Εμφανίζονται 1 - 20 Αποτελέσματα από 312 για την αναζήτηση '"ветроэнергетическая установка"', χρόνος αναζήτησης: 0,87δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: Исследование поддержано Грантом Президента Российской Федерации на проект МК-3371.2022.4.

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 3 (2023); 30-48 ; Альтернативная энергетика и экология (ISJAEE); № 3 (2023); 30-48 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2219/1801; Z. Li, K. Li, P. Du, M. Mehmandoust, F. Karimi, N. Erk, Carbon-based photocatalysts for hydrogen production: A review, Chemosphere. 308 (2022) 135998. https://doi.org/10.1016/j.chemosphere.2022.135998.; J. Koponen, A. Poluektov, V. Ruuskanen, A. Kosonen, M. Niemelä, J. Ahola, Comparison of thyristor and insulated-gate bipolar transistor -based power supply topologies in industrial water electrolysis applications, Journal of Power Sources. 491 (2021) 229443. https://doi.org/10.1016/j.jpowsour.2020.229443.; S. Öberg, M. Odenberger, F. Johnsson, The value of flexible fuel mixing in hydrogen-fueled gas turbines – A techno-economic study, International Journal of Hydrogen Energy. 47 (2022) 31684–31702. https://doi.org/10.1016/j.ijhydene.2022.07.075.; H.C. Mantripragada, H. Zhai, E.S. Rubin, Boundary Dam or Petra Nova – Which is a better model for CCS energy supply?, International Journal of Greenhouse Gas Control. 82 (2019) 59–68. https://doi.org/10.1016/j.ijggc.2019.01.004.; M. Temiz, I. Dincer, Development of solar and wind based hydrogen energy systems for sustainable communities, Energy Conversion and Management. 269 (2022) 116090. https://doi.org/10.1016/j.enconman.2022.116090.; S. Shiva Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production, Energy Reports. 8 (2022) 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127.; J. Li, J. Chen, Z. Yuan, L. Xu, Y. Zhang, M. AlBahrani, Multi-objective risk-constrained optimal performance of hydrogen-based multi energy systems for future sustainable societies, Sustainable Cities and Society. 87 (2022) 104176. https://doi.org/10.1016/j.scs.2022.104176.; Y. Zhao, Q. Liu, Y. Duan, Y. Zhang, Y. Huang, L. Shi, J. Wang, Q. Yi, A multi-dimensional feasibility analysis of coal to methanol assisted by green hydrogen from a life cycle viewpoint, Energy Conversion and Management. 268 (2022) 115992. https://doi.org/10.1016/j.enconman.2022.115992.; M.M. Hasan, G. Genç, Techno-economic analysis of solar/wind power based hydrogen production, Fuel. 324 (2022) 124564. https://doi.org/10.1016/j.fuel.2022.124564.; G. Durakovic, P.C. del Granado, A. Tomasgard, Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices, Energy. 263 (2023) 125654. https://doi.org/10.1016/j.energy.2022.125654.; F. Posso, M. Galeano, C. Baranda, D. Franco, A. Rincón, J. Zambrano, C. Cavaliero, D. Lópes, Towards the Hydrogen Economy in Paraguay: Green hydrogen production potential and end-uses, International Journal of Hydrogen Energy. 47 (2022) 30027–30049. https://doi.org/10.1016/j.ijhydene.2022.05.217.; M. Ozturk, I. Dincer, System development and assessment for green hydrogen generation and blending with natural gas, Energy. 261 (2022) 125233. https://doi.org/10.1016/j.energy.2022.125233.; O.A. Dabar, M.O. Awaleh, M.M. Waberi, A.- B.I. Adan, Wind resource assessment and technoeconomic analysis of wind energy and green hydrogen production in the Republic of Djibouti, Energy Reports. 8 (2022) 8996–9016. https://doi.org/10.1016/j.egyr.2022.07.013.; W. Chaichan, J. Waewsak, R. Nikhom, C. Kongruang, S. Chiwamongkhonkarn, Y. Gagnon, Optimization of stand-alone and grid-connected hybrid solar/wind/fuel cell power generation for green islands: Application to Koh Samui, southern Thailand, Energy Reports. 8 (2022) 480–493. https://doi.org/10.1016/j.egyr.2022.07.024.; S. Kolb, J. Müller, N. Luna-Jaspe, J. Karl, Renewable hydrogen imports for the German energy transition – A comparative life cycle assessment, Journal of Cleaner Production. 373 (2022) 133289. https://doi.org/10.1016/j.jclepro.2022.133289.; I. Dincer, N. Javani, G.K. Karayel, Sustainable city concept based on green hydrogen energy, Sustainable Cities and Society. 87 (2022) 104154. https://doi.org/10.1016/j.scs.2022.104154.; M. Nasser, T.F. Megahed, S. Ookawara, H. Hassan, Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic, Energy Conversion and Management. 267 (2022) 115870. https://doi.org/10.1016/j.enconman.2022.115870.; A. Fatih Güven, M. Mahmoud Samy, Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches, Energy Conversion and Management. 