Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"изолированные кардиомиоциты"', χρόνος αναζήτησης: 0,49δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The research was supported by government funding (project number 122012100156-5) and by the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic biology”., Работа выполнена в рамках государственного задания (проект № 122012100156-5) и научно-образовательной школы МГУ «Молекулярные технологии живых систем и синтетическая биология».

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 3 (2022); 173-179 ; Вестник Московского университета. Серия 16. Биология; Том 77, № 3 (2022); 173-179 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1161/595; Amin A.S., Asghari-Roodsari A., Tan H.L. Cardiac sodium channelopathies // Pflugers Arch. Eur. J. Physiol. 2010. Vol. 460. N 2. P. 223–237.; Asfaw T.N., Bondarenko V.E. A mathematical model of the human cardiac Na + channel // J. Membr. Biol. 2019. Vol. 252. N 1. P. 77–103.; Isom L.L., Jongh K.S. De, Patton D.E., Reber B.F.X., Offord J., Charbonneau H., Walsh K., Goldin A.L., Catterall W.A. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel // Science. 1992. Vol. 256. N 5058. P. 839–842.; Haufe V., Cordeiro J.M., Zimmer T., Wu Y.S., Schiccitano S., Benndorf K., Dumaine R. Contribution of neuronal sodium channels to the cardiac fast sodium current I Na is greater in dog heart Purkinje fibers than in ventricles // Cardiovasc. Res. 2005. Vol. 65. N 1. P. 117–127.; Chadda K.R., Jeevaratnam K., Lei M., Huang C.L.H. Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes // Pflugers Arch. Eur. J. Physiol. 2017. Vol. 469. N 5–6. P. 629–641.; Filatova T.S., Abramochkin D. V., Pavlova N.S., Pustovit K.B., Konovalova O.P., Kuzmin V.S., Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: Novel translational model for cardiac electrophysiology // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021. Vol. 255: 110919.; Fujii S., Ayer R.K., DeHaan R.L. Development of the fast sodium current in early embryonic chick heart cells // J. Membr. Biol. 1988. Vol. 101. N 1. P. 209–223.; Vornanen M., Hassinen M., Haverinen J. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current // Mar. Drugs. 2011. Vol. 9. N 11. P. 2409–2422.; Jensen B., Wang T., Christoffels V.M., Moorman A.F.M. Evolution and development of the building plan of the vertebrate heart // Biochim. Biophys. Acta. Mol. Cell Res. 2013. Vol. 1833. N 4. P. 783–794.; Abramochkin D. V., Filatova T.S., Pustovit K.B., Voronina Y.A., Kuzmin V.S., Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022. Vol. 268: 111204.; Hassinen M., Abramochkin D. V., Vornanen M. Seasonal acclimatization of the cardiac action potential in the Arctic navaga cod (Eleginus navaga, Gadidae) // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2014. Vol. 184. N 3. P. 319–327.; Islam M.A., Nojima H., Kimura I. Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. // Eur. J. Pharmacol. 1998. Vol. 346. N 2–3. P. 227–236.; Clark R.B., Giles W. Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties // J. Physiol. 1987. Vol. 391. N 1. P. 235–265.; Sakakibara Y., Wasserstrom J.A., Furukawa T., Jia H., Arentzen C.E., Hartz R.S., Singer D.H. Characterization of the sodium current in single human atrial myocytes // Circ. Res. 1992. Vol. 71. N 3. P. 535–546.; Sakakibara Y., Furukawa T., Singer D.H., Jia H., Backer C.L., Arentzen C.E., Wasserstrom J.A. Sodium current in isolated human ventricular myocytes // Am. J. Physiol. Hear. Circ. Physiol. 1993. Vol. 265. N 4. P. H1301–H1309.; Haverinen J., Hassinen M., Korajoki H., Vornanen M. