-
1Academic Journal
Συγγραφείς: A. A. Maksimova, E. Ya. Shevela, L. V. Sakhno, А. А. Максимова, Е. Я. Шевела, Л. В. Сахно
Συνεισφορές: Работа выполнена в рамках гранта РНФ № 23-25-00349, https://rscf.ru/project/23-25-00349.
Πηγή: Medical Immunology (Russia); Том 26, № 4 (2024); 649-656 ; Медицинская иммунология; Том 26, № 4 (2024); 649-656 ; 2313-741X ; 1563-0625
Θεματικοί όροι: α-гладкомышечный актин, fibroblasts, conditioned media, antifibrotic activity, collagen, α-smooth actin, фибробласты, кондиционные среды, антифиброгенная активность, коллаген
Περιγραφή αρχείου: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/3029/1958; Bagalad B.S., Mohan Kumar K.P., Puneeth H.K. Myofibroblasts: Master of disguise. J. Oral Maxillofac. Pathol., 2017, Vol. 21, no. 3, pp. 462-463.; Brennan P.N., MacMillan M., Manship T., Moroni F., Glover A., Graham C., Semple S., Morris D.M., Fraser A.R., Pass C., McGowan N.W.A., Turner M.L., Lachlan N., Dillon J.F., Campbell J.D.M., Fallowfield J.A., Forbes S.J. Study protocol: a multicentre, open-label, parallel-group, phase 2, randomised controlled trial of autologous macrophage therapy for liver cirrhosis (MATCH). BMJ Open, 2021, Vol. 11, no. 11, e053190. doi:10.1136/bmjopen-2021-053190.; Chang C.H., Juan Y.H., Hu H.C., Kao K.C., Lee C.S. Reversal of lung fibrosis: an unexpected finding in survivor of acute respiratory distress syndrome. QJM, 2018, Vol. 111, no. 1, pp. 47-48.; Koudelka A., Cechova V., Rojas M., Mitash N., Bondonese A., St Croix C., Ross M.A., Freeman B.A. Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biology, 2022, Vol. 50, 102226. doi:10.1016/j.redox.2021.102226.; Landry N.M., Rattan S.G., Dixon I.M.C. An improved method of maintaining primary murine cardiac fibroblasts in two-dimensional cell culture. Sci. Rep., 2019, no. 9, 12889. doi:10.1038/s41598-019-49285-9.; Machahua C., Vicens-Zygmunt V., Ríos-Martín J., Llatjós R., Escobar-Campuzano I., Molina-Molina M., Montes-Worboys A. Collagen 3D matrices as a model for the study of cell behavior in pulmonary fibrosis. Exp. Lung Res., 2022, Vol. 48, no. 3, pp. 126-136.; Meng X.M., Nikolic-Paterson D.J., Lan H.Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol., 2016, Vol. 12, no. 6, pp. 325-338.; Mikkelsen L.F., Rubak S. Reversible lung fibrosis in a 6-year-old girl after long term nitrofurantoin treatment. BMC Pulm. Med., 2020, Vol. 20, 313. doi:10.1186/s12890-020-01353-x.; Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., Locati M., Mantovani A., Martinez F.O., Mege J.L., Mosser D.M., Natoli G., Saeij J.P., Schultze J.L., Shirey K.A., Sica A., Suttles J., Udalova I., van Ginderachter J.A., Vogel S.N., Wynn T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, Vol. 41, no. 1, pp. 14-20.; Sapudom J., Karaman S., Mohamed W.K.E., Garcia-Sabaté A., Quartey B.C., Teo J.C.M. 3D in vitro M2 macrophage model to mimic modulation of tissue repair. NPJ Regen. Med., 2021, no. 6, 83. doi:10.1038/s41536-021-00193-5.; Sari E., He C., Margaroli C. Plasticity towards rigidity: a macrophage conundrum in pulmonary fibrosis. Int. J. Mol. Sci., 2022, Vol. 23, no. 19, 11443. doi:10.3390/ijms231911443.; Song E., Ouyang N., Hörbelt M., Antus B., Wang M., Exton M.S. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol., 2000, Vol. 204, no. 1, pp. 19-28.; Tarique A.A., Logan J., Thomas E., Holt P.G., Sly P.D., Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol., 2015, Vol. 53, no. 5, pp. 676-688.; Ullm F., Riedl P., Machado de Amorim A., Patzschke A., Weiß R., Hauschildt S., Franke K., Anderegg U., Pompe T. 3D scaffold-based macrophage fibroblast coculture model reveals IL-10 dependence of wound resolution phase. Adv. Biosyst., 2020, Vol. 4, no. 1, e1900220. doi:10.1002/adbi.201900220.; Xue J., Schmidt S.V., Sander J., Draffehn A., Krebs W., Quester I., de Nardo D., Gohel T.D., Emde M., Schmidleithner L., Ganesan H., Nino-Castro A., Mallmann M.R., Labzin L., Theis H., Kraut M., Beyer M., Latz E., Freeman T.C., Ulas T., Schultze J.L. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 2014, Vol. 40, no. 2, pp. 274-288.; https://www.mimmun.ru/mimmun/article/view/3029