Εμφανίζονται 1 - 6 Αποτελέσματα από 6 για την αναζήτηση '"импульсные последовательности"', χρόνος αναζήτησης: 0,48δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Medical Visualization; № 4 (2019); 10-23 ; Медицинская визуализация; № 4 (2019); 10-23 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/834/571; Котляров П.М., Лагкуева И.Д., Сергеев Н.И., Солодкий В.А. Магнитно-резонансная томография в диагностике заболеваний легких. Пульмонология. 2018; 28 (2): 217–233. https://doi.org/10.18093/0869-0189-2018-28-2-217-233 Kotlyarov P.M., Lagkueva I.D., Sergeev N.I., Solodkiy V.A. Magnetic resonance imaging in diagnostics of lung diseases. Pul'monologiya. 2018; 28 (2): 217–233. (In Russian) https://doi.org/10.18093/0869-0189-2018-28-2-217-233; Eibel R., Herzog P., Dietrich O., RieGREr C.T., Ostermann H., Reiser M.F., Schoenberg S.O. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology. 2006; 241: 880–891. https://doi.org/10.1148/radiol.2413042056; Ley-Zaporozhan J., Ley S., Eberhardt R., Kauczor H.-U., Heussel C.P. Visualization of morphological parenchymal changes in emphysema: comparison of different MRI sequences to 3D-HRCT. Eur. J. Radiol. 2010; 73: 43–49. https://doi.org/10.1016/j.ejrad.2008.09.029; Bauman G., Puderbach M., Deimling M., Jellus V., Chefd’hotel C., Dinkel J., Hintze C., Kauczor H.-U., Schad L.R. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn. Reson. Med. 2009; 62: 656–664. https://doi.org/10.1002/mrm.22031; Biederer J. Magnetic resonance imaging: technical aspects and recent developments. Med. Klin. (Munich). 2005; 100: 62–72. https://doi.org/10.1007/s00063-005-1124-z; Biederer J., Bauman G., Hintze C., Fabel M., Both M. Magnet resonanz tomographie. Der Pneumologe. 2011; 8: 234–242. https://doi.org/10.1007/s10405-010-0440-z; Biederer J., Beer M., Hirsch W., Wild J., Fabel M., Puderbach M., Van Beek E.J.R. MRI of the lung (2/3). Why… when… how? Insights imaging. 2012; 3 (4) 355–371. https://doi.org/10.1007/s13244-011-0146-8; Biederer J. General requirements of MRI of the lung and suggested standard protocol. In: Kauczor H.-U. (ed.). MRI of the lung. Berlin; Heidelberg: Springerю 2009: 3–16. https://doi.org/10.1007/978-3-540-34619-7_1; Puderbach M., Hintze C., Ley S., Eichinger M., Kauczor H.-U., Biederer J. MR imaging of the chest: a practical approach at 1.5 T. Eur. J. Radiol. 2007; 64: 345–355. https://doi.org/10.1016/j.ejrad.2007.08.009; Hintze C., Biederer J., Kauczor H.-U. Magnetic resonance imaging of the chest. In: Magnevist Monograph. Berlin; Heidelberg; New York: Springer, 2007: 87–103. https://doi.org/10.1007/s13244-011-0146-8; Iwasawa T., Takahashi H., Ogura T., Asakura A., Gotoh T., Kagei S., J-ichi N., Obara M., Inoue T. Correlation of lung parenchymal MR signal intensity with pulmonary function tests and quantitative computed tomography (CT) evaluation: a pilot study. J. Magn. Reson. Imaging. 2007; 26:1530–1536. https://doi.org/10.1002/jmri.21183; Biederer J., Hintze C., Fabel M. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008; 8: 125–130. https://doi.org/10.1102/1470-7330.2008.0018; Bauman G., Lützen U., Ullrich M., Gaass T., Dinkel J., Elke G., Meybohm P., Frerichs I., Hoffmann B., Borggrefe J., Knuth H.C., Schupp J., Prüm H., Eichinger M., Puderbach M., Biederer J., Hintze C. Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology. 2011; 260: 551–559. https://doi.org/10.1148/radiol.11102313; Puderbach M., Eichinger M., Haeselbarth J., Ley S., Kopp-Schneider A., Tuengerthal S., Schmaehl A., Fink C., Plathow C., Wiebel M., Demirakca S., Müller F.M., Kauczor H.U. Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest. Radiol. 2007; 42: 715–725. https://doi.org/10.1097/rli.0b013e318074fd81; Puderbach M., Eichinger M., Gahr J., Ley S., Tuengerthal S., Schmähl A., Fink C., Plathow C., Wiebel M., Müller F.M., Kauczor H.U. Proton MRI appearance of cystic fibrosis: comparison to CT. Eur. Radiol. 2007; 17: 716–724. https://doi.org/10.1007/s00330-006-0373-4; Biederer J., Reuter M., Both M., Muhle C., Grimm J., Graessner J., Heller M. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering. Eur. Radiol. 2002;12:378–384. https://doi.org/10.1007/s00330-001-1147-7; Fink C., Puderbach M., Biederer J., Fabel M., Dietrich O., Kauczor H.-U., Reiser M.F., Schönberg S.O. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest. Radiol. 2007;42:377–83. https://doi.org/10.1097/01.rli.0000261926.86278.96; Kersjes W., Hildebrandt G., Cagil H., Schunk K., Zitzewitz H., Schild H. Differentiation of alveolitis and pulmonary fibrosis in rabbits with magnetic resonance imaging after intrabronchial administration of bleomycin. Invest. Radiol. 1999; 34: 13–21. https://doi.org/10.1097/00004424-199901000-00003; Jacob R.E., Amidan B.G., Soelberg J., Minard K.R. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J. Magn. Reson. Imaging. 2010; 31: 1091–1099. https://doi.org/10.1002/jmri.22166; Eibel R., Herzog P., Dietrich O., Rieger C.T., Ostermann H., Reiser M.F., Schoenberg S.O. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology. 2006; 241: 880–891. https://doi.org/10.1148/radiol.2413042056; Rieger C., Herzog P., Eibel R., Fiegl M., Ostermann H. Pulmonary MRI–a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer. 2008; 16: 599–606. https://doi.org/10.1007/s00520-007-0346-4; Fink C., Puderbach M., Biederer J., Fabel M., Dietrich O., Kauczor H-U., Reiser M.F., Schönberg S.O. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest. Radiol. 2007; 42: 377–83. https://doi.org/10.1097/01.rli.0000261926.86278.96; Biederer J., Schoene A., Freitag S., Reuter M., Heller M. Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology. 2003; 227: 475–83. https://doi.org/10.1148/radiol.2272020635; Bruegel M., Gaa J., Woertler K., Ganter C., Waldt S., Hillerer C., Rummeny E.J. MRI of the lung: value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. J. Magn. Reson. Imaging. 2007; 25: 73–81. https://doi.org/10.1002/jmri.20824; Both M., Schultze J., Reuter M., Bewig B., Hubner R., Bobis I., Noth R., Heller M., Biederer J. Fast T1- and T2- weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur. J. Radiol. 2005; 53: 478–88. https://doi.org/10.1016/j.ejrad.2004.05.007; Gamsu G., Geer G., Cann C., Müller N., Brito A. A preliminary study of MRI quantification of simulated calcified pulmonary nodules. Invest. Radiol. 1987; 22: 853–858.; Regier M., Kandel S., Kaul M.G., Hoffmann B., Ittrich H., Bansmann P.M., Kemper J., Nolte-Ernsting C., Heller M., Adam G., Biederer J. Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur. Radiol. 