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle // Prog. Biophys. Mol. Biol. 2018. Vol. 138. P. 59–68.; Zaza A., Rocchetti M. The late Na+ current – origin and pathophysiological relevance // Cardiovasc. Drugs Ther. 2013. Vol. 27. N 1. P. 61–68.; Schneider M., Proebstle T., Hombach V., Hannekum A., Rüdel R. Characterization of the sodium currents in isolated human cardiocytes // Pflügers Arch. 1994. Vol. 428. N 1. P. 84–90.; Shander G.S., Fan Z., Makielski J.C. Slowly recovering cardiac sodium current in rat ventricular myocytes: effects of conditioning duration and recovery potential // J. Cardiovasc. Electrophysiol. 1995. Vol. 6. N 10. P. 786–795.; Burashnikov A. Late INa inhibition as an antiarrhythmic strategy // J. Cardiovasc. Pharmacol. 2017. Vol. 70. N 3. P. 159–167.; Rajamani S., El-Bizri N., Shryock J.C., Makielski J.C., Belardinelli L. Use-dependent block of cardiac late Na+ current by ranolazine // Hear. Rhythm. 2009. Vol. 6. N 11. P. 1625–1631.; Zygmunt A.C., Nesterenko V. V., Rajamani S., Hu D., Barajas-Martinez H., Belardinelli L., Antzelevitch C. Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block // Am. J. Physiol. – Hear. Circ. Physiol. 2011. Vol. 301. N 4. P. 1606–1614.; Antzelevitch C., Belardinelli L., Zygmunt A.C., Burashnikov A., Di Diego J.M., Fish J.M., Cordeiro J.M., Thomas G. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties // Circulation. 2004. Vol. 110. N 8. P. 904–910.; Carmeliet E. Action potential duration, rate of stimulation, and intracellular sodium // J. Cardiovasc. Electrophysiol. 2006. Vol. 17. Suppl. 1. P. S2–S7.

  2. 2
    Academic Journal

    Συνεισφορές: The research was funded by Russian Foundation for Basic Research, project number 19-34-90142., Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-34-90142).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 76, № 2 (2021); 83-89 ; Вестник Московского университета. Серия 16. Биология; Том 76, № 2 (2021); 83-89 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/995/551; Shiels H.A., Galli G.L.J. The sarcoplasmic reticulum and the evolution of the vertebrate heart // Physiology. 2014. Vol. 29. N 6. P. 456–469.; Jensen B., Wang T., Christoffels V.M., Moorman A.F.M. Evolution and development of the building plan of the vertebrate heart // Biochim. Biophys. Acta. Mol. Cell Res. 2013. Vol. 1833. N 4. P. 783–794.; Filatova T.S., Abramochkin D. V., Pavlova N.S., Pustovit K.B., Konovalova O.P., Kuzmin V.S., Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: Novel translational model for cardiac electrophysiology // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021. Vol. 255: 110919.; Filatova T.S., Abramochkin D. V., Shiels H.A. Warmer, faster, stronger: Ca 2+ cycling in avian myocardium // J. Exp. Biol. 2020. Vol. 223. N 19: jeb228205.; Vornanen M., Hassinen M., Haverinen J. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current // Mar. Drugs. 2011. Vol. 9. N 11. P. 2409–2422.; Abramochkin D. V., Matchkov V., Wang T. A characterization of the electrophysiological properties of the cardiomyocytes from ventricle, atrium and sinus venosus of the snake heart // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2020. Vol. 190. N 1. P. 63–73.; Cavero I., Crumb W. Native and cloned ion channels from human heart: laboratory models for evaluating the cardiac safety of new drugs // Eur. Hear. J. Suppl. 2001. Vol. 3. Suppl. K. P. K53–K63.; Jost N., Virág L., Bitay M., Takács J., Lengyel C., Biliczki P., Nagy Z., Bogáts G., Lathrop D.A., Papp J.G., Varró A. Restricting excessive cardiac action potential and QT prolongation: A vital role for I Ks in human ventricular muscle // Circulation. 