Εμφανίζονται 1 - 20 Αποτελέσματα από 1.738 για την αναζήτηση '"СТВОЛОВЫЕ КЛЕТКИ"', χρόνος αναζήτησης: 3,28δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Байкальский медицинский журнал, Vol 4, Iss 2, Pp 92-107 (2025)

    Περιγραφή αρχείου: electronic resource

    Σύνδεσμος πρόσβασης: https://doaj.org/article/1c284d93bf164c9fbf33e73d9ce13a89

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Conference

    Θέμα γεωγραφικό: RSVPU

    Περιγραφή αρχείου: application/pdf

    Relation: Валеопедагогические проблемы здоровьеформирования детей, подростков, молодежи, населения : сборник материалов XVIII Всероссийской научно-практической конференции молодых ученых, студентов, магистрантов. — Екатеринбург, 2022

    Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/46170

  12. 12
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках программы «Приоритет-2036» Министерства науки и высшего образования Российской Федерации.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 3 (2025); 51-61 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 3 (2025); 51-61 ; 2587-9537 ; 2306-1278 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1648/1042; https://www.nii-kpssz.com/jour/article/view/1648/1043; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1648/2006; Файзуллин А.Л., Шехтер А.Б., Истранов Л.П., Истранова Е.В., Руденко Т.Г., Гуллер А.Е., Абоянц Р.К., Тимашев П.С., Бутнару Д.В. Биорезорбируемые коллагеновые материалы в хирургии: 50 лет успеха. Сеченовский вестник. 2020; 11(1): 59–70. doi.org/10.47093/2218-7332.2020.11.1.59-70; Bian D., Wu Y., Song G., Azizi R., Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther. 2022;13(1):1-17. doi:10.1186/s13287-021-02697-9; Heldring N., Mäger I., Wood M.J.A., Le Blanc K, Andaloussi S.E.L. Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Hum Gene Ther. 2015;26(8):506-517. doi:10.1089/hum.2015.072; Gomzikova M.О., James V., Rizvanov A. A. Therapeutic Application of Mesenchymal Stem Cells Derived Extracellular Vesicles for Immunomodulation. Front Immunol. 2019;10(November):1-9. doi:10.3389/fimmu.2019.02663; Dedier M., Magne B., Nivet M., Banzet S., Trouillas M. Anti-inflammatory effect of interleukin-6 highly enriched in secretome of two clinically relevant sources of mesenchymal stromal cells. Front Cell Dev Biol. 2023;11(September):1-8. doi:10.3389/fcell.2023.1244120; Mendt M., Rezvani K., Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019;54:789-792. doi:10.1038/s41409-019-0616-z; Lotfy A., AboQuella N.M., Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther. 2023;14(1):1-18. doi:10.1186/s13287-023-03287-7; Lin Y., Marin-Argany M., Dick C.J., Redhage K.R., Blancas-Mejia L.M., Bulur P., Butler G.W., Deeds M.C., Madden B.J., Williams A., Wall J.S., Dietz A., Ramirez-Alvarado M. Mesenchymal stromal cells protect human cardiomyocytes from amyloid fibril damage. Cytotherapy. 2017;19(12). doi:10.1016/j.jcyt.2017.08.021; Hashemi S.S., Pourfath M.R., Derakhshanfar A., Behzad-Behbahani A., Moayedi J. The role of labeled cell therapy with and without scaffold in early excision burn wounds in a rat animal model. Iran J Basic Med Sci. 2020;23(5):673-679. doi:10.22038/ijbms.2020.34324.8156; Marino G., Moraci M., Armenia E., Orabona C., Sergio R., De Sena G., Capuozzo V., Barbarisi M., Rosso F., Giordano G., Iovino F., Barbarisi A. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013 Nov;185(1):36-44. doi:10.1016/j.jss.2013.05.024; Зиновьев Е.В., Крайнюков П.Е., Асадулаев М.С., Костяков Д.В., Вагнер Д.О., Крылов П.К., Османов К.Ф. Клиническая оценка эффективности применения мезенхимальных стволовых клеток при термических ожогах Вестник Национального медико-хирургического Центра им. Н.И. Пирогова 2018;13(4): 62-67. doi:10.25881/bpnmsc.2018.88.91.011; Еремеев А.В., Пикина А.С., Владимирова Т.В., Богомазова А.Н. Методы оценки жизнеспособности клеток, культивируемых in vitro в 2D- и 3D-структурах. Гены и клетки. 2023;18(1):5-21. doi:10.23868/gc312198; Kamiloglu S., Sari G., Ozdal T., Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1(3):332-349. doi:10.1002/fft2.44; Debruyne A.C., Okkelman I.A., Dmitriev R.I. Balance between the cell viability and death in 3D. Semin Cell Dev Biol. 2023;144:55-66. doi:10.1016/J.SEMCDB.2022.09.005; Gantenbein-Ritter B., Potier E., Zeiter S., van der Werf M., Sprecher C.M., Ito K. Accuracy of three techniques to determine cell viability in 3D tissues or scaffolds. Tissue Eng - Part C Methods. 2008;14(4):353-358. doi:10.1089/ten.tec.2008.0313; Dominijanni A.J., Devarasetty M., Forsythe S.D., Votanopoulos K.I., Soker S. Cell Viability Assays in Three-Dimensional Hydrogels: A Comparative Study of Accuracy. Tissue Eng - Part C Methods. 2021;27(7):401-410. doi:10.1089/ten.tec.2021.0060; Dittmar R., Potier E., van Zandvoort M., Ito K. Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng - Part C Methods. 2012;18(3):198-204. doi:10.1089/ten.tec.2011.0334; Bonnier F., Keating M.E., Wróbel T.P., Majzner K., Baranska M., Garcia-Munoz A., Blanco A., Byrne H.J. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicol In vitro. 2015;29(1):124-31. doi:10.1016/j.tiv.2014.09.014; Семенычева Л.Л., Кузнецова Ю.Л., Валетова, Н.Б., Гераськина Е.В., Таранкова О.А. Способ получения уксусной дисперсии высокомолекулярного рыбного коллагена. Патент RU2567171C1, 2015; Бюл. №31; Коржевский Д.Э., Гиляров А.В. Основы гистологической техники. Практическое руководство. СПб: СпецЛит; 2010. 95 с.; Guo S., Dipietro L.A. Factors affecting wound healing. J Dent Res. 2010;89(3):219-229. doi:10.1177/0022034509359125; Gonzalez A.C., Costa T.F., Andrade Z.A., Medrado A.R. Wound healing - A literature review. An Bras Dermatol. 2016;91(5):614-620. doi:10.1590/abd1806-4841.20164741; Юрова К.А., Мелащенко Е.С., Хазиахматова О.Г., Малащенко В.В., Мелащенко О.Б., Шунькин Е.О., Норкин И.К., Хлусов И.А., Литвинова Л.С. Мезенхимные стволовые клетки: краткий обзор классических представлений и новых факторовостеогенной дифференцировки (PDF) Мезенхимальные стволовые клетки: краткий обзор концепций классификации и новых факторов остеогенной дифференцировки. Медицинская иммунология, 2021;23(2):207-222. doi:10.15789/1563-0625-MSC-2128; Макаревич П.И. Клеточные пласты из мультипотентных мезенхимных стромальных клеток как платформа для тканевой инженерии в регенеративной медицине. Дисс. …д.м.н. М; 2024.; Nourian Dehkordi A., Mirahmadi Babaheydari F., Chehelgerdi M., Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10(1):111. doi:10.1186/s13287-019-1212-2; Воротников А.В., Суздальцева Ю.Г., Рубцов Ю.П., Аниол Н.В., Горюнов К.В., Кудряшова Т.В., Тюрин-Кузьмин П.А., Ткачук В.А. Направленная миграция и мезенхимальные прогениторные клетки: участие в воспалении, репарации и регенерации ткани. В сборнике: Стволовые клетки и регенеративная медицина под ред. В.А Ткачука. М: Макс-пресс; 2012.; Бехало В.А., Горская Ю.Ф., Нестеренко В.Г. Иммунорегуляторный и иммунотерапевти-ческий потенциал мезенхимальных стволовых/стромальных клеток: перспективы и проблемы. Иммунология. 2024; 45 (3): 385–395. doi:10.33029/1816-2134-2024-45-3-385-395