269 (2022) 116058. https://doi.org/10.1016/j.enconman.2022.116058.; A. Okunlola, M. Davis, A. Kumar, The development of an assessment framework to determine the technical hydrogen production potential from wind and solar energy, Renewable and Sustainable Energy Reviews. 166 (2022) 112610. https://doi.org/10.1016/j.rser.2022.112610.; J. Wang, J. Mao, R. Hao, S. Li, G. Bao, Multienergy coupling analysis and optimal scheduling of regional integrated energy system, Energy. 254 (2022) 124482. https://doi.org/10.1016/j.energy.2022.124482.; W. Zhang, A. Maleki, M. Alhuyi Nazari, Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind) by a new approach, Journal of Energy Storage. 53 (2022) 104983. https://doi.org/10.1016/j.est.2022.104983.; A. Izadi, M. Shahafve, P. Ahmadi, N. Javani, Transient simulation and techno-economic assessment of a near-zero energy building using a hydrogen storage system and different backup fuels, International Journal of Hydrogen Energy. 47 (2022) 31927–31940. https://doi.org/10.1016/j.ijhydene.2022.06.033.; V. Mariani, F. Zenith, L. Glielmo, Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control, Energies. 15 (2022) 6307. https://doi.org/10.3390/en15176307.; T. Liu, Z. Yang, Y. Duan, S. Hu, Technoeconomic assessment of hydrogen integrated into electrical/thermal energy storage in PV+ Wind system devoting to high reliability, Energy Conversion and Management. 268 (2022) 116067. https://doi.org/10.1016/j.enconman.2022.116067.; A.A. Alturki, Optimal design for a hybrid microgrid-hydrogen storage facility in Saudi Arabia, Energ Sustain Soc. 12 (2022) 24. https://doi.org/10.1186/s13705-022-00351-7.; H.S. Salama, G. Magdy, A. Bakeer, I. Vokony, Adaptive coordination control strategy of renewable energy sources, hydrogen production unit, and fuel cell for frequency regulation of a hybrid distributed power system, Prot Control Mod Power Syst. 7 (2022) 34. https://doi.org/10.1186/s41601-022-00258-7.; J. Sun, W. Zhou, H. Zhou, A novel principle for PLL and its application in digital innovation experiment of circuits in active hydrogen maser, in: 2010 IEEE International Frequency Control Symposium, IEEE, Newport Beach, CA, USA, 2010: pp. 431–434. https://doi.org/10.1109/FREQ.2010.5556295.; H. Zhang, T. Yuan, Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations, Applied Energy. 324 (2022) 119760. https://doi.org/10.1016/j.apenergy.2022.119760.; F. K/bidi, C. Damour, D. Grondin, M. Hilairet, M. Benne, Power Management of a Hybrid Micro-Grid with Photovoltaic Production and Hydrogen Storage, Energies. 14 (2021) 1628. https://doi.org/10.3390/en14061628.; M. Tao, J.A. Azzolini, E.B. Stechel, K.E. Ayers, T.I. Valdez, Review—Engineering Challenges in Green Hydrogen Production Systems, J. Electrochem. Soc. 169 (2022) 054503. https://doi.org/10.1149/1945-7111/ac6983.; B. Yodwong, D. Guilbert, M. Phattanasak, W. Kaewmanee, M. Hinaje, G. Vitale, AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges, Electronics. 9 (2020) 912. https://doi.org/10.3390/electronics9060912.; D. Concha, H. Renaudineau, M.S. Hernández, A.M. Llor, S. Kouro, Evaluation of DCX converters for off-grid photovoltaic-based green hydrogen production, International Journal of Hydrogen Energy. 46 (2021) 19861–19870. https://doi.org/10.1016/j.ijhydene.2021.03.129.; N.K. Singh, S. Saxena, V.K. Sethi, Performance Evaluation of A PV- Powered Alkaline Water Electrolyzer for Sustainable Green Hydrogen Production, IJETT. 70 (2022) 337–348. https://doi.org/10.14445/22315381/IJETT-V70I6P235.; V. Subotić, C. Hochenauer, Analysis of solid oxide fuel and electrolysis cells operated in a real-system environment: State-of-the-health diagnostic, failure modes, degradation mitigation and performance regeneration, Progress in Energy and Combustion Science. 93 (2022) 101011. https://doi.org/10.1016/j.pecs.2022.101011.; C.H. Li, X.J. Zhu, Q.J. Zeng, Y.L. Wang, Modeling of Hydrogen Production in a Stand-Alone Photovoltaic System, AMR. 512–515 (2012) 1413–1417. https://doi.org/10.4028/www.scientific.net/AMR.512-515.1413.; F. Moazeni, J. Khazaei, Electrochemical optimization and small-signal analysis of grid-connected polymer electrolyte membrane (PEM) fuel cells for renewable energy integration, Renewable Energy. 155 (2020) 848–861. https://doi.org/10.1016/j.renene.2020.03.165.; J. Khazaei, F. Moazeni, B. Trussell, A. Asrari, Small-signal Modeling and Analysis of a GridConnected PEM Fuel Cell, in: 2019 North American Power Symposium (NAPS), IEEE, Wichita, KS, USA, 2019: pp. 1–6. https://doi.org/10.1109/NAPS46351.2019.9000355.; https://www.isjaee.com/jour/article/view/2219

