1010428317698380.; Сенников С.В., Куликова Е.В., Кнауýр Н.Ю., Хантакова Ю.Н. Молекулярно-клеточные механизмы, опосредуемые дендритными клетками, участвующими в индукции толерантности. Медицинская иммунология. 2017; 19 (4): 359–374. DOI:10.15789/1563-0625-2017-4-359-374; Zhang L., Yu J., Wei W. Advance in Targeted Immunotherapy for Graft-Versus-Host Disease. Front Immunol. 2018; 16 (9): 1087. DOI:10.3389/fimmu.2018.01087.; Liu M., Han Z.C. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J. Cell. Mol. Med. 2008; 12 (4): 1155–1168. DOI:10.1111/j.1582-4934.2008.00288.x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865657/.; Derecki N.C., Quinnies K.V., Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav. Immun. 2011; 25 (3): 379–385. DOI:10.1016/j.bbi.2010.11.009.; Chernykh E., Shevela E., Kafanova M., Sakhno L., Polovnikov E., Ostanin A. Monocyte-derived macrophages for treatment of cerebral palsy: a study of 57 cases. Journal of Neurorestoratology. 2018; 6: 41–47. DOI:10.2147/jn.s158843.; Sicard A., Boardman D.A., Levings M.K. Taking regulatory T-cell therapy one step further. Curr Opin Organ Transplant. 2018. Jul 30. DOI:10.1097/MOT.0000000000000566. https://insights.ovid.com/crossref?an=00075200-900000000-99107.; Seledtsova G.V., Ivanova I.P., Shishkov A.A., Seledtsov V.I. Immune responses to polyclonal T-cell vaccination in patients with progressive multiple sclerosis. J. Immunotoxicol. 2016; 13 (6): 879–884. DOI:10.1080/1547691X.2016.1223767.; Wu Y., Zhang Y., Xu X., Lv P., Gao X. Anti-idiotypic regulatory responses induced by vaccination with DNA encoding murine TCR Valpha5 and Vbeta2. Cell. Mol. Immunol. 2007; 4 (4): 287–293. https://www.ncbi.nlm.nih.gov/pubmed/17764619.; Karussis D., Shor H., Yachnin J., Lanxner N., Amiel M., Baruch K., Keren-Zur Y., Haviv O., Filippi M., Petrou P., Hajag S., Vourka-Karussis U., Vaknin-Dembinsky A., Khoury S., Abramsky O., Atlan H., Cohen I.R., Abulafia-Lapid R. T cell vaccination benefits relapsing progressive multiple sclerosis patients: a randomized, double-blind clinical trial. PLoS One. 2012; 7 (12): e50478. DOI:10.1371/journal.pone.0050478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522721/.; Ильина Н.А., Гойман Е.В., Кудаева О.Т., Колесникова О.П., Кожевников В.С. Антиýрготипический ответ: влияние на иммунный ответ и развитие аутоиммунной патологии в ýксперименте. Медицинская иммунология. 2011; 13 (1): 29–34. DOI:10.15789/1563-0625-2011-1-29-34.; https://bulletin.tomsk.ru/jour/article/view/2166

  4. 4
  5. 5
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 17, № 1 (2018); 199-210 ; Бюллетень сибирской медицины; Том 17, № 1 (2018); 199-210 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2018-17-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1130/791; Katabathina V., Menias C.O., Pickhardt P., Lubner M., Prasad S.R. Complications of Immunosuppressive Therapy in Solid Organ Transplantation. Radiol. Clin. N. Am. 2015; 54. (2): 303–319. DOI:10.1016/j.rcl.2015.09.009.; Sagoo P., Ali N., Garg G., Nestle F.O., Lechler R.I., Lombardi G. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T-cells. Sci. Transl. Med. 2011; 3 (83): p.83ra42. DOI:10.1126/scitranslmed.3002076.; Hanash A.M., Levy R.B. Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood. 2005; 105 (4): 1828–1836. DOI:10.1182/blood-2004-08-3213.; Dijke I.E., Weimar W., Baan C.C. Regulatory T cells after organ transplantation: where does their action take place? Hum. Immunol. 2008; 69 (7): 389–398. DOI:10.1016/j.humimm.2008.05.006.; Sakaguchi S., Vignali D.A.A., Rudensky A.Y., Niec R.E., Waldmann H. The plasticity and stability of regulatory T cells. Nature Reviews Immunology. 2013; 13: 461–467. DOI:10.1038/nri3464.; Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann. Rev. Immunol. 