Εμφανίζονται 1 - 7 Αποτελέσματα από 7 για την αναζήτηση '"гидрирование/дегидрирование"', χρόνος αναζήτησης: 0,48δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 13-15 (2018); 122-140 ; Альтернативная энергетика и экология (ISJAEE); № 13-15 (2018); 122-140 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1393/1202; Kazantseva, N.V. Severe plastic deformation and hydrogenation of titanium aluminides / N.V. Kazantseva [et al.] // Journal of Alloys and Compounds. – 2011. – Vol. 509. – No. 38. – P. 9307–9311.; Rodríguez, C. Nanostructured Al–ZrAl3 materials consolidated via spark plasma sintering: Evaluation of their mechanical properties / C. Rodríguez [et al.] Journal of Alloys and Compounds. – 2013. – Vol. 550. – P. 402–407.; Zhao, Liu. Preparation of Nb3Al superconductor by powder metallurgy / Liu Zhao [et al.] // J. Mod. Transport. – 2014. – Vol. 22. – No. 1. – P.55–60.; Azevedo, G. Synthesis and Characterization of Aluminum–Zirconium Intermetallic Composites / G. Azevedo, D. B. Santos // Journal of Materials Synthesis and Processing. – 2000. – Vol. 8. – No. 5. – P. 101–107.; Milanese, C. Ignition and reaction mechanism of Co– Al and Nb–Al intermetallic compounds prepared by combustion synthesis / C. Milanese [et al.] // Journal of Alloys and Compounds. – 2006. – Vol. 421. – P. 156–161.; Долуханян, С.К. Особенности формирования структур сплавов в системе Ti–Zr–Н / С.К. Долуханян [и др.] // Химическая физика. – 2007. – Т. 26. – № 11. – С. 36–43.; Способ получения компактных гидридов переходных металлов. Патент РА № 2299А C01B 6/00 /Долуханян С.К., Алексанян А.Г. – 2009.; Способ получения сплавов переходных металлов. Патент РА № 2308А C22C 1/04 / Долуханян С.К., Алексанян А.Г. – 2009.; Dolukhanyan, S.K. Synthesis of Transition Metal Hydrides and a New Process for Production of Refractory Metal Alloys: An Autoreview / S.K. Dolukhanyan [et al.] // International Journal of Self-Propagating High-Temperature Synthesis. – 2010. – Vol. 19. – No. 2. – P. 85–93.; Aleksanyan, A.G. Formation of alloys in Ti–V system in hydride cycle and synthesis of their hydrides in selfpropagating high-temperature synthesis regime / A.G. Aleksanyan [et al.] // Journal of Alloys and Compounds. – 2011. – Vol. 509. – P. 786– 789.; Aleksanyan, A.G. Formation of alloys in the Ti–Nb system by hydride cycle method and synthesis of their hydrides in self-propagating high-temperature synthesis / A.G. Aleksanyan [et al.] // Int. J. Hydrogen Energy. – 2012. – Vol. 37. – P. 14234–14239.; Долуханян, С.К. Развитие водородного материаловедения в Армении: синтез гидридов переходных металлов и разработка новых технологий получения сплавов / Долуханян С.К. Монография Под ред. д-ра тех. наук, проф. А.С. Буйновского «Редкие и редкоземельные металлы». – Томск: Изд-во НТЛ., 2014. – Р. 329–351.; Dolukhanyan, S.K. Synthesis of Titanium Aluminides by Hydride Cycle Process / S.K.Dolukhanyan [et al.] // International Journal of Self Propagating HighTemperature Synthesis. – 2014. – Vol. 23. – No. 2. – P. 78–82.; Мурадян, Г.Н. Особенности формирования алюминидов циркония в режиме гидридного цикла / Г.Н. Мурадян // Химический журнал Армении. – 2016. – Т. 69. – № 4. – С. 416–427.; Долуханян, С. К. Исследование процесса формирования алюминидов ниобия в гидридном цикле / С. К. Долуханян [и др.] // Химическая Физика. – 2015. – Т. 34. – № 9. – С. 1–8.; Edited by A. A. Borisov, L. De Luca, and A.G. Merzhanov. Self-Propagating High-Temperature Synthesis of Materials. Combustion Science and Technology Book Series. / S.K. Dolukhanyan. – SHS of Binary and Complex Hydrides. – New York: Taylor & Francis, 2002. – P. 219–237.; Долуханян, С.К. СВС-метод получения аккумуляторов водорода / С.