  9. 9
    Academic Journal

    Πηγή: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 66, № 1 (2023); 80-90 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 66, № 1 (2023); 80-90 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2023-66-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2235/1858; Твайделл, Дж. Возобновляемые источники энергии / Дж. Твайделл, А. Уэйр; пер. с англ. под ред. В. А. Коробова. М.: Энергоатомиздат, 1990. 391 с.; Михалев, Ю. О. Исследование феррожидкостных уплотнений / Ю. О. Михалев, Д. В. Орлов, Ю. И. Страдомский // Магнитная гидродинамика. 1979. Т. 15, № 3. С. 69–76.; Берковский, Б. М. Магнитные жидкости / Б. М. Берковский, В. Ф. Медведев, М. С. Краков. М.: Химия, 1989. 240 с.; Петруша, Ю. С. Перспективы развития ветроэнергетики в Республике Беларусь / Ю. С. Петруша, Н. А. Попкова // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2019. Т. 62, № 2. С. 124–134. https://doi.org/10.21122/1029-7448-2019-62-2-124-134.; Берковский, Б. М. Проблемы разработки и пределы использования магнитожидкостных уплотнений / Б. М. Берковский, М. С. Краков, В. К. Рахуба // Магнитная гидродинамика. 1982. Т. 18, № 1. С. 85–93.; Матусевич, Н. П. Экспериментальное исследование гидродинамических и тепловых процессов в магнитожидкостных уплотнениях / Н. П. Матусевич, В. К. Рахуба, В. А. Чернобай // Магнитная гидродинамика. 1983. Т. 19, №1. С. 125–129.; Чернобай, В. А. Тепловые и гидродинамические процессы в высокоскоростных магнитожидкостных уплотнениях, разработка их конструкций: дис. … канд. техн. наук: 01.04.14 / В. А. Чернобай. Минск, 1983. 175 с.; Вислович, А. Н. Влияние центробежных и капиллярных сил на форму свободной поверхности магнитожидкостного уплотнения / А. Н. Вислович, В. К. Полевиков // Магнитная гидродинамика. 1994. Т. 30, №1. С. 77–86.; Полевиков, В. К. Моделирование магнитожидкостного уплотнения при наличии перепада давления / В. К. Полевиков, Л. Тобиска // Известия РАН. Механика жидкости и газа. 2001. № 6. С. 42–51.; Pogirnitskaya, S. Experimental Study of a Dynamics of the Magnetic Fluid Free Surface in the High Speed Seal / S. Pogirnitskaya, V. Chernobai // XII International Conf. on Magnetic Fluids: Abstracts. Sendai, 2010.; Лабкович, О. Н. Снижение потерь на трение при вихревом течении магнитной жидкости добавками углеродных нанотрубок / О. Н. Лабкович // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2017. Т. 60, № 3. С. 265–275. https://doi.org/10.21122/1029-7448-2017-60-3-265-275.; Labkovich, O. N. Influense of Carbon Nanotubes on the Dissipation of Disturbances in a Magnetic Fluid Layer / O. N. Labkovich, S. G. Pogirnitskaya, V. A. Chernobay // Magnetohydrodynamics. 2021. Vol. 57, Iss. 2. P. 273–280. https://doi.org/10.22364/mhd.57.2.10.; Исследование адгезии вертикально ориентированных углеродных нанотрубок к подложке методом атомно-силовой микроскопии / О. А. Агеев [и др.] // Физика твердого тела. 2016. Т. 58, Вып. 2. С. 301–306.; https://energy.bntu.by/jour/article/view/2235