  13. 13
    Academic Journal

    Συνεισφορές: The work was supported by the comprehensive program of fundamental scientific research of the Russian Academy of Sciences within the framework of the fundamental theme of the Scientific Research Institute of the CPSU No. 0419-2022-0001 "Molecular, cellular and biochemical mechanisms of the pathogenesis of cardiovascular diseases in the development of new methods of treatment of diseases of the cardiovascular system based on personalized pharmacotherapy, the introduction of minimally invasive medical devices, biomaterials and tissue-engineered implants.", Работа выполнена при поддержке комплексной программы фундаментальных научных исследований РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биохимические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 3 (2025); 180-191 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 3 (2025); 180-191 ; 2587-9537 ; 2306-1278 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1638/1046; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1638/1980; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1638/1981; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1638/1982; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1638/1983; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1638/1984; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1638/1987; Sarmin A.M, Connelly J.T. Fabrication of Human Skin Equivalents Using Decellularized Extracellular Matrix. Curr Protoc. 2022;2(3):e393. doi:10.1002/cpz1.393.; Мелешина А.В., Быстрова А.С., Роговая О.С., Воротеляк Е.А., Васильев А.В., Загайнова Е.В. Тканеинженерные конструкты кожи и использование стволовых клеток для создания кожных эквивалентов (обзор). Современные технологии в медицине. 2017;9(1):198–220. doi:10.17691/stm2017.9.1.24.; Vig K., Chaudhari A., Tripathi S., Dixit S., Sahu R., Pillai S., Dennis V.A., Singh S.R. Advances in Skin Regeneration Using Tissue Engineering. Int. J. Mol. Sci. 2017;18(4):789. doi:10.3390/ijms18040789.; Жучков М.В., Большакова Е. Е., Сонин Д.Б., Жучкова У.В. Место и роль топических антисептиков в терапии ожогов кожи: позиция дерматолога. Амбулаторная хирургия. 2018;(3-4):66-71. doi:10.21518/1995-1477-2018-3-4-66-71.; Van Lieshout E.M., Van Yperen D.T., Van Baar M.E., Polinder S., Boersma D., Cardon A.Y., De Rijcke P.A., Guijt M. et al. Epidemiology of injuries, treatment (costs) and outcome in burn patients admitted to a hospital with or without dedicated burn centre (Burn-Pro): protocol for a multicentre prospective observational study. BMJ Open. 2018;8(11): e023709. doi:10.1136/bmjopen-2018-023709.; Markiewicz-Gospodarek A., Kozioł M., Tobiasz M., Baj J., Radzikowska-Büchner E., Przekora A. Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. Int. J. Environ Res. Public Health. 2022;19(3):1338. doi:10.3390/ijerph19031338.; Zhang X., Liang Y., Huang S., Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci. 2024;332:103267. doi:10.1016/j.cis.2024.103267.; Будкевич Л.И., Ковальчук В.И., Глуткин А.В., Бразоль М.А., Мирзоян Г.В., Гнипов П.А., Салистый П.В., Чекинев Ю.В., Шмырин А.А., Габитов Р.Б. Клиническая эффективность биопластического коллагенового материала «Коллост» у детей с термической травмой (многоцентровое исследование). Российский вестник детской хирургии, анестезиологии и реаниматологии. 2018;8(3):34–44. doi:10.30946/2219-4061-2018-8-3-34-44.; Suca H., Coma M., Tomsu J., Sabová J., Zajícek R., Brož A., Doubková M., Novotný T. et al. Current Approaches to Wound Repair in Burns: How far Have we Come From Cover to Close? A Narrative Review. J Surg Res. 2024;296:383-403. doi:10.1016/j.jss.2023.12.043.; Rettinger C.L., Fletcher J.L., Carlsson A.H., Chan R.K. Accelerated epithelialization and improved wound healing metrics in porcine full-thickness wounds transplanted with full-thickness skin micrografts. Wound Repair Regen. 2017;25(5):816–827. doi:10.1111/wrr.12585.; Foubert P., Liu M., Anderson S., Rajoria R., Gutierrez D., Zafra D., Tenenhaus M., Fraser J.K. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model. Burns. 2018;44(6):1531–1542. doi:10.1016/j.burns.2018.05.006.; Holmes J.H. 4th, Molnar J.A., Shupp J.W., Hickerson W.L., King B.T., Foster K.N., Cairns B.A., Carter J.E. Demonstration of the safety and effectiveness of the RECELL® System combined with split-thickness meshed autografts for the reduction of donor skin to treat mixed-depth burn injuries. Burns. 2019;44(6):772-782. doi:10.1016/j.burns.2018.11.002.; Мордяков А.Е., Чарышкин А.Л., Слесарева Е.В. Оценка результатов лечения донорских мест у пациентов с глубокими ожогами. Казанский медицинский журнал. 2018;99(1):17–23. doi:10.17816/KMJ2018-017.; Bailey J.K., Blackstone B.N., DeBruler D.M., Kim J.Y., Baumann M.E., McFarland K.L., Imeokparia F.O., Supp D.M., Powell H.M. Effects of early combinatorial treatment of autologous split-thickness skin grafts in red duroc pig model using pulsed dye laser and fractional CO2 laser. Lasers Surg. Med. 2018;50(1):78–87. doi:10.1002/lsm.22702.; Hundeshagen G., Collins V.N., Wurzer P., Sherman W., Voigt C.D., Cambiaso-Daniel J., Nunez Lopez O., Sheaffer J., Herndon D.N., Finnerty C.C., Branski L.K. A Prospective, Randomized, Controlled Trial Comparing the Outpatient Treatment of 122 Pediatric and Adult Partial-Thickness Burns with Suprathel or Mepilex Ag. J. Burn Care Res. 2018;39(2):261–267. doi:10.1097/BCR.0000000000000584.; Байтингер В.Ф., Селянинов К.В., Курочкина О.С., Камолов Ф.Ф., Байтингер АВ., Сухинин Т.Ю. Эволюция технологии закрытия обширных и глубоких мягкотканых дефектов тела человека. Вопросы реконструктивной и пластической хирургии. 2018;1(64):5–14. doi:10.17223/1814147/64/01.; Вагнер Д.О., Зиновьев Е.В., Крылов и др. Опыт клинического применения аллогенных фибробластов у пострадавших с обширными ожогами кожи. Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2018;10(3):65–72. doi:10.17816/mechnikov201810365-72.; Ahmadi A.R., Chicco M., Huang J., Qi L., Burdick J., Williams G.M., Cameron A.M., Sun Z. Stem cells in burn wound healing: A systematic review of the literature. Burns. 2018;44(6):1531–1542. doi:10.1016/j.burns.2018.10.017.; Kolimi P., Narala S., Nyavanandi D., Youssef AAA., Dudhipala N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells. 2022;11(15):2439. doi:10.3390/cells11152439.; Radzikowska-Büchner E., Łopuszyńska I., Flieger W., Tobiasz M., Maciejewski R., Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int. J. Mol. Sci. 2023;24(22):16357. doi:10.3390/ijms242216357.; Chen J., Su F.Y., Das D., Srinivasan S., Son H.N., Lee B., Radella F., Whittington D., Monroe-Jones T., West T.E., Convertine A.J., Skerrett S.J., Stayton P.S., Ratner D.M. Glycan targeted polymeric antibiotic prodrugs for alveolar macrophage infections. Biomaterials. 2019;195:38–50. doi:10.1016/j.biomaterials.2018.10.017.; Mulas K., Stefanowicz Z., Oledzka E. Current state of the polymeric delivery systems of fluoroquinolones – A review. J. Controll. Release. 2019;294:195–215. doi:10.1016/j.jconrel.2018.12.021.; Grigor'eva A.E., Bardasheva A.V., Ryabova E.S., Tupitsyna A.V., Zadvornykh D.A., Koroleva L.S., Silnikov V.N., Tikunova N.V., Ryabchikova E.I. Changes in the Ultrastructure of Staphylococcus aureus Cells Make It Possible to Identify and Analyze the Injuring Effects of Ciprofloxacin, Polycationic Amphiphile and Their Hybrid. Microorganisms. 2023;11(9):2192. doi:10.3390/microorganisms11092192.; Lan T., Guo Q., Shen X. Polyethyleneimine and quaternized ammonium polyethyleneimine: the versatile materials for combating bacteria and biofilms. J Biomater Sci Polym Ed. 2019;30(14):1243-1259. doi:10.1080/09205063.2019.1627650.; Lu C., Xiao Y., Liu Y., Sun F., Qiu Y., Mu H., Duan J. Hyaluronic acid-based levofloxacin nanomicelles for nitric oxide-triggered drug delivery to treat bacterial infections. Carbohydr. Polym. 2020;229:115479. doi:10.1016/j.carbpol.2019.115479.; Dorati R., De Trizio A., Genta I., Merelli A., Modena T., Conti B. Gentamicin-loaded thermosetting hydrogel and moldable composite scaffold: Formulation study and biologic evaluation. J. Pharm. Sci. 2017;106(6):1596–1607. doi:10.1016/j.xphs.2017.02.031.; Liu X., Sun X., Huang P., He Y., Song P., Wang R. Highly Adhesive and Self-Healing Zwitterionic Hydrogels as Antibacterial Coatings for Medical Devices. Langmuir. 2024;40(1):125-132. doi:10.1021/acs.langmuir.3c02258.; Nunes B., Cagide F., Fernandes C., Borges A., Borges F., Simões M. Efficacy of Novel Quaternary Ammonium and Phosphonium Salts Differing in Cation Type and Alkyl Chain Length against Antibiotic-Resistant Staphylococcus aureus. Int J Mol Sci. 2023;25(1):504. doi:10.3390/ijms25010504.; Ciumac D., Gong H., Hu X., Lu J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci. 2019;537:163–185. doi:10.1016/j.jcis.2018.10.103.; Andrea A., Molchanova N., Jenssen H. Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomolecules. 2018;8(2):27. doi:10.3390/biom8020027.; Molchanova N., Hansen P.R., Franzyk H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 2017;22(9):1430. doi:10.3390/molecules22091430.; Кривкина Е.О., Матвеева В.Г., Антонова Л.В. Сосудистые протезы с противомикробным покрытием: экспериментальные разработки и внедрение в клиническую практику. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(3):90-102. doi:10.17802/2306-1278-2021-10-3-90-102.; Zimmermann L., Kempf J., Briée F., Swain J., Mingeot-Leclercq M.P., Décout J.L. Broad-spectrum antibacterial amphiphilic aminoglycosides: A new focus on the structure of the lipophilic groups extends the series of active dialkyl neamines. Eur. J. Med. Chem. 2018;157:1512–1525. doi:10.1016/j.ejmech.2018.08.022.; Войновский Е.А., Мензула В.А., Руденко Т.Г. Система лечения ожоговых ран в собственной жидкой среде. М;; 2015. 272 с.; Heitzmann W., Fuchs P.C., Schiefer J.L. Historical Perspectives on the Development of Current Standards of Care for Enzymatic Debridement. Medicina (Kaunas). 2020;56(12):706. doi:10.3390/medicina56120706.; Kansakar U., Trimarco V., Manzi M.V., Cervi E., Mone P., Santulli G. Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients. 2024;16(13):2060. doi:10.3390/nu16132060.; Богданов С.Б., Островкий Н.В., Афанасов И.М., Пятаков С.Н., Каракулев А.В., Гилевич И.В. и др. Кожные эквиваленты: Руководство для врачей. М.; 2022. 222 с.; Kondej K., Zawrzykraj M., Czerwiec K., Deptuła M., Tymińska A., Pikuła M. Bioengineering Skin Substitutes for Wound Management-Perspectives and Challenges. Int J Mol Sci. 2024;25(7):3702. doi:10.3390/ijms25073702.; Przekora A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In vitro? Cells. 2020;9(7):1622. doi:10.3390/cells9071622.; Шаповалов С.Г., Кчеусо А.В., Кошелев Т.Е., Савченков Д.К. Возможности применения биоинженерных заменителей кожи в комбустиологии (обзор литературы). Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2022;(2):82-92. doi:10.25016/2541-7487-2022-0-2-82-92.; Vecin N.M., Kirsner R.S. Skin substitutes as treatment for chronic wounds: current and future directions. Front Med (Lausanne). 2023;10:1154567. doi:10.3389/fmed.2023.1154567.; Потекаев Н.Н., Фриго Н.В., Петерсен Е.В. Искусственная кожа: виды, области применения. Клиническая дерматология и венерология. 2017;16(6):7-15. doi:10.17116/klinderma20171667-15.; Фоминых Е.М., Митрофанов В.Н., Живцов О.П., Стручков А.А., Зубрицкий В.Ф., Лебедева Ю.Н., Воротеляк Е.А., Суханов Ю.В. Трансплантация тканевых эквивалентов в лечении некоторых повреждений кожи. Вестник трансплантологии и искусственных органов. 2020;22(1):165-173. doi:10.15825/1995-1191-2020-1-165-173.