2004; 22: 531– 562. DOI:10.1146/annurev.immunol.21.120601.141122.; Abbas A.K. et al. Regulatory T-cells: recommendations to simplify the nomenclature. Nature Immunol. 2013; 14: 307–308. DOI:10.1038/ni.2554.; Zeng M., Guinet E., Nouri-Shirazi M. B7-1 and B7-2 differentially control peripheral homeostasis of CD4(+)CD25(+) Foxp3(+) regulatory T cells. Transplant. Immunology. 2009; 20: 171–179. DOI:10.1016/j.trim.2008.09.009.; Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., Shimizu J., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology. 1998; 10: 969–1980.; Golshayan D., Jiang S., Tsang J., Garin M.I., Mottet C., Lechler R.I. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007; 109: 827–835. DOI:10.1182/blood-2006-05-025460.; Joffre O., Santolaria T., Calise D., Al Saati T., Hudrisi- er D., Romagnoli P., van Meerwijk J.P. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat. Med. 2008; 14: 88–92. DOI:10.1038/nm1688.; Todo S., Yamashita K., Goto R., Zaitsu M., Nagatsu A., Oura T., Watanabe M., Aoyagi T., Suzuki T., Shimamura T. et al. A рilot study of оperational tolerance with a regulatory T cell-based cell therapy in living donor liver transplantation. Hepatology. 2016; 64 (2): 632–643. DOI:10.1002/hep.28459.; Baecher-Allan C., Brown J.A., Freeman G.J. and Hafler D.A. CD4+CD25 high regulatory cells in human peripheral blood. J. Immunol. 2001; 167: 1245–1253. URL: https://doi.org/10.4049/jimmunol.167.3.1245.; Hoffmann P., Eder R., Boeld T.J., Doser K., Piseshka B., Andreesen R. et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006; 108 (13): 4260–4267. DOI:10.1182/blood-2006-06-027409.; Hoffmann P., Boeld T.J., Eder R., Huehn J., Floess S., Wieczorek G. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 2009; 39 (4): 1088– 1097. DOI:10.1002/eji.200838904.; Yang X.O., Nurieva R., Martinez G.J., Kang H.S., Chung Y., Pappu B.P. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008; 29 (1): 44–56. DOI:10.1016/j.immuni.2008.05.007.; Miyao T., Floess S., Setoguchi R., Luche H., Fehling H.J., Waldmann H., Huehn J., Hori S. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity. 2012; 36 (2): 262–275. DOI:10.1016/j.immuni.2011.12.012.; Gagliani N.I., Magnani C.F., Huber S., Gianolini M.E., Pala M. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 2013; 19 (6): 739–746. DOI:10.1038/nm.3179.; Fujio K., Okamura T. and Yamamoto K. The family of IL-10-secreting CD4+ T cells. Advances in Immunology. 2010; 105: 99–129. DOI:10.1016/S0065-2776(10)05004-2.; Weiner H.L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol. Rev. 2001; 182: 207–214. DOI:10.1034/j.1600-065X.2001.1820117.x.; Shevach E.M. Mechanisms of foxp3+ T regulatory cell mediated suppression. Immunity. 2009; 30 (5): 636–645. DOI:10.1016/j.immuni.2009.04.010.; Deaglio S., Dwyer K.M., Gao W., Friedman D., Usheva A., Erat A. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007; 204: 1257– 1265. DOI:10.1084/jem.20062512.; Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., Lee M.R., Zhu S. et al. CD127expressionin versely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 2006; 203: 1701–1711. DOI:10.1084/jem.20060772.; Hartigan-O’Connor D.J., Poon C., Sinclair E. et al. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J. Immunol. Methods. 2007; 319: 41–52. DOI:10.1016/j.jim.2006.10.008.; Putnam A.L., Safinia N., Medvec A., Laszkowska M., Wray M., Mintz M.A. et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transplant. 