К. Долуханян // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). – 2005. – № 11. – С.13–16.; Merzhanov, A.G. Self propagating High Temperature Synthesis of Refractory Inorganic Composites / A.G. Merzhanov, I.P. Borovinskaya // Dokl. AN SSSR. – 1972. –Vol. 204. – № 2. – P. 366–369.; Лякишев, Н.П. Диаграммы состояния двойных металлических систем: Т. 1–3. / Н.П. Лякишев. – М.: Машиностроение, 2000. – 992с.; Tretyachenko, L. Light Metal Systems. Al–Ti–Zr, Al–Nb–Ti / L. Tretyachenko. – Heidelberg: Springer / GmbH, 2005, P. 54–59; 334–379 p.; Lu, Kai-li. Isothermal section of Al−Ti−Zr ternary system at 1073 K / Kai-li Lu [et al.] // Trans. Nonfer. Met. Soc. China. – 2016. – Vol. 26. – P. 3052–3058.; Ding, X.F. A closely-complete peritectic transformation during directional solidification of a Ti-45Al-8,5Nb alloy / X.F. Ding [et al.] // J. Alloys and Compounds. – 2011. – No. 509. – P. 404–409.; Долуханян, С.К. Формирование алюминидов титана и ниобия, индуцированных водородом в гидридном цикле. / С.К. Долуханян [и др.] // Химическая физика. – 2017. – Т. 36. – № 4. – С. 1–11.; https://www.isjaee.com/jour/article/view/1393

  3. 3
    Academic Journal

    Συγγραφείς: Yu. S. Nechaev, Ю. С. Нечаев

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 17 (2014); 33-56 ; Альтернативная энергетика и экология (ISJAEE); № 17 (2014); 33-56 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/591/581; Geim A.K., Novoselov K.S. The rise of graphene // Nature Materials. 2007. Vol. 6, No. 3. P. 183-191.; Palerno V. Not a molecule, not a polymer, not a substrate. the many faces of graphene as a chemical platform // Chemical Communications. 2013. Vol. 49, No. 28. P. 2848-2857.; Sofo J.O., Chaudhari A.S. and Barber G.D. Graphane: A two-dimensional hydrocarbon // Phys. Rev. B. 2007. Vol. 75. P. 153401-1-4.; Openov L.A. and Podlivaev A.I. Thermal desorption of hydrogen from graphane // Technical Physics Letters. 2010. Vol. 36, No. 1. P. 31-33.; Elias D.C., Nair R.R., Mohiuddin T.M.G., Morozov S.V., Blake P., Halsall M.P., Ferrari A.C., Boukhvalov D.W., Katsnelson M.I., Geim A.K. and Novoselov K.S. Control of graphene’s properties by reversible hydrogenation: evidence for graphan // Science. 2009. Vol. 323 (5914). P. 610-626.; Openov L.A. and Podlivaev A.I. Thermal stability of single-side hydrogenated grapheme // Technical Physics. 2012. Vol. 57, No. 11. P. 1603-1605.; Pujari B.S., Gusarov S., Brett M. and Kovalenko A. Single-side-hydrogenated graphene: Density functional theory predictions // Physical Review B. 2011. Vol. 84. P. 041402-1-6.; Xiang H.J., Kan E.J., Wei S.-H., Gong X.G. and Whangbo M.-H. Thermodynamically stable single-side hydrogenated grapheme // Physical Review B. 2010. Vol. 82. P. 165425-1-4.; Podlivaev A.I. and Openov L.A. On thermal stability of graphone // Semiconductors. 2011. Vol. 45, No. 7. P. 958-961.; Nikitin A., Li X., Zhang Z., Ogasawara H., Dai H. and Nilsson A. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds // Nano Lett. 2008. Vol. 8, No. 1. P. 162-167.; Nikitin A., Näslund L.-A., Zhang Z. and Nillson A. C.-H. bond formation at the graphite surface studied with core level spectroscopy // Surface Science. 2008. Vol. 602, No. 14. P. 2575-2580.; Bauschlicher C.W. (Jr.) and So C.R. High coverages of hydrogen on (10.0), (9.0) and (5.5) carbon nanotubes // Nano Lett. 2002. Vol. 2, No. 4. P. 337-341.; Pimenova S.M., Melkhanova S.V., Kolesov V.P. and Lobach A.S. The enthalpy of formation and C-H bond enthalpy hydrofullerene C60H36 // J. Phys. Chem. B. 2002. Vol. 106, No. 9. P. 2127-2130.; Nechaev Yu.S. Carbon nanomaterials, relevance to the hydrogen storage problem // J. Nano Res. 2010. Vol. 12. P. 1-44.; Waqar Z. Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption // J. Mater. Sci. 2007. Vol. 42, No. 4. P. 1169-1176.; Nechaev Yu.S., Nejat Veziroglu T. Thermodynamic aspects of the stability of the graphene/graphane/hydrogen systems, relevance to the hydrogen on-board storage problem // Advances in Materials Physics and Chemistry. 2013. Vol. 3. P. 255-280.; Watcharinyanon S., Virojanadara C., Osiecki J.R., Zakharov A.A., Yakimova R., Uhrberg R.I.G. and Johansson L.I. Hydrogen intercalation of graphene grown on 6H-SiC(0001) // Surface Science. 2011. Vol. 605, No. 17-18. P. 1662-1668.; Han S.S., Jung H., Jung D.H., Choi S.-H. and Park N. Stability of hydrogenation states of graphene and conditions for hydrogen spillover // Phys. Rev. B -Condens. Matter. Mater. Phys. 2012. Vol. 85, No. 15. article # 155408.; Akiba E. Hydrogen related R & D and hydrogen storage materials in Japan. In: Materials of Int. Hydrogen Research Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/uk-shec/showcase/Showcase Presentations.html.; Nechaev Yu.S. On thermodynamic characteristics of hydrogenated graphene-based nanostructures, relevance to the problem of the hydrogen on-board storage in fuel-cell-powered ecological vehicles // Intern. Sc. J. for Alternative Energy and Ecology - ISJAEE. 2014. No. 10 (150). P. 25-55.; Nechaev Yu.S., Nejat Veziroglu T. On thermodynamic stability of hydrogenated graphene layers, relevance to the hydrogen on-board storage // The Open Fuel Cells Journal. 2013. Vol. 6. P. 21-39.; Xiang H., Kan E., Wei S.-H., Whangbo M.-H. and Yang J. “Narrow” graphene nanoribbons made easier by partial hydrogenation // Nano Lett. 2009. Vol. 9, No. 12. P. 4025-4030.; Lebegue S., Klintenberg M., Eriksson O. and Katsnelson M.I. Accurate electronic band gap of pure and functionalized graphane from GW calculations // Phys. Rev. B - Condensed Matt. Mat. Phys. 2009. Vol. 79, No. 24. article # 245117.; Zhou J., Wang Q., Sun Q., Chen X.S., Kawazoe Y. and Jena P. Ferromagnetism in semihydrogenated graphene sheet // Nano Letters. 2009. Vol. 9, No. 11. P. 3867-3870.; Dzhurakhalov A.A. and Peeters F.M. Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane // Carbon. 2011. Vol. 49. P. 3258-3266.; Ruffieux P., Gröning O., Bielmann M., Mauron P., Schlapbach L. and Gröning P. Hydrogen adsorption on sp2-bonded carbon: influence of the local curvature // Phys. Rev. B. 2002. Vol. 66. P. 245416-1-8.; Sha X. and Jackson B. First-principles study of the structural and energetic properties of H atoms on graphite (0001) surface // Surf. Sci. 2002. Vol. 496. P. 318-330.; Sluiter M.H.F. and Kawazoe Y. Cluster expansion method for adsorption: application to hydrogen chemisorption on grapheme // Phys. Rev. B. 2003. Vol. 68. P. 085410-1-7.; Yazyev O.V. and Helm L. Defect-induced magnetism in grapheme // Phys. Rev. B. 2007. Vol. 75. P. 125408-1-5.; Lehtinen P.O., Foster A.S., Ma Y., Krasheninnikov A.V. and Nieminen R.M. Irradiation-induced magnetism in graphite: a density functional study // Phys. Rev. Lett. 2004. Vol. 93. P. 187202-1-4.; Boukhvalov D.W., Katsnelson M.I. and Lichtenstein A.I. Hydrogen on graphene: total energy, structural distortions and magnetism from first-principles calculations // Phys. Rev. B. 2008. Vol. 77. P. 035427-1-7.; Jiang D., Cooper V.R. and Dai S. Porous graphene as the ultimate membrane for gas separation // Nano Lett. 2009. Vol. 9. P. 4019-4024.; Brito W.H., Kagimura R. and Miwa R.H. Hydrogenated grain boundaries in graphene // Applied Physics Letters. 2011. Vol. 98, No. 21. Article # 213107.; Zhang T., Li X., Gao H. Defects controlled wrinkling and topological design in grapheme // Journal of the Mechanics and Physics of Solids, Applied Physics Letters. 