Εμφανίζονται 1 - 20 Αποτελέσματα από 45 για την αναζήτηση '"анаэробная ферментация"', χρόνος αναζήτησης: 0,61δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 435-438
    BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 435-438

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journal.asu.ru/bioasia/article/view/16469

  3. 3
  4. 4
  5. 5
    Conference

    Θέμα γεωγραφικό: RSVPU

    Περιγραφή αρχείου: application/pdf

    Relation: Экологическая безопасность в техносферном пространстве : сборник материалов Шестой Международной научно-практической конференции преподавателей, молодых ученых и студентов. - Екатеринбург, 2023

    Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/42790

  6. 6
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: Работа выполнена при частичной финансовой поддержке РФФИ в рамках научного проекта № 1829-25042 (Ковалев Д.А., Литти Ю.В), а также при поддержке гранта РНФ № 21-79-10153, https://rscf.ru/project/21-79-10153 (Михеева Э.Р., Катраева И.В., Ковалев А.А.).

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 1 (2022); 77-92 ; Альтернативная энергетика и экология (ISJAEE); № 1 (2022); 77-92 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2123/1757; Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative Hydrogen Production from Wastewaters: A Review and Prognosis. International Journal of Hydrogen Energy 2012, 37 (20), 15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072.; Zhang, T.; Jiang, D.; Zhang, H.; Lee, D.-J.; Zhang, Z.; Zhang, Q.; Jing, Y.; Zhang, Y.; Xia, C. Effects of Different Pretreatment Methods on the Structural Characteristics, Enzymatic Saccharification and Photo Fermentative Bio-Hydrogen Production Performance of Corn Straw. Bioresource Technology 2020, 304, 122999. https://doi.org/10.1016/j.biortech.2020.122999.; Chong, M.-L.; Sabaratnam, V.; Shirai, Y.; Hassan, M. A. Biohydrogen Production from Biomass and Industrial Wastes by Dark Fermentation. International Journal of Hydrogen Energy 2009, 34 (8), 3277–3287. https://doi.org/10.1016/j.ijhydene.2009.02.010.; Park, J.-H.; Chandrasekhar, K.; Jeon, B.-H.; Jang, M.; Liu, Y.; Kim, S.-H. State-of-the-Art Technologies for Continuous High-Rate Biohydrogen Production. Bioresource Technology 2021, 320, 124304. https://doi.org/10.1016/j.biortech.2020.124304.; Elbeshbishy, E.; Dhar, B. R.; Nakhla, G.; Lee, H.-S. A Critical Review on Inhibition of Dark Biohydrogen Fermentation. Renewable and Sustainable Energy Reviews 2017, 79, 656–668. https://doi.org/10.1016/j.rser.2017.05.075.; Wicher, E.; Seifert, K.; Zagrodnik, R.; Pietrzyk, B.; Laniecki, M. Hydrogen Gas Production from Distillery Wastewater by Dark Fermentation. International Journal of Hydrogen Energy 2013, 38 (19), 7767–7773. https://doi.org/10.1016/j.ijhydene.2013.04.008.; Nunes Ferraz Júnior, A. D.; Etchebehere, C.; Zaiat, M. Mesophilic Hydrogen Production in Acidogenic Packed-Bed Reactors (APBR) Using Raw Sugarcane Vinasse as Substrate: Influence of Support Materials. Anaerobe 2015, 34, 94–105. https://doi.org/10.1016/j.anaerobe.2015.04.008.; Litti YU.V., Potekhina M.A., Zhuravleva E.A., Vishnyakova A.V., Grouzdev D.S., Kovalev A.A., Kovalev D.A., Katraeva I.V., Parshina