2007; 17: 1341–51. https://doi.org/10.1007/s00330-006-0422-z; Baumann T., Ludwig U., Pache G., Gall C., Saueressig U., Fisch D., Stankovic Z., Bartholomae J.-P., Honal M. Detection of pulmonary nodules with move-during-scan magnetic resonance imaging using a free-breathing turbo inversion recovery magnitude sequence. Invest. Radiol. 2008; 43: 359–367. https://doi.org/10.1097/RLI.0b013e31816901fa; Khalil A.M., Carette M.F., Cadranel J.L., Mayaud C.M., Akoun G.M., Bigot J.M. Magnetic resonance imaging findings in pulmonary Kaposi’s sarcoma: a series of 10 cases. Eur. Respir. J. 1994; 7: 1285–1289. https://doi.org/10.1183/09031936.94.07071285; Semelka R.C., Cem Balci N., Wilber K.P., Fisher L.L., Brown M.A., Gomez-Caminero A., Molina P.L. Breath-hold 3D gradient-echo MR imaging of the lung parenchyma: evaluation of reproducibility of image quality in normals and preliminary observations in patients with disease. J. Magn. Reson. Imaging. 2000; 11: 195–200. https://doi.org/10.1002/(sici)1522-2586(200002)11:23.0.co;2-q; Matsuoka S., Uchiyama K., Shima H., Terakoshi H., Oishi S., Nojiri Y., Ogata H. Effect of the rate of gadolinium injection on magnetic resonance pulmonary perfusion imaging. J. Magn. Reson. Imaging. 2002; 15: 108–113. https://doi.org/10.1002/jmri.10038; Oudkerk M., Beek E.J.R., Wielopolski P., Ooijen P.M.A., Brouwers-Kuyper E.M.J., Bongaerts A.H.H., Berghout A. Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet. 2002; 359: –1647. https://doi.org/10.1016/s1062-1458(02)00929-7; Peltola V., Ruuskanen O., Svedström E. Magnetic resonance imaging of lung infections in children. Pediatr. Radiol. 2008; 38: 1225–1231. https://doi.org/10.1007/s00247-008-0987-6; Ley-Zaporozhan J., Ley S., Sommerburg O., Komm N., Müller F.-M.C., Schenk J.P. Clinical application of MRI in children for the assessment of pulmonary diseases. Rofo. 2009; 181: 419–432. https://doi.org/10.1055/s-0028-1109128; Failo R., Wielopolski P.A., Tiddens H.A.W.M., Hop W.C.J., Mucelli R.P., Lequin M.H. Lung morphology assessment using MRI: a robust ultra-short TR/TE 2D steady state free precession sequence used in cystic fibrosis patients. Magn. Reson. Med. 2009;61:299–306. https://doi.org/10.1002/mrm.21841; Wagner M., Böwing B., Kuth R., Deimling M., Rascher W., Rupprecht T. Low field thoracic MRI–a fast and radiation free routine imaging modality in children. Magn. Reson. Imaging. 2001; 19: 975–983. https://doi.org/10.1016/s0730-725x(01)00417-9; Rupprecht T., Kuth R., Bowing B., Gerling S., Wagner M., Rascher W. Sedation and monitoring of paediatric patients undergoing open low-field MRI. Acta Paediatr. 2000; 89: 1077–1081. https://doi.org/10.1111/j.1651-2227.2000.tb03354.x; Serra G., Milito C., Mitrevski M., Granata G., Martini H., Pesce A.M., Sfika I., Bonanni L., Catalano C., Fraioli F., Quinti I. Lung MRI as a possible alternative to CT scan for patients with primary immune deficiencies and increased radio sensitivity. Chest. 2011; 140: 1581–1589. https://doi.org/10.1378/chest.10-3147; Hirsch W., Sorge I., Krohmer S., Weber D., Meier K., Till H. MRI of the lungs in children. Eur. J. Radiol. 2008; 68: 278–288. https://doi.org/10.1016/j.ejrad.2008.05.017; Schaefer J.F., Kramer U. Whole-body MRI in children and juveniles. Rofo. 2011; 183: 24–36. https://doi.org/10.1055/s-0029-1245883; Attenberger U.I., Ingrisch M., Dietrich O., Herrmann K., Nikolaou K., Reiser M.F., Schönberg S.O., Fink C. Timeresolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T. Invest. Radiol. 