2013; 13 (11): 3010–3020. DOI:10.1111/ajt.12433.; Thomson A.W., Turnquist H.R., Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 2009; 9 (5): 324–337. DOI:10.1038/nri2546.; Zeiser R., Leveson-Gower D.B., Zambricki E.A., Kambham N., Beilhack A., Loh J. et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood. 2008; 111 (1): 453–462. DOI:10.1182/blood-2007-06-094482.; Segundo D.S., Ruiz J.C., Izquierdo M., Fernandez-Fresnedo G., Gomez- Alamillo C., Merino R. et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation. 2006; 82 (4): 550–557. DOI:10.1097/01.tp.0000229473.95202.50.; Tresoldi E., Dell’albani I., Stabilini A., Jofra T., Valle A., Gagliani N. et al. Stability of human rapamycin-expanded CD4+CD25+ T regulatory cells. Haematologica. 2011; 96 (9): 1357–1365. DOI:10.3324/haematol.2011.041483.; Rossetti M., Spreafico R., Saidin S., Chua C., Moshref M., Leong J.Y. et al. Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the Foxp3 regulatory T cell-specific demethylated region. J. Immunol. 2015; 194 (1): 113–124. DOI:10.4049/jimmunol.1401145.; Theodosiou M., Laudet V., Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol. Life Sci. 2010; 67 (9): 1423–1445. DOI:10.1007/s00018-010-0268-z.; Lu L., Lan Q., Li Z., Zhou X., Gu J., Li Q. et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc. Nat. Acad. Sci. USA. 2014; 111 (33): 3432–3440. DOI:10.1073/pnas.1408780111.; Lu L., Ma J., Li Z., Lan Q., Chen M., Liu Y. et al. Alltrans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One. 2011; 6 (9): e24590. DOI:10.1371/journal.pone.0024590.; Basu R., Whitley S.K., Bhaumik S., Zindl C.L., Schoeb T.R., Benveniste E.N. et al. IL-1 signaling modulates activation of STAT transcription factors to antago-nize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nat. Immunol. 2015; 16 (3): 286–295. DOI:10.1038/ni.3099.; Smolders J., Thewissen M., Peelen E., Menheere P., Tervaert J.W., Damoiseaux J. et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009; 4 (8): e.6635. DOI:10.1371/journal.pone.0006635.; Urry Z., Chambers E.S., Xystrakis E., Dimeloe S., Richards D.F., Gabrysova L. et al. The role of 1alpha,25-dihydroxyvitamin D3 and cytokines in the pro-motion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur. J. Immunol. 2012; 42 (10): 2697–2708. DOI:10.1002/eji.201242370.; Chambers E.S., Suwannasaen D., Mann E.H., Urry Z., Richards D.F., Lertmemongkolchai G. et al. 1alpha,25-dihydroxyvitamin D3 in combination with transforming growth factor-beta increases the frequency of Foxp3(+) regulatory T cells through preferential expansion and usage of interleukin-2. Immunology. 2014; 143 (1): 52–60. DOI:10.1111/imm.12289.; Trenado A., Charlotte F., Fisson S., Yagello M., Klatzmann D., Salomon B.L. et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Invest. 2003; 112 (11): 1688–1696. DOI:10.1172/JCI17702.; Brusko T.M., Koya R.C., Zhu S., Lee M.R., Putnam A.L., McClymont S.A. et al. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer. PLoS One. 2010; 5 (7): e11726. DOI:10.1371/journal. pone.0011726.; Jethwa H., Adami A.A., Maher J. Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin. Immunol. 2014; 150 (1): 51–63. DOI:10.1016/j.clim.2013.11.004.; Hoffmann P., Ermann J., Edinger M., Fathman C.G., Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 2002;196: 389–399. DOI:10.1084/jem.20020399.; Di Ianni M., Falzetti F., Carotti A., Terenzi A., Castellino F., Bonifacio E. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011; 117 (14): 3921–3928. DOI:10.1182/ blood-2010-10-311894.; Hillard M. Lazarus. Acute leukemia in adults: novel allogeneic transplant strategies. Hematology. 2012; 17 (1): 47–51. DOI:10.1179/102453312X13336169155493.; Godfrey W.R., Ge Y.G., Spoden D.J., Levine B.L., June C.H. et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood. 2004; 104: 453–461. DOI:10.1182/blood-2004-01-0151.; Jessica Heinrichs, David Bastian, Anandharaman Veerapathran, Claudio Anasetti, Brain Betts, and Xue-Zhong Yu Regulatory T-Cell Therapy for Graft-versus-host Disease. J. Immunol. Res. Ther. 2016; 1 (1): 1–14.; Jie Yang, Huahua Fan, Jun Hao, Yana Ren, Liang Chen, Guiping Li, Rufeng Xie, Yiming Yang, Kaicheng Qian, and Mingyao Liu. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/ Th17 balance in a mouse model. Transfusion. 2012; 52 (6): 1333–1347. DOI:10.1111/j.1537-2995.2011.03448.x.; Brunstein C.G., Miller J.S., Cao Q., McKenna D.H., Hippen K.L., Curtsinger J. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011; 117 (3): 1061–1070. DOI:10.1182/ blood-2010-07-293795.; Beres A., Komorowski R., Mihara M., Drobyski W.R. Instability of Foxp3 expression limits the ability of induced regulatory T cells to mitigate graft versus host disease. Clin. Cancer Res. 2011; 17: 3969–3983. DOI:10.1158/1078-0432.CCR-10-3347.; Zhang P., Tey S.K., Koyama M., Kuns R.D., Olver S.D. et al. Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J. Immunol. 2013; 191: 5291–5303. DOI:10.4049/jimmunol.1301181.; Kenrick Semple, Yu Yu, Dapeng Wang, Claudio Anasetti, and Xue-Zhong Yu. Efficient and selective prevention of GVHD by antigen-specificiInduced Tregs via linked-suppression in mice. Biol. Blood Marrow Transplant. 2011; 17 (3): 309–318. DOI:10.1016/j.bbmt.2010.12.710.; Hippen K.L., Merkel S.C., Schirm D.K., Nelson C., Tennis N.C., Riley J.L., June C.H., Miller J.S., Wagner J.E. and Blazar B.R. Generation and large-scale expansion of human inducible regulatory T cells that suppress graftversus-host disease. Am. J. Transplant. 2011; 11 (6): 1148–1157. DOI:10.1111/j.1600-6143.2011.03558.x.; Aline Gaidot, Dan Avi Landau, Gae lle He´ le`ne Martin, Olivia Bonduelle, Yenkel Grinberg-Bleyer, Diana Matheoud, Sylvie Gregoire, Claude Baillou, Be´hazine Combadiere, Eliane Piaggio et al. Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood. 2011; 117 (10): 2975–2983. DOI:10.1182/ blood-2010-08-299974.; Keli L. Hippen, James L. Riley, Carl H. June, and Bruce R. Blazar Clinical perspectives for regulatory T cells in transplantation tolerance. Semin. Immunol. 2011; 23 (6): 462–468. DOI:10.1016/j.smim.2011.07.008.; Amy J. Beres, William R. Drobyski. The role of regulatoryT cells in the biology of graft versus host disease. Front. Immunol. 2013; 4: 163. DOI:10.3389/fimmu.2013.00163.; Eun-Sol Lee, Jung-Yeon Lim, Keon-Il Im, Nayoun Kim, Young-Sun Nam, Young-Woo Jeon, Seok-Goo Cho. Adoptive transfer of Treg cells combined with mesenchymal stem cells facilitates repopulation of endogenous Treg cells in a murine acute GVHD model. PLoS One. 2015; 10 (9): e0138846. DOI:10.1371/journal.pone.0138846.; Yushi Yao, Lei Wang, Jihao Zhou and Xinyou Zhang Yao et al. HIF-1α inhibitor echinomycin reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. J. Transpl. Med. 2017; 15 (1): 28. DOI:10.1186/s12967-017-1132-9.; Jessica Heinrichs, Jun Li, Hung Nguyen, Yongxia Wu, David Bastian, Anusara Daethanasanmak, M-Hanief Sofi, Steven Schutt, Chen Liu, Junfei Jin et al. CD8 Tregs рromote GVHD рrevention and оvercome the impaired GVL еffect mediated by CD4 Tregs in mice. Oncoimmunology. 2016; 5 (6): e1146842. DOI:10.1080/2162402X.2016.1146842.; Marco Romano, Sim Lai Tung, Lesley Ann Smyth, Giovanna Lombardi. Treg therapy in transplantation: a general overview. Transpl. Int. 2016. DOI:10.1111/ tri.12909.; Theil A., Tuve S., Oelschlägel U. et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy. 2015; 17: 473–486. DOI:10.1111/cei.12887.; Bacchetta R., Lucarelli B., Sartirana C. et al. Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front. Immunol. 2014; 5: 1–14. DOI:10.3389/fimmu.2014.00016.; https://bulletin.tomsk.ru/jour/article/view/1130

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20