  10. 10
    Academic Journal

    Συγγραφείς: Limonov, L., Sokolovsky, J.

    Πηγή: Энергосбережение. Энергетика. Энергоаудит.; № 1(149) (2019): Энергосбережение. Энергетика. Энергоаудит; 45-51
    Енергозбереження. Енергетика. Енергоаудит.; № 1(149) (2019): Енергозбереження. Енергетика. Енергоаудит.; 45-51
    Energy saving. Power engineering. Energy audit.; № 1(149) (2019): Energy saving. Power engineering. Energy audit; 45-51

    Περιγραφή αρχείου: application/pdf

  11. 11
  12. 12
    Academic Journal

    Συγγραφείς: A. V. Bezhan, А. В. Бежан

    Πηγή: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 65, № 4 (2022); 366-380 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 65, № 4 (2022); 366-380 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2022-65-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2182/1837; Zheng J., Zhou Zh., Zhao J., Wang J. (2018) Integrated Heat and Power Dispatch Truly Utilizing Thermal Inertia of District Heating Network for Wind Power Integration. Applied Energy, 211, 865–874. https://doi.org/10.1016/j.apenergy.2017.11.080.; Gu W., Wang J., Lu S., Luo Z., Wu C. (2017) Optimal Operation for Integrated Energy System Considering Thermal Inertia of District Heating Network and Buildings. Applied Energy, 199, 234–246. https://doi.org/10.1016/j.apenergy.2017.05.004.; Dorotić H., Ban M., Pukšec T., Duić N. (2020) Impact of Wind Penetration in Electricity Markets on Optimal Power-to-Heat Capacities in a Local District Heating System. Renewable and Sustainable Energy Reviews, 132, 110095. https://doi.org/10.1016/j.rser.2020.110095.; Li G., Zhang R., Jiang T., Chen H., Bai L., Cui H., Li X. (2017) Optimal Dispatch Strategy for Integrated Energy Systems with CCHP and Wind Power. Applied Energy, 192, 408–419. https://doi.org/10.1016/j.apenergy.2016.08.139.; Bezhan A. V., Minin V. A. (2017) Estimation of Efficiency of the Heat Supply System Based on a Boiler House and a Wind Turbine in the Northern Environment. Thermal Engineering, 64 (3), 201–208. https://doi.org/10.1134/S0040601516100013.; Minin V. A., Furtaev A. I. (2019) Wind Potency in the Western Sector of the Russian Arctic and its Possible Uses. IOP Conference Series: Earth and Environmental Science. 4th International Scientific Conference Arctic: History and Modernity, 302, 012067. https://doi.org/10.1088/1755-1315/302/1/012067.; Bezhan A. V. (2020) Performance Improvement of Heat Supply Systems through the Implementation of Wind Power Plants. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 63 (3), 285–296. https://doi.org/10.21122/1029-7448-2020-63-3-285-296 (in Russian).; Kotel’nikov A. V., Shevlyugin M. V., Zhumatova A. A. (2017) Distributed Generation of Electric Energy in Traction Power-Supply Systems of Railways Based on Wind-Power Plants. Russian Electrical Engineering, 88 (9), 586–591. https://doi.org/10.3103/s1068371217090085.; Makarov Yu. V., Loutan C., Ma Ji., Mello Ph. (2009) Operational Impacts of Wind Generation on California Power Systems. IEEE Transactions on Power Systems, 24 (2), 1039–1050. https://doi.org/10.1109/tpwrs.2009.2016364.; Sen R., Bhattacharyya S. C. (2014) Off-Grid Electricity Generation with Renewable Energy Technologies in India: An Application of HOMER. Renewable Energy, 62, 388–398. https://doi.org/10.1016/j.renene.2013.07.028.; Strbac G., Shakoor A., Black M., Pudjianto D., Bopp T. (2007) Impact of Wind Generation on the Operation and Development of the UK Electricity Systems. Electrical Power Systems Research, 77 (9), 1214–1227. https://doi.org/10.1016/j.epsr.2006.08.014.; Petrusha U. S., Papkova N. A. (2019) The Prospects for Wind Energy Development in the Republic of Belarus. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations,, 62 (2), 124–134. https://doi.org/10.21122/1029-7448-2019-62-2-124-134 (in Russian).; De Alegría I., Andreu J., Martín J., Ibañez P., Villate J., Camblong H. (2007) Connection Requirements for Wind Farms: A Survey on Technical Requierements and Regulation. Renewable and Sustainable Energy Reviews, 11 (8), 1858–1872. https://doi.org/10.1016/j.rser.2006.01.008.; Ibrahima H., Ghandourb M., Dimitrovaa M., Ilincac A., Perrond J. (2011) Integration of Wind Energy into Electricity Systems: Technical Challenges and Actual Solutions. Energy Procedia, 6, 815–824. https://doi.org/10.1016/j.egypro.2011.05.092.; Roy R.-B., Rokonuzzaman Md. (2014) STATCOM Model for Integration of Wind Turbine to Grid. TELKOMNIKA. Indonesian Journal of Electrical Engineering, 12 (9), 6519–6525. https://doi.org/10.11591/telkomnika.v12i9.6155.; Celik A. (2002) Optimisation and Techno-Economic Analysis of Autonomous Photovoltaic – Wind Hybrid Energy Systems in Comparison to Single Photovoltaic and Wind Systems. Energy Conversion and Management, 43 (18), 2453–2468. https://doi.org/10.1016/s0196-8904(01)00198-4.; Vendoti S., Muralidhar M., Kiranmayi R. (2021) Techno-Economic Analysis of Off-Grid Solar/Wind/Biogas/Biomass/ Fuel Cell/Battery System for Electrification in a Cluster of Villages by HOMER Software. Environment Development and Sustainability, 23 (1), 351–372. https://doi.org/10.1007/s10668-019-00583-2.; Haghighat Mamaghani A., Avella Escandon S. A., Najafi B., Shirazi A., Rinaldi F. (2016) Techno-Economic Feasibility of Photovoltaic, Wind, Diesel and Hybrid Electrification Systems for off-Grid Rural Electrification in Colombia. Renewable Energy, 97, 293–305. https://doi.org/10.1016/j.renene.2016.05.08.; Sagani A., Vrettakos G., Dedoussis V. (2017) Viability Assessment of a Combined Hybrid Electricity and Heat System for Remote Household Applications. Solar Energy, 151, 33–47. https://doi.org/10.1016/j.solener.2017.05.011.; Miao C., Teng K., Wang Y., Jiang L. (2020) Technoeconomic Analysis on a Hybrid Power System for the UK Household Using Renewable Energy: A Case Study. Energies, 13 (12), 3231. https://doi.org/10.3390/en13123231.; Figaj R., Zoladek M., Goryl W. (2020) Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software. Energies, 13 (14), 3523. https://doi.org/10.3390/en13143523.; Ozgener O. (2010) Use of Solar Assisted Geothermal Heat Pump and Small Wind Turbine Systems for Heating Agricultural and Residential Buildings. Energy, 35 (1), 262–268. https://doi.org/10.1016/j.energy.2009.09.018.; Evseev E., Kisel T. (2018) Management in the Heat-Supplying Organizations on the Basis of Balance Models. MATEC Web of Conferences, 170, 01112. https://doi.org/10.1051/matecconf/201817001112.; Möller B., Wiechers E., Persson U., Grundahl L., Lund R. S., Mathiesen B. V. (2019) Heat Roadmap Europe: Towards EU-Wide, Local Heat Supply Strategies. Energy, 177, 554–564. https://doi.org/10.1016/j.energy.2019.04.098.; Mednikova (Iakimetc) E. E., Stennikov V. A., Postnikov I. V. (2017) Heat Supply Systems Development: The Influence of External Factors and Reliability. Energy