S.N. Biohydrogen production from simple sugars and real wastewater by a new stain of thermophilic anaerobic bacterium thermoanaerobacterium themosaccharolyticum SP-H2. Alternative Energy and Ecology (ISJAEE), 2021;(0103):359-361 (in Russian) https://doi.org/10.15518/isjaee.2021.10.003.; Kuang, Y.; Zhao, J.; Gao, Y.; Lu, C.; Luo, S.; Sun, Y.; Zhang, D. Enhanced Hydrogen Production from Food Waste Dark Fermentation by Potassium Ferrate Pretreatment. Environmental Science and Pollution Research 2020, 27. https://doi.org/10.1007/s11356-02008207-3.; Yun, Y.-M.; Lee, M.-K.; Im, S.-W.; Marone, A.; Trably, E.; Shin, S.-R.; Kim, M.-G.; Cho, S.-K.; Kim, D.-H. Biohydrogen Production from Food Waste: Current Status, Limitations, and Future Perspectives. Bioresource Technology 2018, 248, 79–87. https://doi.org/10.1016/j.biortech.2017.06. 107.; Soares, J. F.; Confortin, T. C.; Todero, I.; Mayer, F. D.; Mazutti, M. A. Dark Fermentative Biohydrogen Production from Lignocellulosic Biomass: Technological Challenges and Future Prospects. Renewable and Sustainable Energy Reviews 2020, 117, 109484. https://doi.org/10.1016/j.rser.2019.109484; Rajesh Banu, J.; Merrylin, J.; Mohamed Usman, T. M.; Yukesh Kannah, R.; Gunasekaran, M.; Kim, S.H.; Kumar, G. Impact of Pretreatment on Food Waste for Biohydrogen Production: A Review. International Journal of Hydrogen Energy 2020, 45 (36), 18211–18225. https://doi.org/10.1016/j.ijhydene.2019.09.176.; Karim, A.; Islam, M. A.; Mishra, P.; Yousuf, A.; Faizal, C. K. M.; Khan, M. M. R. Technical Difficulties of Mixed Culture Driven Waste Biomass-Based Biohydrogen Production: Sustainability of Current Pretreatment Techniques and Future Prospective. Renewable and Sustainable Energy Reviews 2021, 151, 111519. https://doi.org/10.1016/j.rser.2021.111519; Voitovich V.A., Shvarev R.R., Zakharychev E.A., Feoktistova E.P., Deberdeev R.Y., Zakharycheva N.S. the efficiency of the vortex layer plants using when powder-like materials grinding. NOVYE OGNEUPORY (NEW REFRACTORIES) 2017;(10):48-53. (In Russ.) https://doi.org/10.17073/1683-4518-2017-10-48-53.; Litti, Y., Katraeva, I., Kovalev, D., & Mikheeva, E. Effect of the sewage sludge treatment in vortex layer apparatus on the viability of microorganisms and protozoa. Procedia Environmental Science, Engineering and Management. 2019;6(3):413-421.; Kovalev, A.; Kovalev, D.; Grigoriev, V.; Litti, Y. The Vortex Layer Apparatus as a Source of Low-Grade Heat in the Process of Pretreatment of the Substrate before Anaerobic Digestion. IOP Conference Series: Earth and Environmental Science 2021, 938, 12004. https://doi.org/10.1088/1755-1315/938/1/012004.; Mikheeva, E.; Katraeva, I.; Vorozhtsov, D.; Litti, Y.; Nozhevnikova, A. Efficiency of Two-Phase Anaerobic Fermentation and the Physicochemical Properties of the Organic Fraction of Municipal Solid Waste Processed in a Vortex-Layer Apparatus. Applied Biochemistry and Microbiology 2020, 56, 736–742. https://doi.org/10.1134/S0003683820060113.; Litti, Y.; Kovalev, D.; Kovalev, A.; Katraeva, I.; Russkova, Y.; Nozhevnikova, A. Increasing the Efficiency of Organic Waste Conversion into Biogas by Mechanical Pretreatment in an Electromagnetic Mill. In Journal of Physics: Conference Series; 2018; Vol. 1111. https://doi.org/10.1088/1742-6596/1111/1/012013.; Nozhevnikova, A. N.; Russkova, Y. I.; Litti, Y. V; Parshina, S. N.; Zhuravleva, E. A.; Nikitina, A. A. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities. Microbiology 2020, 89 (2), 129–147. https://doi.org/10.1134/S0026261720020101.; Zhao, Z.; Li, Y.; Zhang, Y.; Lovley, D. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. iScience 2020, 23, 101794. https://doi.org/10.1016/j.isci.2020.101794.; Srivastava, N.; Srivastava, M.; Malhotra, B. D.; Gupta, V. K.; Ramteke, P. W.; Silva, R. N.; Shukla, P.; Dubey, K. K.; Mishra, P. K. Nanoengineered Cellulosic Biohydrogen Production via Dark Fermentation: A Novel Approach. Biotechnology advances 2019, 37 (6), 107384. https://doi.org/10.1016/j.biotechadv.2019.04.006.; Kumar, G.; Mathimani, T.; Rene, E. R.; Pugazhendhi, A. Application of Nanotechnology in Dark Fermentation for Enhanced Biohydrogen Production Using Inorganic Nanoparticles. International Journal of Hydrogen Energy 2019, 44 (26), 13106–13113. https://doi.org/10.1016/j.ijhydene.2019.03.131.; Shanmugam, S.; Hari, A.; Pandey, A.; Mathimani, T.; Felix, L.; Pugazhendhi, A. Comprehensive Review on the Application of Inorganic and Organic Nanoparticles for Enhancing Biohydrogen Production. Fuel 2020, 270, 117453. https://doi.org/10.1016/j.fuel.2020.117453.; Wang, J.; Yin, Y. Principle and Application of Different Pretreatment Methods for Enriching Hydrogen-Producing Bacteria from Mixed Cultures. International Journal of Hydrogen Energy 2017, 42 (8), 4804–4823. https://doi.org/10.1016/j.ijhydene.2017.01.135.; Mikheeva, E. R.; Katraeva, I. V; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Panchenko, V.; Fiore, U.; Litti, Y. V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers. Applied Sciences 2021, 11 (2). https://doi.org/10.3390/app11020510.; Guruchandran, S.; Muninathan, C.; Bakshi, A.; Ganesan, N. Improving Process Stability, Biogas Production and Energy Recovery Using Two-Stage Mesophilic Anaerobic Codigestion of Rice Wastewater with Cow Dung Slurry. Biomass and Bioenergy 2021, 152, 106184. https://doi.org/10.1016/j.biombioe.2021.106184.; Liu, X.; Wang, J.; Duan, L.; Song, Y.; Hu, X.; Wei, J. Enhancing the Production of Butyric Acid from Sludge Fermentation with an Emphasis on Zinc, Cobalt, Cuprum, Ferrum and Manganese. Environmental Earth Sciences 2015, 73 (9), 5057–5066. https://doi.org/10.1007/s12665-015-4289-7.; Ivetić, D. Ž.; Omorjan, R. P.; Đorđević, T. R.; Antov, M. G. The Impact of Ultrasound Pretreatment on the Enzymatic Hydrolysis of Cellulose from Sugar Beet Shreds: Modeling of the Experimental Results. Environmental Progress & Sustainable Energy 2017, 36 (4), 1164–1172. https://doi.org/10.1002/ep.12544.; Kumar, G.; Sen, B.; Lin, C.-Y. Pretreatment and Hydrolysis Methods for Recovery of Fermentable Sugars from De-Oiled Jatropha Waste. Bioresource technology 2013, 145. https://doi.org/10.1016/j.biortech.2013.02.080.; Zhao, C.; Sharma, A.; Ma, Q.; Zhu, Y.; Li, D.; Liu, Z.; Yang, Y. A Developed Hybrid Fixed-Bed Bioreactor with Fe-Modified Zeolite to Enhance and Sustain Biohydrogen Production. Science of The Total Environment 2021, 758, 143658. https://doi.org/10.1016/j.scitotenv.2020.1 3658.; Lee, Y. J.; Miyahara, T.; Noike, T. Effect of Iron Concentration on Hydrogen Fermentation. Bioresource Technology 2001, 80 (3), 227–231. https://doi.org/32. Chu, C.