  14. 14
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Science Foundation grant No. 24-15-00346, https://rscf.ru/project/ 24-15-00346/.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 189-199 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 189-199 ; 2500-3259 ; 10.18699/vjgb-25-20

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4537/1927; Bauer D.E., Canver M.C., Orkin S.H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp. 2015; 95:e52118. doi 10.3791/52118; Bonnycastle L.L., Swift A.J., Mansell E.C., Lee A., Winnicki E., Li E.S., Robertson C.C., Parsons V.A., Huynh T., Krilow C., Mohlke K.L., Erdos M.R., Narisu N., Collins F.S. Generation of human isogenic induced pluripotent stem cell lines with CRISPR prime editing. Cris J. 2024;7(1):53-67. doi 10.1089/crispr.2023.0066; Bourbon M., Alves A.C., Medeiros A.M., Silva S., Soutar A.K. Familial hypercholesterolaemia in Portugal. Atherosclerosis. 2008; 196(2):633-642. doi 10.1016/j.atherosclerosis.2007.07.019; Brooks I.R., Garrone C.M., Kerins C., Kiar C.S., Syntaka S., Xu J.Z., Spagnoli F.M., Watt F.M. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Rep. 2022;17(5):1033-1047. doi 10.1016/j.stemcr.2022.03.019; Cerneckis J., Cai H., Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024;9(1):112. doi 10.1038/s41392-024-01809-0; Chai A.C., Cui M., Chemello F., Li H., Chen K., Tan W., Atmanli A., McAnally J.R., Zhang Y., Xu L., Liu N., Bassel-Duby R., Olson E.N. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023;29(2):401- 411. doi 10.1038/s41591-022-02176-5; Choppa P.C., Vojdani A., Tagle C., Andrin R., Magtoto L. Multiplex PCR for the detection of Mycoplasma fermentans, M. hominis and M. penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome. Mol Cell Probes. 1998;12(5):301-308. doi 10.1006/mcpr.1998.0186; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353-1356. doi 10.1056/nejmsr040330; Ezhov M.V., Bazhan S.S., Ershova A.I., Meshkov A.N., Sokolov A.A., Kukharchuk V.V., Gurevich V.S., Voevoda M.I., Sergienko I.V., Shakhtshneider E.V., Pokrovsky S.N., Konovalov G.A., Leontyeva I.V., Konstantinov V.O., Shcherbakova M.Yu., Zakharova I.N., Balakhonova T.V., Filippov A.E., Akhmedzhanov N.M., Aleksandrova O.Yu., Lipovetsky B.M. Clinical guidelines for familial hypercholesterolemia. Ateroscleroz. 2019;15(1):58-98 (in Russian); Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., Hegele R.A., Krauss R.M., Raal F.J., Schunkert H., Watt G.F., Borén J., Fazio S., Horton J.D., Masana L., Nicholls S.J., Nordestgaard B.G., Van De Sluis B., Taskinen M.R., Tokgözoǧlu L., Landmesser U., Laufs U., Wiklund O., Stock J.K., Chapman M.J., Catapano A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459- 2472. doi 10.1093/eurheartj/ehx144; Fularski P., Hajdys J., Majchrowicz G., Stabrawa M., Młynarska E., Rysz J., Franczyk B. Unveiling familial hypercholesterolemia – review, cardiovascular complications, lipid-lowering treatment and its efficacy. Int J Mol Sci. 2024;25(3):1637. doi 10.3390/ijms25031637; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681): 464-471. doi 10.1038/nature24644; Grigor’eva E.V., Malakhova A.A., Yarkova E.S., Minina J.M., Vyatkin Y.V., Nadtochy J.A., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation and characterization of two induced pluripotent stem cell lines (ICGi052-A and ICGi052-B) from a patient with frontotemporal dementia with parkinsonism-17 associated with the pathological variant c.2013T>G in the MAPT gene. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(7):679-687. doi 10.18699/vjgb-24-76; Gu J., Gupta R.N., Cheng H.K., Xu Y., Raal F.J. Current treatments for the management of homozygous familial hypercholesterolaemia: a systematic review and commentary. Eur J Prev Cardiol. 2024; 31(15):1833-1849. doi 10.1093/eurjpc/zwae144; Harada-Shiba M. Impact of familial hypercholesterolemia diagnosis in real-world data. J Atheroscler Thromb. 2023;30(10):1303. doi 10.5551/jat.ED241; Hendricks-Sturrup R.M., Clark-Locascio J., Lu C.Y. A global review on the utility of genetic testing for familial hypercholesterolemia. J Pers Med. 2020;10(2):23. doi 10.3390/pm10020023; Hofer M., Lutolf M.P. Engineering organoids. Nat Rev Mater. 2021; 6(5):402-420. doi 10.1038/s41578-021-00279-y; Hopkins P.N., Toth P.P., Ballantyne C.M., Rader D.J. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the national lipid association expert panel on familial hypercholesterolemia. J Clin Lipidol. 2011;5(3):S9. doi 10.1016/j.jacl.2011.03.452; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57-63. doi 10.1038/nature26155; Huang C.C., Niu D.M., Charng M.J. Genetic analysis in a Taiwanese cohort of 750 index patients with clinically diagnosed familial hypercholesterolemia. J Atheroscler Thromb. 2022;29(5):639-653. doi 10.5551/jat.62773; Jannes C.E., Santos R.D., de Souza Silva P.R., Turolla L., GagliardiA.C.M., Marsiglia J.D.C., ChacraA.P., Miname M.H., Rocha V.Z., Filho W.S., Krieger J.E., Pereira A.C. Familial hypercholesterolemia in Brazil: cascade screening program, clinical and genetic aspects. Atherosclerosis. 2015;238(1):101-107. doi 10.1016/j.atherosclerosis.2014.11.009; Kannan S., Farid M., Lin B.L., Miyamoto M., Kwon C. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLoS Comput Biol. 2021;17(9):e1009305. doi 10.1371/journal.pcbi.1009305; Kawatani K., Nambara T., Nawa N., Yoshimatsu H., Kusakabe H., Hirata K., Tanave A., Sumiyama K., Banno K., Taniguchi H., Arahori H., Ozono K., Kitabatake Y. A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome. Commun Biol. 2021;4(1):730. doi 10.1038/s42003-021-02242-7; Koblan L.W., Erdos M.R., Wilson C., Cabral W.A., Levy J.M., Xiong Z.M., Tavarez U.L., Davison L.M., Gete Y.G., Mao X., Newby G.A., Doherty S.P., Narisu N., Sheng Q., Krilow C., Lin C.Y., Gordon L.B., Cao K., Collins F.S., Brown J.D., Liu D.R. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature. 2021;589(7843):608-614. doi 10.1038/s41586-020-03086-7; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature. 2016;533(7603):420-424. doi 10.1038/nature17946; Lawlor K.T., Vanslambrouck J.M., Higgins J.W., Chambon A., Bishard K., Arndt D., Er P.X., Wilson S.B., Howden S.E., Tan K.S., Li F., Hale L.J., Shepherd B., Pentoney S., Presnell S.C., Chen A.E., Little M.H. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi 10.1038/s41563-020-00853-9; Liang Y., Sun X., Duan C., Zhou Y., Cui Z., Ding C., Gu J., Mao S., Ji S., Chan H.F., Tang S., Chen J. Generation of a gene-corrected human iPSC line (CSUASOi004-A-1) from a retinitis pigmentosa patient with heterozygous c.2699G>A mutation in the PRPF6 gene. Stem Cell Res. 2022;64:103572. doi 10.1016/j.scr.2022.102911; Malakhova A.A., Grigor’eva E.V., Pavlova S.V., Malankhanova T.B., Valetdinova K.R., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Zakian S.M., Medvedev S.P. Generation of induced pluripotent stem cell lines ICGi021-A and ICGi022-A from peripheral blood mononuclear cells of two healthy individuals from Siberian population. Stem Cell Res. 2020;48:101952. doi 10.1016/j.scr.2020.101952; Meshkov A., Ershova A., Kiseleva A., Zotova E., Sotnikova E., Petukhova A., Zharikova A., Malyshev P., Rozhkova T., Blokhina A., Limonova A., Ramensky V., Divashuk M., Khasanova Z., Bukaeva A., Kurilova O., Skirko O., Pokrovskaya M., Mikova V., Snigir E., Akinshina A., Mitrofanov S., Kashtanova D., Makarov V., Kukharchuk V., Boytsov S., Yudin S., Drapkina O. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholesterolemia in Russia. Genes. 2021;12(1):66. doi 10.3390/genes12010066; Mohd Nor N.S., Al-Khateeb A.M., Chua Y.A., Mohd Kasim N.A., Mohd Nawawi H. Heterozygous familial hypercholesterolaemia in a pair of identical twins: a case report and updated review. BMC Pediatr. 2019;19(1):106. doi 10.1186/S12887-019-1474-y/tables/2; Nandy K., Babu D., Rani S., Joshi G., Ijee S., George A., Palani D., Premkumar C., Rajesh P., Vijayanand S., David E., Murugesan M., Velayudhan S.R. Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Sci Rep. 2023;13(1):21953. doi 10.1038/s41598-023-42174-2; Nazarenko M.S., Sleptcov A.A., Zarubin A.A., Salakhov R.R., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Zheltysheva N.V., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M., Zakharova I.S. Calling and phasing of single-nucleotide and structural variants of the LDLR gene using Oxford Nano- pore MinION. Int J Mol Sci. 2023;24(5):4471. doi 10.3390/ijms24054471; Newby G.A., Yen J.S., Woodard K.J., Mayuranathan T., Lazzarotto C.R., Li Y., Sheppard-Tillman H., Porter S.N., Yao Y., Mayberry K., Everette K.A., Jang Y., Podracky C.J., Thaman E., Lechauve C., Sharma A., Henderson J.M., Richter M.F., Zhao K.T., Miller S.M., Wang T., Koblan L.W., McCaffrey A.P., Tisdale J.F., Kalfa T.A., Pruett-Miller S.M., Tsai S.Q., Weiss M.J., Liu D.R. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021;595(7866):295-302. doi 10.1038/S41586-021-03609-w; Niemitz E. Isogenic iPSC-derived models of disease. Nat Genet. 2014;46(1):7. doi 10.1038/ng.2864; Okano H., Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell. 2022; 29(2):189-208. doi 10.1016/j.stem.2022.01.007; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3): 458-466. doi 10.1002/stem.1293; Omer L., Hudson E.A., Zheng S., Hoying J.B., Shan Y., Boyd N.L. CRISPR correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells. Hepatol Commun. 2017;1(9):886-898. doi 10.1002/hep4.1110; Palacios L., Grandoso L., Cuevas N., Olano-Martín E., Martinez A., Tejedor D., Stef M. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis. 2012;221(1):137-142. doi 10.1016/j.atherosclerosis.2011.12.021; Pavlova S.V., Shayakhmetova L.S., Pronyaeva K.A., Shulgina A.E., Zakian S.M., Dementyeva E.V. Generation of induced pluripotent stem cell lines ICGi022-A-3, ICGi022-A-4, and ICGi022-A-5 with p.Asn515del mutation introduced in MYBPC3 using CRISPR/Cas9. Russ J Dev Biol. 2023;54:96-103. doi 10.1134/S1062360423010113; Porto E.M., Komor A.C., Slaymaker I.M., Yeo G.W. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020; 19(12):839-859. doi 10.1038/s41573-020-0084-6; Ray K.K., Ference B.A., Séverin T., Blom D., Nicholls S.J., Shiba M.H., Almahmeed W., Alonso R., Daccord M., Ezhov M., Olmo R.F., Jankowski P., Lanas F., Mehta R., Puri R., Wong N.D., Wood D., Zhao D., Gidding S.S., Virani S.S., Lloyd-Jones D., Pinto F., Perel P., Santos R.D. World Heart Federation Cholesterol Roadmap 2022. Glob Heart. 2022;17(1):75. doi 10.5334/gh.1154; Ray K.K., Pillas D., Hadjiphilippou S., Khunti K., Seshasai S.R.K., Vallejo-Vaz A.J., Neasham D., Addison J. Premature morbidity and mortality associated with potentially undiagnosed familial hypercholesterolemia in the general population. Am J Prev Cardiol. 