2009; 44: 525–531. https://doi.org/10.1097/rli.0b013e3181b4c252; Biederer J., Liess C., Charalambous N., Heller M. Volumetric interpolated contrast-enhanced MRA for the diagnosis of pulmonary embolism in an ex vivo system. J. Magn. Reson. Imaging. 2004; 19: 428–37. https://doi.org/10.1002/jmri.20021; Yi C.A., Shin K.M., Lee K.S., Kim B.-T., Kim H., Kwon O.J., Choi J.Y., Chung M.J. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology. 2008; 248: 632–642. https://doi.org/10.1148/radiol.2482071822; Kluge A., Gerriets T., Müller C., Ekinci O., Neumann T., Dill T., Bachmann G. Thoracic real-time MRI: experience from 2200 examinations in acute and ill-defined thoracic diseases. Rofo. 2005; 177: 1513–1521. https://doi.org/10.1016/j.clinimag.2004.06.012; Kluge A., Gerriets T., Stolz E., Dill T., Mueller K.-D., Mueller C., Bachmann G. Pulmonary perfusion in acute pulmonary embolism: agreement of MRI and SPECT for lobar, segmental and subsegmental perfusion defects. Acta Radiol. 2006; 47: 933–940. https://doi.org/10.1080/02841850600885377; Kluge A., Müller C., Hansel J., Gerriets T., Bachmann G. Real-time MR with TrueFISP for the detection of acute pulmonary embolism: initial clinical experience. Eur. Radiol. 2004; 14: 709–718. https://doi.org/10.1016/j.clinimag.2004.06.012; Meaney J.F., Weg J.G., Chenevert T.L., Stafford- Johnson D., Hamilton B.H., Prince M.R. Diagnosis of pulmonary embolism with magnetic resonance angiography. N. Engl. J. Med. 1997; 336: 1422–1427. https:// doi.org/10.1056/nejm199705153362004 48. Gupta A., Frazer C.K., Ferguson J.M., Kumar A.B., Davis S.J., Fallon M.J., Morris I.T., Drury P.J., Cala L.A. Acute pulmonary embolism: diagnosis with MR angiography. Radiology. 1999; 210: 353–359. https://doi.org/10.1148/radiology.210.2.r99fe53353; Goyen M., Laub G., Ladd M.E., Debatin J.F., Barkhausen J., Truemmler K.H., Bosk S., Ruehm SG. Dynamic 3D MR angiography of the pulmonary arteries in under four seconds. J. Magn. Reson. Imaging. 2001; 13: 372–377. https://doi.org/10.1002/jmri.1053; Moody A.R. Magnetic resonance direct thrombus imaging. J. Thromb. Haemost. 2003; 1: 1403–1409. https://doi.org/10.1046/j.1538-7836.2003.00333.x; Stein P.D., Chenevert T.L., Fowler S.E., Goodman L.R., Gottschalk A., Hales C.A., Hull R.D., Jablonski K.A., Leeper K.V., Naidich D.P., Sak D.J., Sostman H.D., Tapson V.F., Weg J.G., Woodard P.K. Gadoliniumenhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann. Intern. Med. 2010; 152: 434–443, W142-W143. https://doi.org/10.7326/0003-4819-152-7-201004060-00008; Ersoy H., Goldhaber S.Z., Cai T., Luu T., Rosebrook J., Mulkern R., Rybicki F. Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. Am. J. Roentgenol. 2007;188(5):1246–1254. https://doi.org/10.2214/ajr.06.0901; Levin D.L., Chen Q., Zhang M., Edelman R.R., Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn. Reson. Med. 2001; 46: 166–171.; Burnham K.J., Arai T.J., Dubowitz D.J., Henderson A.C., Holverda S., Buxton R.B., Prisk G.K., Hopkins S.R. Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans. J. Appl. Physiol. 2009; 107: 1559–1568. https://doi.org/10.1152/japplphysiol.00491.2009; Eichinger M., Optazaite D.