Procedia, 105, 3152–3157. https://doi.org/10.1016/j.egypro.2017.03.683.; Giordano N., Raymond J. (2019) Alternative and Sustainable Heat Production for Drinking Water Needs in a Subarctic Climate (Nunavik, Canada): Borehole Thermal Energy Storage to Reduce Fossil Fuel Dependency in Off-Grid Communities. Applied Energy, 252, 113463. https://doi.org/10.1016/j.apenergy.2019.113463.; Zore Z., Čuček L., Širovnik D., Novak Pintarič Z., Kravanja Z. (2018) Maximizing the Sustainability Net Present Value of Renewable Energy Supply Networks. Chemical Engineering Research and Design, 131, 245–265. https://doi.org/10.1016/j.cherd.2018.01.035.; Žižlavský O. (2014) Net Present Value Approach: Method for Economic Assessment of Innovation Projects. Procedia – Social and Behavioral Sciences, 156, 506–512. https://doi.org/10.1016/j.sbspro.2014.11.230.; Fedorova E. A., Musienko S. O., Afanas’ev D. O. (2020) Impact of the Russian Stock Market on Economic Growth. Finance: Theory and Practice, 24 (3), 161–173. https://doi.org/10.26794/2587-5671-2020-24-3-161-173.; Ramli M. A. M., Hiendro A., Al-Turki Y. A. (2016) Techno-Economic Energy Analysis of Wind/Solar Hybrid System: Case Study for Western Coastal Area of Saudi Arabia. Renewable Energy, 91, 374–385. https://doi.org/10.1016/j.renene.2016.01.071.; Di Piazza A., Di Piazza M. C., Ragusa A., Vitale G. (2010) Statistical Processing of Wind Speed Data for Energy Forecast and Planning. Renewable Energy and Power Quality Journal, 1 (08), 1417–1422. https://doi.org/10.24084/repqj08.680.; Moemken J., Reyers M., Feldmann H., Pinto J. G. (2018) Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research: Atmospheres, 123 (12), 6373–6389. https://doi.org/10.1029/2018jd028473.; Nigim K. A., Parker P. (2007) Heuristic and Probabilistic Wind Power Availability Estimation Procedures: Improved Tools for Technology and Site Selection. Renewable Energy, 32 (4), 638–648. https://doi.org/10.1016/j.renene.2006.03.001.; Ayodele T. R., Jimoh A. A., Munda J. L., Agee J. T. (2013) A Statistical Analysis of Wind Distribution and Wind Power Potential in the Coastal Region of South Africa. International Journal of Green Energy, 10 (8), 814–834. https://doi.org/10.1080/15435075.2012.727112.; Bezhan A. V. (2020) Evaluation of Expediency of Using Wind Energy for Heat Supply on the Barents Sea Coast of Russia. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok, 1–4. https://doi.org/10.1109/FarEastCon50210.2020.9271641.; Martín H., Coronas S., Alonso A., De la Hoz J., Matas J. (2020) Renewable Energy Auction Prices: Near Subsidy-Free. Energies, 13 (13), 3383. https://doi.org/10.3390/en13133383.; Cardoso J., Silva V., Eusébio D. (2019) Techno-Economic Analysis of a Biomass Gasification Power Plant Dealing with Forestry Residues Blends for Electricity Production in Portugal. Journal of Cleaner Production, 212, 741–753. https://doi.org/10.1016/j.jclepro.2018.12.054; Duc Luong N. (2015) A Critical Review on Potential and Current Status of Wind Energy in Vietnam. Renewable and Sustainable Energy Reviews, 43, 440–448. https://doi.org/10.1016/j.rser.2014.11.060.; Simsek Y., Mata-Torres C., Guzmán A. M., Cardemil J. M., Escobar R. (2018) Sensitivity and Effectiveness Analysis of Incentives for Concentrated Solar Power Projects in Chile. Renewable Energy, 129, Part A, 214–224. https://doi.org/10.1016/j.renene.2018.06.012.; https://energy.bntu.by/jour/article/view/2182