2023; 15:100580. doi 10.1016/j.ajpc.2023.100580; Renner H., Grabos M., Becker K.J., Kagermeier T.E., Wu J., Otto M., Peischard S., Zeuschner D., Tsytsyura Y., Disse P., Klingauf J., Leidel S.A., Seebohm G., Schöler H.R., Bruder J.M. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife. 2020;9:e52904. doi 10.7554/eLife.52904; Rothgangl T., Dennis M.K., Lin P.J.C., Oka R., Witzigmann D., Villiger L., Qi W., Hruzova M., Kissling L., Lenggenhager D., Borrelli C., Egli S., Frey N., Bakker N., Walker J.A., Kadina A.P., Victorov D.V., Pacesa M., Kreutzer S., Kontarakis Z., Moor A., Jinek M., Weissman D., Stoffel M., van Boxtel R., Holden K., Pardi N., Thöny B., Häberle J., Tam Y.K., Semple S.C., Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol. 2021;39(8):949-957. doi 10.1038/s41587-021-00933-4; Semenova A.E., Sergienko I.V., García-Giustiniani D., Monserrat L., Popova A.B., Nozadze D.N., Ezhov M.V. Verification of underlying genetic cause in a cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J Cardiovasc Dev Dis. 2020;7(2):16. doi 10.3390/jcdd7020016; Setia N., Saxena R., Arora A., Verma I.C. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations. Atherosclerosis. 2016;255:31-36. doi 10.1016/j.atherosclerosis.2016.10.028; Shakhtshneider E., Ivanoshchuk D., Timoshchenko O., Orlov P., Semaev S., Valeev E., Goonko A., Ladygina N., Voevoda M. Analysis of rare variants in genes related to lipid metabolism in patients with familial hypercholesterolemia in Western Siberia (Russia). J Pers Med. 2021;11(11):1232. doi 10.3390/jpm11111232; Sharifi M., Walus-Miarka M., Idzior-Waluś B., Malecki M.T., Sanak M., Whittall R., Li K.W., Futema M., Humphries S.E. The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Metabolism. 2016;65(3):48-53. doi 10.1016/j.metabol.2015.10.018; Siegner S.M., Karasu M.E., Schröder M.S., Kontarakis Z., Corn J.E. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics. 2021; 22(1):101. doi 10.1186/s12859-021-04034-6; Subramanian A., Sidhom E.H., Emani M., Vernon K., Sahakian N., Zhou Y., Kost-Alimova M., Slyper M., Waldman J., Dionne D., Nguyen L.T., Weins A., Marshall J.L., Rosenblatt-Rosen O., Regev A., Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun. 2019;10(1):5462. doi 10.1038/S41467-019-13382-0; Südhof T.C., Goldstein J.L., Brown M.S., Russell D.W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228(4701):815-822. doi 10.1126/science.2988123; Talmud P.J., Futema M., Humphries S.E. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol. 2014;25(4):274-281. doi 10.1097/MOL.0000000000000090; Thormaehlen A.S., Schuberth C., Won H.H., Blattmann P., JoggerstThomalla B., Theiss S., Asselta R., Duga S., Merlini P.A., Ardissino D., Lander E.S., Gabriel S., Rader D.J., Peloso G.M., Pepperkok R., Kathiresan S., Runz H. Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet. 2015; 11(2):e1004855. doi 10.1371/journal.pgen.1004855; Tichý L., Freiberger T., Zapletalová P., Soška V., Ravčuková B., Fajkusová L. The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotypephenotype correlations. Atherosclerosis. 2012;223(2):401-408. doi 10.1016/j.atherosclerosis.2012.05.014; Vaskova E.A., Medvedev S.P., Sorokina A.E., Nemudryy A.A., Elisaphenko E.A., Zakharova I.S., Shevchenko A.I., Kizilova E.A., ZhelezovaA.I., Evshin I.S., Sharipov R.N., Minina J.M., Zhdanova N.S., Khegay I.I., Kolpakov F.A., Sukhikh G.T., Pokushalov E.A., Karaskov A.M., Vlasov V.V., Ivanova L.N., Zakian S.M. Transcriptome characteristics and X-chromosome inactivation status in cultured rat pluripotent stem cells. Stem Cells Dev. 2015;24(24):2912-2924. doi 10.1089/scd.2015.0204; Wang H., Luo Y., Li J., Guan J., Yang S., Wang Q. Generation of a gene corrected human isogenic iPSC line (CPGHi001-A-1) from a hearing loss patient with the TMC1 p.M418K mutation using CRISPR/Cas9. Stem Cell Res. 2022;60:102736. doi 10.1016/j.scr.2022.102736; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi036-A generated by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia caused due to compound heterozygous p.Ser177Leu/p.Cys352Arg mutations in LDLR. Stem Cell Res. 2022a;59:102653. doi 10.1016/j.scr.2022.102653; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Kalinin A.P., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi037-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to heterozygous p.Trp443Arg mutations in LDLR. Stem Cell Res. 2022b;60:102703. doi 10.1016/j.scr.2022.102703; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi038-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to compound heterozygous c.1246C>T/c.940+3_940+6del mutations in LDLR. Stem Cell Res. 2022c;60:102702. doi 10.1016/j.scr.2022.102702; Zakharova I.S., Shevchenko A.I., Arssan M.A., Sleptcov A.A., Nazarenko M.S., Zarubin A.A., Zheltysheva N.V., Shevchenko V.A., Tmoyan N.A., Saaya S.B., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. IPSC-derived endothelial cells reveal LDLR dysfunction and dysregulated gene expression profiles in familial hypercholesterolemia. Int J Mol Sci. 2024a;25(2):689. doi 10.3390/ijms25020689; Zakharova I.S., Shevchenko A.I., Zakian S.M. Familial hypercholesterolemia: current insight and challenges in its modelling. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2024b;10(1):5-14. doi 10.18699/letvjgb-2024-10-2 (in Russian); https://vavilov.elpub.ru/jour/article/view/4537

