Εμφανίζονται 1 - 20 Αποτελέσματα από 80 για την αναζήτηση '"Трансформеры"', χρόνος αναζήτησης: 0,79δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 18, No 3 (2025); 365-375 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 18, No 3 (2025); 365-375 ; 2070-4933 ; 2070-4909

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/1256/635; Schaumburg F., Berli C. Challenges and proposed solutions for optical reading on point-of-need testing systems. Front Sensors. 2023; 4. https://doi.org/10.3389/fsens.2023.1327240.; Visalini S., Kanagavalli R. A comprehensive survey of pneumonia diagnosis: image processing and deep learning advancements. In: 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). https://doi.org/10.1109/ICIMIA60377.2023.10426403.; Prabha S., Gupta S., Pandey S.P. Deep learning for medical image segmentation using convolutional neural networks. In: 2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC). https://doi.org/10.1109/ICOCWC60930.2024.10470841.; Das M., Sambodhi P.P., Khare A., Naik S.A. Challenges of medical text and image processing. In: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC). https://doi.org/10.1109/ASSIC55218.2022.10088402.; Choudhury S., Gowri R., Babu Sena P., Dinh-Thuan D. (Eds) Intelligent Communication, Control and Devices Proceedings of ICICCD 2020: Proceedings of ICICCD 2020. https://doi.org/10.1007/978-981-16-1510-8.; Ламоткин А.И., Корабельников Д.И., Ламоткин И.А. и др. Искусственный интеллект в здравоохранении и медицине: история ключевых событий, его значимость для врачей, уровень развития в разных странах. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2024; 17 (2): 243–50. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.254.; Ламоткин А.И., Корабельников Д.И., Ламоткин И.А. и др. Точность предварительной диагностики злокачественных меланоцитарных опухолей кожи с помощью программы искусственного интеллекта Melanoma Check. Медицинский вестник Главного военного клинического госпиталя им. Н.Н. Бурденко. 2025; 1: 42–51. https://doi.org/10.53652/2782-1730-2025-6-1-42-51.; Zhou Z., Jin Y., Ye H., et al. Classification, detection, and segmentation performance of image-based AI in intracranial aneurysm: a systematic review. BMC Med Imaging. 2024; 24 (1): 164. https://doi.org/10.1186/s12880-024-01347-9.; Корабельников Д.И., Ламоткин А.И. Эффективность применения искусственного интеллекта в клинической медицине. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2025; 18 (1): 114–24. https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.287.; Alzubaidi L., Zhang J., Humaidi A.J., et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021; 8 (1): 53. https://doi.org/10.1186/s40537-021-00444-8.; LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015; 521: 436–44. https://doi.org/10.1038/nature14539.; Ламоткин А.И., Корабельников Д.И., Ламоткин И.А. Предварительная дифференциальная диагностика доброкачественных и злокачественных опухолей из эпидермальной ткани кожи с применением программы искусственного интеллекта «Derma Onko Check». Современные проблемы здравоохранения и медицинской статистики. 2025; 2: 223–42. https://doi.org/10.24412/2312-2935-2025-2-223-242.; Ламоткин А.И., Корабельников Д.И., Олисова О.Ю., Ламоткин И.А. Эффективность предварительной дифференциальной диагностики доброкачественных и злокачественных новообразований кожи с помощью программы искусственного интеллекта Derma Onko Check. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2025; 18 (2): 261–70. https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.294.; Milletari F., Ahmadi S.A., Kroll C., et al. Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Computer Vision Image Underst. 2017; 164: 92–102. https://doi.org/10.48550/arXiv.1601.07014.; Yamada M., Saito Y., Imaoka H., et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep. 2019; 9 (1): 14465. https://doi.org/10.1038/s41598-019-50567-5.; Yadav D., Rathor S. Bone fracture detection and classification using deep learning approach. In: 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). https://doi.org/10.1109/PARC49193.2020.236611.; Rahman T., Chowdhury M.E., Khandakar A., et al. Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl Sci. 2020; 10 (9): 3233. https://doi.org/10.3390/app10093233.; Hamamoto R., Suvarna K., Yamada M., et al. Application of artificial intelligence technology in oncology: towards the establishment of precision medicine. Cancers. 2020; 12 (12): 3532. https://doi.org/10.3390/cancers12123532.; Asada K., Kobayashi K., Joutard S., et al. Uncovering prognosisrelated genes and pathways by multi-omics analysis in lung cancer. Biomolecules. 2020; 10: 524. https://doi.org/10.3390/biom10040524.; Kobayashi K., Bolatkan A., Shiina S., Hamamoto R. Fully-connected neural networks with reduced parameterization for predicting histological types of lung cancer from somatic mutations. Biomolecules. 