2014. Vol. 67. P. 2-13.; Banhart F., Kotakoski J. and Krasheninnikov A.V. Structural defects in graphene (Review) // ACS Nano. 2011. Vol. 5, No. 1. P. 26-41.; Yazyev O.V. and Louie S.G. Topological defects in graphene: Dislocations and grain boundaries // Physical Review B - Condensed Matter and Materials Physics. 2010. Vol. 81, No. 19. Article # 195420.; Kim K., Lee Z., Regan W., Kisielowski C., Crommie M.F. and Zettl A. Grain boundary mapping in polycrystalline grapheme // ACS Nano. 2011. Vol. 5, No. 3. P. 2142-2146.; Koepke J.C., Wood J.D., Estrada D., Ong Z.-Y., He K.T., Pop E., Lyding J.W. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study // ACS Nano. 2013. Vol. 7, No. 1. P. 75-86.; Zhang J., Zhao J. Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries // Carbon. 2013. Vol. 55. P. 151-159.; Yakobson B.I., Ding F. Observational geology of graphene, at the nanoscale (Review) // ACS Nano. 2011. Vol. 5, No. 3. P. 1569-1574.; Cockayne E., Rutter G.M., Guisinger N.P., Crain J.N., First P.N., Stroscio J.A. Grain boundary loops in grapheme // Physical Review B - Condensed Matter and Materials Physics. 2011. Vol. 83, No. 19. Article # 195425.; Zhang J., Zhao J. and Lu J. Intrinsic strength and failure behaviours of graphene grain boundaries // ACS Nano. 2012. Vol. 6, No. 3. P. 2704-2711.; Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy // Nano Letters. 2012. Vol. 12, No. 8. P. 3925-3930.; Sessi P., Guest J.R., Bode M. and Guisinger N.P. Patterning graphene at the nanometer scale via hydrogen desorption // Nano Letters. 2009. Vol. 9, No. 12. P. 4343-4347.; Karapet’yants M.K. and Karapet’yants M.L. Osnovnye termodinamicheskie konstanty neorganicheskikh i organicheskikh veshchestv” (“Fundamental thermodynamic constants of inorganic and organic substances”). Moscow: Khimiya, 1968 (in Russian).; Bazarov I.P. Thermodynamics. Moscow: Vysshaya Shkola, 1976 (in Russian).; Xie L., Wang X., Lu J., Ni Z., Luo Z., Mao H., Wang R., Wang Y., Huang H., Qi D., Liu R., Yu T., Shen Z., Wu T., Peng H., Oezyilmaz B., Loh K., Wee A.T.S., Ariando S., Chen W. Room temperature ferromagnetism in partially hydrogenated epitaxial grapheme // Applied Physics Letters. 2011. Vol. 98, No. 19. Article # 193113.; Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme // Science. 2008. Vol. 321 (5887). P. 385-388.; Pinto H.P., Leszczynski J. Fundamental properties of grapheme. In: Handbook of Carbon Nano Materials, Vol. 5 (Graphene - Fundamental Properties), Eds. F. D’Souza, K.M. Kadish, Word Scientific Publishing Co, New Jersey et al., 2014. P. 1-38.; Yang F.H. and Yang R.T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes // Carbon. 2002. Vol. 40. P. 437-444.; Wojtaszek M., Tombros N., Garreta A., Van Loosdrecht P.H.M., Van Wees B.J. A road to hydrogenating graphene by a reactive ion etching plasma // J. Appl. Phys. 2011. Vol. 110, No. 6. article # 063715.; Castellanos-Gomez A., Wojtaszek M., Arramel, Tombros N., Van Wees B.J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy // Small. 2012. Vol. 8, No. 10. P. 1607-1613.; Castellanos-Gomez A., Arramel, Wojtaszek M., Smit R.H.M., Tombros N., Agraït N., Van Wees B.J. and Rubio-Bollinger G. Electronic inhomogeneities in graphene: the role of the substrate interaction and chemical doping // Boletin Grupo Espanol Carbon. 2012. Vol. 25. P. 18-22.; Castellanos-Gomez A., Smit R.H.M., Agraït N. and Rubio-Bollinger G. Spatially resolved electronic inhomogeneities of graphene due to subsurface charges // Carbon. 2012. Vol. 50, No. 3. P. 932-938.; Bocquet F.C., Bisson R., Themlin J.-M., Layet J.-M., Angot T. Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001) // Physical Review B - Condensed Matter and Materials Physics. 2012. Vol. 85, No. 20. article # 201401.; Luo Z., Yu T., Kim K.