  15. 15
    Academic Journal

    Συνεισφορές: The study was carried out with the financial support of the Foundation for Scientific and Technological Development of Yugra within the framework of scientific project No. 2023-573-05, Исследование выполнено при финансовой поддержке Фонда научно-технологического развития Югры в рамках научного проекта № 2023-573-05.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 15-25 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 15-25 ; 2500-3259 ; 10.18699/vjgb-25-01

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4469/1910; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem­cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353­1356. doi:10.1056/NEJMsr040330; Fernandes H.J.R., Hartfield E.M., Christian H.C., Emmanoulidou E., Zheng Y., Booth H., Bogetofte H., Lang C., Ryan B.J., Sardi S.P., Badger J., Vowles J., Evetts S., Tofaris G.K., Vekrellis K., Talbot K., Hu M.T., James W., Cowley S.A., Wade­Martins R. ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBA­N370S Parkinson’s iPSC­derived dopamine neurons. Stem Cell Rep. 2016;6(3):342­356. doi:10.1016/j.stemcr.2016.01.013; Funayama M., Nishioka K., Li Y., Hattori N. Molecular genetics of Parkinson’s disease: сontributions and global trends. J Hum Genet. 2023;68(3):125­130. doi:10.1038/s10038­022­01058­5; Grigor’eva E.V., Kopytova A.E., Yarkova E.S., Pavlova S.V., Sorogina D.A., Malakhova A.A., Malankhanova T.B., Baydakova G.V., Zakharova E.Y., Medvedev S.P., Pchelina S.N., Zakian S.M. Bioche­ mical characteristics of iPSC­derived dopaminergic neurons from N370S GBA variant carriers with and without Parkinson’s disease. Int J Mol Sci. 2023;24:4437. doi:10.3390/ijms24054437; Grigor’eva E.V., Karapetyan L.V., Malakhova A.A., Medvedev S.P., Minina J.M., Hayrapetyan V.H., Vardanyan V.S., Zakian S.M., Ara­kelyan A., Zakharyan R. Generation of iPSCs from a patient with the M694V mutation in the MEFV gene associated with Familial Mediterranean fever and their differentiation into macrophages. Int J Mol Sci. 2024a;25:6102. doi:10.3390/ijms25116102; Grigor’eva E.V., Malakhova A.A., Yarkova E.S., Minina J.M., Vyatkin Y.V., Nadtochy J.A., Khabarova E.A., Rzaev J.A., Medve­dev S.P., Zakian S.M. Generation and characterization of two in duced pluripotent stem cell lines (ICGi052­A and ICGi052­B) from a patient with frontotemporal dementia with parkinsonism­17 associated with the pathological variant c.2013T>G in the MAPT gene. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024b;28(7):679­687. doi:10.18699/vjgb­24­76; Hastings R., Howell R., Bricarelli F.D., Kristoffersson U., Cavani S. General guidelines and quality assurance for cytogenetics. Eur Cytogenet Assoc Newsl. 2012;29:11­25 ISCN 2020: An International System for Human Cytogenomic Nomen­ clature. S. Karger AG, 2020. doi:10.1159/isbn.978­3­318­06867­2; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real­time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402­408. doi:10.1006/meth.2001.1262; Mancini A., Howard S.R., Marelli F., Cabrera C.P., Barnes M.R., Sternberg M.J.E., Leprovots M., Hadjidemetriou I., Monti E., David A., Wehkalampi K., Oleari R., Lettieri A., Vezzoli V., Vassart G., Cariboni A., Bonomi M., Garcia M.I., Guasti L., Dunkel L. LGR4 deficiency results in delayed puberty through impaired Wnt/β-catenin signaling. JCI Insight. 2023;5(11):e133434. doi:10.1172/jci.insight.133434; Marchetti B., Tirolo C., L’Episcopo F., Caniglia S., Testa N., Smith J.A., Pluchino S., Serapide M.F. Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell. 2020;19(3):e13101. doi:10.1111/acel.13101; Marciniak S.J., Chambers J.E., Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2022;21(2):115­140. doi:10.1038/s41573­021­00320­3; Menzorov A., Pristyazhnyuk I., Kizilova H., Yunusova A., Battulin N., Zhelezova A., Golubitsa A., Serov O.L. Cytogenetic analysis and Dlk1-Dio3 locus epigenetic status of mouse embryonic stem cells during early passages. Cytotechnology. 2016;68(1):61­71. doi:10.1007/s10616­014­9751­y; Niu Y., Zhang J., Dong M. Nrf2 as a potential target for Parkinson’s disease therapy. J Mol Med (Berl). 2021;99(7):917­931. doi:10.1007/s00109­021­02071­5; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration­free human­induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458-466. doi:10.1002/stem.1293; Shi S., Li S., Zhang X., Wei Z., Fu W., He J., Hu Y., Li M., Zheng L., Zhang Z. LGR4 gene polymorphisms are associated with bone and obesity phenotypes in Chinese female nuclear families. Front Endocrinol. 2021;12:656077. doi:10.3389/fendo.2021.656077; Wang M., Ling K.-H., Tan J.J., Lu C.-B. Development and differentiation of midbrain dopaminergic neuron: from bench to bedside. Cells. 2020;9(6):1489. doi:10.3390/cells9061489; Yarkova E.S., Grigor’eva E.V., Medvedev S.P., Pavlova S.V., Zakian S.M., Malakhova A.A. IPSC­derived astrocytes contribute to in vitro modeling of Parkinson’s disease caused by the GBA1 N370S mutation. Int J Mol Sci. 2023;25(1):327. doi:10.3390/ijms25010327; Yarkova E.S., Grigor’eva E.V., Medvedev S.P., Tarasevich D.A., Pavlova S.V., Valetdinova K.R., Minina J.M., Zakian S.M., Malakhova A.A. Detection of ER stress in iPSC­derived neurons carrying the p.N370S mutation in the GBA1 gene. Biomedicines. 2024;12:744. doi:10.3390/biomedicines12040744; https://vavilov.elpub.ru/jour/article/view/4469

  16. 16
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ МГНЦ.

