Εμφανίζονται 1 - 20 Αποτελέσματα από 559 για την αναζήτηση '"ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА"', χρόνος αναζήτησης: 0,58δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: The Work was supported by the Belarusian Republican Foundation for Fundamental Research under Grant No. T23МЭ-045.

    Πηγή: Devices and Methods of Measurements; Том 16, № 1 (2025); 47-54 ; Приборы и методы измерений; Том 16, № 1 (2025); 47-54 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2025-16-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/923/716; Losic D; Voelcker NH. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science. 2013;58(5):636-704. DOI:10.1016/j.pmatsci.2013.01.002; Santos A; Kumeria T; Losic D. Nanoporous Anodic Aluminum Oxide for Chemical Sensing and Biosensors. TrAC Trends in Analytical Chemistry. 2013;44:2538. DOI:10.1016/j.trac.2012.11.007; Feng S; Ji W. Advanced Nanoporous Anodic Alumina-Based Optical Sensors for Biomedical Applications. Frontiers in Nanotechnology. 2021;3:678275-18. DOI:10.3389/fnano.2021; Liu S; Tian J; Zhang W. Fabrication and application of nanoporous anodic aluminum oxide: A review // Nanotechnology. 2021;32(22):222001-20. DOI:10.1088/1361-6528/abe25f; Ku C.-A. [et al.] Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review. Nanomaterials. 2023;13(21):(42): 2853-2895. DOI:10.3390/nano13212853; Gasenkova IV; Mukhurov NI; Zhvavyi SP; Kolesnik EE. Optical characteristics of Cr2O3/Al2O3 composite structure. High Temperature Material Processes. 2021;25(3):1-10.; Gasenkova IV; Mukhurov NI; Andruhovich IM. Parameters of anodic aluminum oxide determined from Fabry-Perot oscillations in specular reflectance spectra. BSUIR Reports. 2024;22(6):14-20. DOI:10.35596/1729-7648-2024-22-6-14-20. (In Russ.); Dlugunovich VA. [et al.]. Conversion of light polarization using nanoporous aluminum oxide films. Journal of Applied Spectroscopy. 2015;82(5):766-772. (In Russ.).; Yasin Mahsin Vahioh [et al.]. Threshold detectors of ionizing and ultraviolet radiation based on nanostructured substrates made of anodic aluminum oxide. Edited by N.I. Mukhurov. Minsk: Bestprint. 2016:178 p.; Melitz W. [et al.]. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011;66:1-27.; Hui X. [et al.]. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties. Langmuir. 2017;33(11):2725-2733. DOI:10.1021/acs.langmuir.6b04572; Findlay A. [et al.]. Non-Visual Defect Monitoring with Surface Voltage Mapping. ECS Journal of Solid State Science and Technology. 2015;5(4):3087-P3095. DOI:10.1149/2.0161604jss; Ibragimov HI; Korolkov VA. Electron work function in physical and chemical research. Moscow: Intermet Engineering; 2002;526 p. (In Russ.).; Hua G; Li D. Generic relation between the electron work function and Young's modulus of metals. Applied Physics Letters. 2011;99:041907-3. DOI:10.1063/1.3614475; Hua G; Li D. The correlation between the electron work function and yield strength of metals. Phys. Status Solidi B. 2012;249(8):1517-1520. DOI:10.1002/pssb.201248051; Lu H; Hua G; Li D. Dependence of the mechanical behavior of alloys on their electron work function – An alternative parameter for materials design. Applied Physics Letters. 2013;103(26):261902-4. DOI:10.1063/1.4852675; Liew Y. [et al.]. In Situ Time-Lapse SKPFM Investigation of Sensitized AA5083 Aluminum Alloy to Understand Localized Corrosion. J. Electrochem. Soc. 2020;167:141502–11. DOI:10.1149/1945-7111/abc30d; Zerweck U. [et al.]. Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B. 2005;71:125424. DOI:10.1103/PhysRevB.71.125424; Tyavlovsky KL. [et al.]. Surface electric potential measurement with a static probe. Devices and Metods of Measurement. 2023;14(2):135-144. (In Russ.). DOI:10.21122/2220-9506-2023-14-2-135-144; https://pimi.bntu.by/jour/article/view/923

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20