2005. Vol. 112. N 10. P. 1392–1399.; Ehrlich J.R. Inward rectifier potassium currents as a target for atrial fibrillation therapy // J. Cardiovasc. Pharmacol. 2008. Vol. 52. N 2. P. 129–135.; Klein M.G., Shou M., Stohlman J., Solhjoo S., Haigney M., Tidwell R.R., Goldstein R.E., Flagg T.P., Haigney M.C. Role of suppression of the inward rectifier current in terminal action potential repolarization in the failing heart // Heart Rhythm. 2017. Vol. 14. N 8. P. 1217–1223.; Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium” // Pflügers Arch. Eur. J. Physiol. 1982. Vol. 395. N 1. P. 6–18.; Valance D., Després G., Richard S., Constantin P., Mignon-Grasteau S., Leman S., Boissy A., Faure J.M., Leterrier C. Changes in heart rate variability during a tonic immobility test in quail // Physiol. Behav. 2008. Vol. 93. N 3. P. 512–520.; Haverinen J., Vornanen M. Responses of action potential and K + currents to temperature acclimation in fish hearts: phylogeny or thermal preferences? // Physiol. Biochem. Zool. 2009. Vol. 82. N 5. P. 468–482.; Varro A., Nanasi P.P., Lathrop D.A. Potassium currents in isolated human atrial and ventricular cardiocytes // Acta Physiol. Scand. 1993. Vol. 149. N 2. P. 133–142.; Panama B.K., McLerie M., Lopatin A.N. Heterogeneity of I K1 in the mouse heart // Am. J. Physiol. Hear. Circ. Physiol. 2007. Vol. 293. N 6. P. H3558–H3567.; Ward C.A., Ma Z., Lee S.S., Giles W.R. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis // Am. J. Physiol. Gastrointest. Liver Physiol. 1997. Vol. 273. N 2. P. G537–G544.; Hassinen M., Haverinen J., Hardy M.E., Shiels H.A., Vornanen M. Inward rectifier potassium current (IK1 ) and Kir2 composition of the zebrafish (Danio rerio) heart // Pflugers Arch. Eur. J. Physiol. 2015. Vol. 467. N 12. P. 2437–2446.; Skarsfeldt M.A., Bomholtz S.H., Lundegaard P.R., Lopez-Izquierdo A., Tristani-Firouzi M., Bentzen B.H. Atriumspecific ion channels in the zebrafish-A role of I KACh in atrial repolarization // Acta Physiol. 2018. Vol. 223. N 3: e13049.; Dobrzynski H., Marples D.D.R., Musa H., Yamanushi T.T., Henderson Z., Takagishi Y., Honjo H., Kodama I., Boyett M.R. Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart // J. Histochem. Cytochem. 2001. Vol. 49. N 10. P. 1221–1234.; Liang B., Nissen J.D., Laursen M., Wang X., Skibsbye L., Hearing M.C., Andersen M.N., Rasmussen H.B., Wickman K., Grunnet M., Olesen S.-P., Jespersen T. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization // Cardiovasc. Res. 2014. Vol. 101. N 1. P. 175–184.; Beckmann C., Rinne A., Littwitz C., Mintert E., Bosche L.I., Kienitz M.-C., Pott L., Bender K. G ProteinActivated (GIRK) Current in Rat Ventricular Myocytes is Masked by Constitutive Inward Rectifier Current (IK1 ) // Cell. Physiol. Biochem. 2008. Vol. 21. N 4. P. 259–268.; Dobrev D., Graf E., Wettwer E., Himmel H.M., Hála O., Doerfel C., Christ T., Schüler S., Ravens U. Molecular basis of downregulation of G-protein-coupled inward rectifying K + current (IK,ACh ) in chronic human atrial fibrillation decrease in GIRK4 mrna correlates with reduced I K,ACh and muscarinic receptor-mediated shortening of action potentials // Circulation. 2001. Vol. 104. N 21. P. 2551–2557.; Abramochkin D. V., Vornanen M. Seasonal changes of cholinergic response in the atrium of Arctic navaga cod (Eleginus navaga) // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2017. Vol. 187. N 2. P. 329–338.; Lomax A.E., Rose R.A., Giles W.R. Electrophysiological evidence for a gradient of G proteingated K + current in adult mouse atria // Br. J. Pharmacol. 2003. Vol. 140. N 3. P. 576–584.