-J., Ni Z., You Y., Lim S., Shen Z., Wang S., Lin J. Thickness-dependent reversible hydrogenation of graphene layers // ACS Nano. 2009. Vol. 3, No. 7. P. 1781-1788.; Hornekaer L., Sljivancanin Z., Xu W., Otero R., Rauls E., Stensgaard I., Lægsgaard E., Hammer B., Besenbacher F. Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface // Phys. Rev. Lett. 2006. Vol. 96. article # 156104.; Balog R., Jorgensen B., Wells J., Lægsgaard E., Hofmann P., Besenbacher F. and Hornekær L. Atomic hydrogen adsorbate structures on graphene // J. Am. Chem. Soc. 2009. Vol. 131, No. 25. P. 8744-8745.; Waqar Z., Klusek Z., Denisov E., Kompaniets T., Makarenko I., Titkov A. and Saleem A. Effect of atomic hydrogen sorption and desorption on topography and electronic properties of pyrolytic graphite // Electrochemical Society Proceedings. 2000. Vol. 16. P. 254-265.; Trunin R.F., Urlin V.D. and Medvedev A.B. Dynamic compression of hydrogen isotopes at megabar pressures // Phys. Usp. 2010. vol. 53. p. 605-622.; Gupta B.K., Tiwari R.S. and Srivastava O.N. Studies on synthesis and hydrogenation behavior of graphitic nanofibers prepared through palladium catalyst assisted thermal cracking of acetylene // J. Alloys Compd. 2004. Vol. 381. P. 301-308.; Park C., Anderson P.E., Chambers A., Tan C.D., Hidalgo R. and Rodriguez N.M. Further studies of the interaction of hydrogen with graphite nanofibers // J. Phys. Chem. B. 1999. Vol. 103. P. 10572-10581.; Sheka E.F., Popova N.A. Odd-electron molecular theory of the graphene hydrogenation // J. Mol. Mod. 2012. Vol. 18. P. 3751-3768.; Davydov S.Yu., Lebedev A.A. Epitaxial singlelayer graphene on the SiC substrate // Material Science Forum. 2012. Vols. 717-720. P. 645-648.; Khusnutdinov N.R. The thermal Casimir-Polder interaction of an atom with a spherical plasma shell // J. Phys. A: Math. Theor. 2012. Vol. 45. P. 265-301 [arXiv:1203.2732].; Chernozatonskii L.A., Mavrin B.N., Sorokin P.B. Determination of ultrathin diamond films by Raman spectroscopy // Physica Status Solidi B. 2012. Vol. 249, No. 8. P. 1550-1554.; Data J., Ray N.R., Sen P., Biswas H.S., Wogler E.A. Structure of hydrogenated diamond-like carbon by Micro-Raman spectroscopy // Materials Letters. 2012. Vol. 71. P. 131-133.; Zhao X., Outlaw R.A., Wang J.J., Zhu M.Y., Smith G.D., Holloway B.C. Thermal desorption of hydrogen from carbon nanosheets // The Journal of Chemical Physics. 2006. Vol. 124. P. 194704-1-6.; Stolyarova E., Stolyarov D., Bolotin K., Ryu S., Liu L., Rim K.T., Klima M., Hybrtsen M., Pogorelsky I., Pavlishin I., Kusche K., Hone J., Kim P., Stormer H.L., Yakimenko V., Flynn G. Observation of graphene bubbles and effective mass transport under graphene films // Nano Lett. 2009. Vol. 9, Iss. 1. P. 332-337.; Riedel C., Coletti C., Iwasaki T., Zakharov A.A., Starke U. Quazi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation // Phys. Rev. Lett. 2009. Vol. 103. P. 246804-1-4.; Riedel C., Coletti C., Iwasaki T., Starke U. Hydrogen intercalation below epitaxial graphene on SiC(0001) // Materials Science Forum. 2010. Vols. 645648. P. 623-628.; Goler S., Coletti C., Piazza V., Pingue P., Colangelo F., Pallegrini V., Emtsev K.V., Forti S., Starke U., Beltram F., Heun S. Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial grapheme // Carbon. 2013. Vol. 51, Iss. 1. P. 249-254.; Jones J.D., Morris C.F., Verbeck G.F., Perez J.M. Oxidative pit formation in pristin, hydrogenated and dehydrogenated grapheme // Appl. Surface Science. 2012. Vol. 10, P. 1-11.; Lee M.J., Choi J.S., Kim J.-S., Byun I.-S., lee D.H., Ryu S., Lee C., Park B.H. Characteristics and effects of diffused water between graphene and a SiO2 substrste // Nano Res. 2012. Vol. 5, Iss. 10. P. 710-717.; https://www.isjaee.com/jour/article/view/591

    Διαθεσιμότητα: https://www.isjaee.com/jour/article/view/591

  4. 4
  5. 5
  6. 6
  7. 7