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Συγγραφείς: Tkachenko, Viktor, Kazarinov, Yuri

    Πηγή: Вісник Національного технічного університету «ХПІ». Серія: Нові рішення у сучасних технологіях; Том 2 № 26(1302) (2018): Вісник НТУ «ХПІ»: Серія "Нові рішення у сучасних технологіях"; 11-15
    Вестник Национального Технического Университета "ХПИ" Серия Новые решения в современных технологиях; Том 2 № 26(1302) (2018): Вісник НТУ «ХПІ»: Серія "Нові рішення у сучасних технологіях"; 11-15
    Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies; Vol. 2 No. 26(1302) (2018): Bulletin of the NTU"KhPI". Series: New Solutions in Modern Technology; 11-15

    Περιγραφή αρχείου: application/pdf

  18. 18
  19. 19
    Academic Journal

    Πηγή: World of Transport and Transportation; Том 19, № 1 (2021); 156-173 ; Мир транспорта; Том 19, № 1 (2021); 156-173 ; 1992-3252

    Περιγραφή αρχείου: application/pdf

    Relation: https://mirtr.elpub.ru/jour/article/view/2084/2562; https://mirtr.elpub.ru/jour/article/view/2084/2563; Macioszek, E . Conditions of oversize cargo transport . Scientific Journal of Silesian University of Technology .SeriesTransport,2019,Vol .102,pp .109–117 . ISSN: 0209-3324 . DOI: https://doi.org/10.20858/sjsutst.2019.102.9. Доступ 24 .09 .2020.; Macioszek, E . Oversize Cargo Transport in Road Transport – Problems and Issues . Scientific Journal of Silesian University of Technology, Series Transport, 2020, Vol . 108 (108), pp . 133–140 . DOI:10.20858/sjsutst.2020.108.12. Доступ 17 .12 .2020.; Wolnowska, A . E ., Konicki, W . Multi-Criterial Analysis of Oversize Cargo Transport through the City, using the AHP Method .Transportation Research Procedia, 2019, Vol . 39, pp . 614–623 . DOI:10.1016/j.trpro.2019.06.063. Доступ 24 .09 .2020.; Petraška A ., Čižiūnienė, K ., Prentkovskis, O ., Jarašūnienė, A . Methodology of Selection of Heavy and Oversized Freight Transportation System . Transport and Telecommunication,2018,Vol .19,No .1,pp .45–58 .DOI 10.2478/ttj-2018-0005. Доступ 24 .09 .2020.; Bazaras,D .,Batarliene,N .,Palšaitis,R .,Petraška,A . Optimal Road Selection Criteria System for Oversize Goods Transportation . The Baltic Journal of Road and Bridge Engineering, 2013, Vol . 8(1), pp . 19–24, DOI:10.3846/bjrbe.2013.03.; Zhou,YanMei;Zeng,ChuanHua;Xian,Fei .Study on Highway Transportation Route Selection of Heavy and Oversize Cargo . Applied Mechanics and Materials, 2015, Vol . 730, pp . 25–28 . DOI: https://doi.org/10.4028/www.scientific.net/AMM.730.25. Доступ 24 .09 .2020.; Petraška, A ., Čižiūnienė, K ., Jarašūnienė, A ., Maruschak,P .,Prentkovskis,O .Algorithm for the Assessment of Heavy weight and Oversize Cargo Transportation Routes . JournalofBusinessEconomicsandManagement,2017, Vol .18,Iss .6,pp .1098–1114 . https://doi.org/10.3846/16111699.2017.1334229 .Доступ24 .09 .2020.; Гуджоян О . П ., Троицкая H . A . Перевозка специфических грузов . Учебник . – М .: Транспорт, 2001 . – 160 с.; Троицкая H . A ., Поносов Ю . К . Оценка систем транспортировки крупногабаритных тяжеловесных грузов: Учеб . пособие . – М .: МАДИ, 1988 . – 65 с.; Троицкая Н . А . Методические рекомендации по перевозке крупногабаритных тяжеловесных грузов в международном сообщении . – М .: АСМАП, 1997 . – 96 с.; Создание информационно-поисковой системы (ИПС) по перевозкам крупногабаритных тяжеловесных грузов (КТГ) и выработка требований по параметрам специализированного подвижного состава (СПС) . – М .: МАДИ, 1990 . – 21 с.; СмирновВ .В .Страховая защита от рисков при реализации продукции по базисам поставки . – М .: Анкил, 1997 . – 340 с.; СтепановА .П .,ВозлинскийВ .И .и др .Эксплуатация и безопасность движения автопоездов тяжеловозов .–М .:Транспорт,1998 .–256с .–С .151–158.; Зибров И . А . Анализ приспособленности АТС к транспортировке КТГ через мостовые сооружения // Актуальные проблемы современной науки . – 2002 . – № 5 . – С . 28.; https://mirtr.elpub.ru/jour/article/view/2084

  20. 20