-Y.; Liu, P.-Y.; Lai, P.-J.; Chun-Te Lin, J.; Sinsuw, A. A. E. An Approach of Auxiliary Carbohydrate Source on Stabilized Biohythane Production and Energy Recovery by Two-Stage Anaerobic Process from Swine Manure. International Journal of Hydrogen Energy 2021. https://doi.org/10.1016/j.ijhydene.2021.10.078.; Abdur Rawoof, S. A.; Kumar, P. S.; Vo, D.-V. N.; Devaraj, T.; Subramanian, S. Biohythane as a High Potential Fuel from Anaerobic Digestion of Organic Waste: A Review. Renewable and Sustainable Energy Reviews 2021, 152, 111700. https://doi.org/10.1016/j.rser.2021.111700; Bélaich, J. P., Bruschi, M., & Garcia, J. L. (Eds.). Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (Vol. 54). 2012 Springer Science & Business Media. https://doi.org/10.1007/978-1-4613-0613-9.; Ferry, J. G. Methanogenesis: ecology, physiology, biochemistry & genetics. 2012 Springer Science & Business Media. https://doi.org/10.1007/978-1-46152391-8.; Valdez-Vazquez, I.; Poggi-Varaldo, H. M. Hydrogen Production by Fermentative Consortia. Renewable and Sustainable Energy Reviews 2009, 13 (5), 1000– 1013. https://doi.org/10.1016/j.rser.2008.03.003.; Monnet, F. ыыыAn Introduction to Anaerobic Digestion of Organic Wastes. A Report by Remade Scotland, 2003.; Mamimin, C.; Prasertsan, P.; Kongjan, P.; OThong, S. Effects of Volatile Fatty Acids in Biohydrogen Effluent on Biohythane Production from Palm Oil Mill Effluent under Thermophilic Condition. Electronic Journal of Biotechnology 2017, 29, 78–85. https://doi.org/10.1016/j.ejbt.2017.07.006.; Nualsri, C.; Kongjan, P.; Reungsang, A. Direct Integration of CSTR-UASB Reactors for Two-Stage Hydrogen and Methane Production from Sugarcane Syrup. International Journal of Hydrogen Energy 2016, 41 (40), 17884–17895. https://doi.org/10.1016/j.ijhydene.2016.07.135.; https://www.isjaee.com/jour/article/view/2123

  9. 9
    Academic Journal

    Πηγή: Eurasian Journal of Academic Research; Vol. 2 No. 10 (2022): Eurasian Journal of Academic Research; 262-269 ; Евразийский журнал академических исследований; Том 2 № 10 (2022): Eurasian Journal of Academic Research; 262-269 ; Yevrosiyo ilmiy tadqiqotlar jurnali; Jild 2 Nomeri 10 (2022): Eurasian Journal of Academic Research; 262-269 ; 2181-2020

    Περιγραφή αρχείου: application/pdf

  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Visnyk of V. N. Karazin Kharkiv National University series «Еcоlogy»; № 14 (2016): Вісник Харківського національного університету імені В. Н. Каразіна cерія "Екологія"; 91-97 ; Вестник Харьковского национального университета имени В. Н. Каразина серия «Экология»; № 14 (2016): Вісник Харківського національного університету імені В. Н. Каразіна cерія "Екологія"; 91-97 ; Вісник Харківського національного університету імені В. Н. Каразіна серія «Екологія»; № 14 (2016): Вісник Харківського національного університету імені В. Н. Каразіна cерія "Екологія"; 91-97 ; 2415-7651 ; 1992-4259

    Περιγραφή αρχείου: application/pdf

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20