-E., Kopp-Schneider A., Hintze C., Biederer J., Niemann A., Mall M.A., Wielpütz M.O., Kauczor H.-U., Puderbach M. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur. J. Radiol. 2012; 81(6): 1321–1329. https://doi.org/10.1016/j.ejrad.2011.02.045; Fabel M., Winterspergrer B.J., Dietrich O., Eichinger M., Fink C., Puderbach M., Kauczor H.-U., Schoenberg S.O., Biederer J. MRI of respiratory dynamics with 2D steadystate free-precession and 2D gradient echo sequences at 1.5 and 3 Tesla: an observer preference study. Eur. Radiol. 2009;19:391–9. https://doi.org/10.1007/s00330-008-1148-x; Cai J., Read P.W., Altes T.A., Molloy J.A., Brookeman J.R., Sheng K. Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI. Phys. Med. Biol. 2007; 52: 365–373. https://doi.org/10.1088/0031-9155/52/2/004; Adamson J., Chang Z., Wang Z., Yin F.-F., Cai J. Maximum intensity projection (MIP) imaging using slice-stacking MRI. Med. Phys. 2010; 37: 5914–5920. https://doi.org/10.1118/1.3503850; Scholz A.-W., Wolf U., Fabel M., Weiler N., Heussel C.P., Eberle B., David M., Schreiber W.G. Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis. Magn. Reson. Imaging. 2009; 27: 549–556. https://doi.org/10.1016/j.mri.2008.08.010; Molinari F., Puderbach M., Eichinger M., Ley S., Fink C., Bonomo L., Kauczor H.-U., Bock M. Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods on the T1-changes of the lungs. Invest Radiol. 2008;43:427–432. https://doi.org/10.1097/rli.0b013e318169012d; Leawoods J.C., Yablonskiy D.A., Saam B., Gierada D.S., Conradi M.S. Hyperpolarized 3He gas production and MR imaging of the lung. Concepts Magn. Reson. 2001; 13: 277–293. https://doi.org/10.1002/cmr.1014; Moller H.E., Chen X.J., Saam B., Johnson G.A., Altes T.A., de Lange E.E., Kauczor H.U. MRI of the lungs using hyperpolarized noble gases. Magn. Reson. Med. 2002; 47:1029–1051. https://doi.org/10.1002/mrm.10173; Salerno M., de Lange E.E., Altes T.A., Truwit J.D., Brookeman J.R., Mugler J.P. 3rd. Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology. 2002; 222: 252–260. https://doi.org/10.1148/radiol.2221001834; Mills G.H., Wild J.M., Eberle B., Van Beek E.J.R. Functional magnetic resonance imaging of the lung. Brit. J. Anaesth. 2003; 91: 16–30. https://doi.org/10.1093/bja/aeg149; Deninger A.J., Eberle B., Ebert M., Grossmann T., Hanisch G., Heil W., Kauczor H.U., Markstaller K., Otten E., Schreiber W., Surkau R., Weiler N. He-3-MRI-based measurements of intrapulmonary p(O2) and its time course during apnea in healthy volunteers: first results, reproducibility, and technical limitations. NMR Biomed. 2000; 13: 194–201. https://doi.org/10.1002/1099-1492(200006)13:43.0.co;2-d; Chen W., Jian W., H-tao L., Li C., Y-ke Z., Xie B., D-quan Z., Y-ming D., Lin Y. Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up? Magn. Reson. Imaging. 2010; 28: 613–620. https://doi.org/10.1016/j.mri.2010.02.009; Stein P.D., Gottschalk A., Sostman H.D., Chenevert T.L., Fowler S.E., Goodman L.R., Hales C.A., Hull R.D., Kanal E., Leeper K.V. Jr., Nadich D.P., Sak D.J., Tapson V.F., Wakefield T.W., Weg J.G., Woodard P.K. Methods of prospec tive investigation of pulmonary embolism diagnosis III (PIOPED III). Semin. Nucl. Med. 2008; 38: 462–470. https://doi.org/10.1053/j.semnuclmed.2008.06.003; https://medvis.vidar.ru/jour/article/view/834

  3. 3
  4. 4
  5. 5
  6. 6