2020; 10 (9): 1249. https://doi.org/10.3390/biom10091249.; Takahashi S., Asada K., Takasawa K., et al. Predicting deep learning based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data. Biomolecules. 2020; 10 (10): 1460. https://doi.org/10.3390/biom10101460.; Takahashi S., Sakaguchi Y., Kouno N., et al. Comparison of vision transformers and convolutional neural networks in medical image analysis: a systematic review. J Med Syst. 2024; 48 (1): 84. https://doi.org/10.1007/s10916-024-02105-8.; Selvaraju R.R., Cogswell M., Das A., et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 Proceedings of the IEEE international conference on computer vision. https://doi.org/10.48550/arXiv.1610.02391.; Takahashi S., Takahashi M., Kinoshita M., et al. Fine-tuning approach for segmentation of gliomas in brain magnetic resonance images with a machine learning method to normalize image differences among facilities. Cancers. 2021; 13: 1415. https://doi.org/10.3390/cancers13061415.; Nam H., Lee H., Park J., et al. Reducing domain gap by reducing style bias. In: 2021 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1910.11645.; Yan W., Wang Y., Gu S., et al. The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. In: Medical Image Computing and Computer Assisted Intervention– MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II. https://doi.org/10.48550/arXiv.1910.13681.; Barzekar H., Patel Y., Tong L., Yu Z. MultiNet with transformers: a model for cancer diagnosis using images. arXiv:230109007. https://doi.org/10.48550/arXiv.2301.09007.; Vaswani A., Shazeer N., Parmar N., et al. Attention is all you need. In: Advances in Neural Information Processing Systems 30 (NIPS 2017). https://doi.org/10.48550/arXiv.1706.03762.; Dosovitskiy A., Beyer L., Kolesnikov A., et al. An image is worth 16×16 words: transformers for image recognition at scale. arXiv:201011929. https://doi.org/10.48550/arXiv.2010.11929.; Liu Y., Wu Y.H., Sun G., et al. Vision transformers with hierarchical attention. arXiv:210603180. https://doi.org/10.48550/arXiv.2106.03180.; Han K., Wang Y., Chen H., et al. A survey on vision transformer. arXiv:2012.12556. https://doi.org/10.48550/arXiv.2012.12556.; Hatamizadeh A., Yin H., Heinrich G., et al. In: 2023 Global context vision transformers. arXiv:2206.09959. https://doi.org/10.48550/arXiv.2206.09959.; He K., Gan C., Li Z., et al. Transformers in medical image analysis. Intel Med. 2023; 3 (1): 59–78. https://doi.org/10.1016/j.imed.2022.07.002.; Stassin S., Corduant V., Mahmoudi S.A., Siebert X. Explainability and evaluation of vision transformers: an in-depth experimental study. Electronics. 2023; 13 (1): 175. https://doi.org/10.3390/electronics13010175.; Chetoui M., Akhloufi M.A. Explainable vision transformers and radiomics for COVID-19 detection in chest X-rays. J Clin Med. 2022; 11 (11): 3013. https://doi.org/10.3390/jcm11113013.; Dipto S.M., Reza M.T., Rahman M.N.J., et al. An XAI integrated identification system of white blood cell type using variants of vision transformer. In: Proceedings of the Second International Conference on Innovations in Computing Research (ICR’23). https://doi.org/10.1007/978-3-031-35308-6_26.; Cao Y.H., Yu H., Wu J. Training vision transformers with only 2040 images. arXiv:2201.10728. https://doi.org/10.48550/arXiv.2201.10728.; Lee S.H., Lee S., Song B.C. Vision transformer for small-size datasets. arXiv:211213492. https://doi.org/10.48550/arXiv.2112.13492.; Liu Y., Sangineto E., Bi W., et al. Efficient training of visual transformers with small datasets. arXiv:2106.03746. https://doi.org/10.48550/arXiv.2106.03746.; Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernetics. 1980; 36 (4): 193–202. https://doi.org/10.1007/BF00344251.; LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings IEEE. 1998; 86 (11): 2278–324. https://doi.org/10.1109/5.726791.; Hamamoto R., Komatsu M., Takasawa K., et al. Epigenetics analysis and integrated analysis of multiomics data, including epigenetic data, using artificial intelligence in the era of precision medicine. Biomolecules. 2020; 10 (1): 62. https://doi.org/10.3390/biom10010062.; Himel G.M.S., Islam M.M., Al-Aff K.A., et al. Skin cancer segmentation and classification using vision transformer for automatic analysis in dermatoscopy-based noninvasive digital system. Int J Biomed Imaging. 2024; 2024: 3022192. https://doi.org/10.1155/2024/3022192.; https://www.pharmacoeconomics.ru/jour/article/view/1256

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Συγγραφείς: Olizarenko, Serhii, Argunov, Vladimir

    Πηγή: Сучасні інформаційні системи, Vol 4, Iss 3 (2020)
    Сучасні інформаційні системи; Том 4 № 3 (2020): Сучасні інформаційні системи; 94-103
    Advanced Information Systems; Vol. 4 No. 3 (2020): Advanced Information Systems; 94-103
    Современные информационные системы-Sučasnì ìnformacìjnì sistemi; Том 4 № 3 (2020): Современные информационные системы; 94-103

    Περιγραφή αρχείου: application/pdf

  18. 18
  19. 19
    Dissertation/ Thesis
  20. 20