    Πηγή: Medical Genetics; Том 23, № 11 (2024); 34-39 ; Медицинская генетика; Том 23, № 11 (2024); 34-39 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2571/1828; Deng C., Ya A., Compton D.A., Godek K.M. A pluripotent developmental state confers a low fidelity of chromosome segregation. Stem Cell Reports. 2023;18(2):475-488. doi:10.1016/j.stemcr.2022.12.008.; Milagre I., Pereira C., Oliveira R.A. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jul 25;24(15):11933. doi:10.3390/ijms241511933.; Al Delbany D., Ghosh M.S., Krivec N., et al. De Novo Cancer Mutations Frequently Associate with Recurrent Chromosomal Abnormalities during Long-Term Human Pluripotent Stem Cell Culture. Cells. 2024;13(16):1395. doi:10.3390/cells13161395.; Stavish D., Price C.J., Gelezauskaite G., et al. Feeder-free culture of human pluripotent stem cells drives MDM4-mediated gain of chromosome 1q. Stem Cell Reports. 2024;19(8):1217-1232. doi:10.1016/j.stemcr.2024.06.003.; DuBose C.O., Daum J.R., Sansam C.L., Gorbsky GJ. Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes (Basel). 2022;13(7):1157. doi:10.3390/genes13071157.; Baker D., Hirst A.J., Gokhale P.J, et al. Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells. Stem Cell Reports. 2016;7(5):998-1012. doi:10.1016/j.stemcr.2016.10.003.; Ludwig T.E., Andrews P.W., Barbaric I., et al. ISSCR standards for the use of human stem cells in basic research. Stem Cell Reports. 2023;18(9):1744-1752. doi:10.1016/j.stemcr.2023.08.003.; McIntire E., Taapken S., Leonhard K., Larson A.L. Genomic Stability Testing of Pluripotent Stem Cells. Curr Protoc Stem Cell Biol. 2020 Mar;52(1):e107. doi:10.1002/cpsc.107.; Ben-David U., Arad G., Weissbein U. et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun. 2014; 5, 4825. Doi:10.1038/ncomms5825.; Khademi N.S., Farivar S., Bazrgar M., et al. Aneuploidy Rate and Stemness in Low-Level Mosaic Human Embryonic Stem Cells in the Presence/Absence of Bortezomib, Paclitaxel, and Lapatinib. Cells Tissues Organs. 2024;213(1):17-23. doi:10.1159/000526199.; Lamm N., Ben-David U., Golan-Lev T., et al. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell. 2016;18(2):253-61. doi:10.1016/j.stem.2015.11.003.; Yanagihara K., Hayashi Y., Liu Y., et al. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2024;60(5):521-534. doi:10.1007/s11626-023-00824-9.; Contreras-Galindo R., Fischer S., Saha A.K. et al. Rapid molecular assays to study human centromere genomics. Genome Res. 2017;27(12):2040-2049. doi:10.1101/gr.219709.116.; Sharma R., Meister P. Generation of Inexpensive, Highly Labeled Probes for Fluorescence In Situ Hybridization (FISH). STAR Protoc. 2020;1(1):100006. doi:10.1016/j.xpro.2019.100006.; Lengauer C., Dunham I., Featherstone T., Cremer T. Generation of alphoid DNA probes for fluorescence in situ hybridization (FISH) using the polymerase chain reaction. Methods Mol Biol. 1994; 33: 51-61. doi:10.1385/0-89603-280-9:51. PMID: 7894592.; Zhigalina D.I., Skryabin N.A., Vasilieva O.Y. et al. FISH Diagnostics of Chromosomal Translocation with the Technology of Synthesis of Locus-Specific DNA Probes Based on Long-Range PCR. Russ J Genet. 2020; 5 6:739–746. https://doi.org/10.1134/S1022795420060150; Durm M., Haar F.M., Hausmann M., et al. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes. Z Naturforsch C J Biosci. 1996;51(3-4):253-61. doi:10.1515/znc-1996-3-418.; Пожитнова В.О., Свиридова В.В., Кислова А.В., и др. Аномалии кариотипа в линиях индуцированных плюрипотентных стволовых клеток, полученных от российских доноров. Медицинская генетика. 2023;22(12):59-66. https://doi.org/10.25557/2073-7998.2023.12.59-66; Dekel-Naftali M., Aviram-Goldring A., Litmanovitch T., et al. Screening of human pluripotent stem cells using CGH and FISH reveals low-grade mosaic aneuploidy and a recurrent amplification of chromosome 1q. Eur J Hum Genet. 2012;20(12):1248-55. doi:10.1038/ejhg.2012.128.; Peterson S.E., Westra J.W., Rehen S.K., et al. Normal human pluripotent stem cell lines exhibit pervasive mosaic aneuploidy. PLoS One. 2011;6(8):e23018. doi:10.1371/journal.pone.0023018

  17. 17
    Academic Journal

    Συνεισφορές: This research was performed under the state assignment of Moscow State University, project numbers 119121690043-3, 1243020800089-2, 121042600047-9., Работа выполнена в рамках госзадания МГУ на госбюджетной основе (научные проекты №/№ 119121690043-3, 1243020800089-2,121042600047-9).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 4 (2024); 269-279 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 4 (2024); 269-279 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1434/699; Huang W.J., Chen W.W., Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017;13(6):3163–3166.; Hauser S.L., Cree B.A.C. Treatment of multiple sclerosis: A review. Am. J. Med. 2020;133(12):1380-1390.e2.; Macaron G., Larochelle C., Arbour N., Galmard M., Girard J.M., Prat A., Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front. Neurol. 2023;14:1197212.; Ostolaza A., Corroza J., Ayuso T. Multiple sclerosis and aging: comorbidity and treatment challenges. Mult. Scler. Relat. Disord. 2021;50:102815.; Zhang Y., Atkinson J., Burd C.E., Graves J., Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023;29(14):1701–1708.; Zeydan B., Kantarci O.H. Impact of age on multiple sclerosis disease activity and progression. Curr. Neurol. Neurosci. Rep. 2020;20(7):24.; Fetisova E., Vorobjeva N., Muntyan M. Multiple sclerosis. Some features of pathology and prospects for therapy. Part 1. Adv. Gerontol. 2024;14(2):35–48.; Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.; De Bondt M., Hellings N., Opdenakker G., Struyf S. Neutrophils: underestimated players in the pathogenesis of multiple sclerosis (MS). Int. J. Mol. Sci. 2020;21(12):4558.; Dhaiban S., Al-Ani M., Elemam N.M., AlAawad M.H., Al-Rawi Z., Maghazachi A.A. Role of peripheral immune cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Science. 2021;3(1):12.; Grebenciucova E., Pruitt A. Infections in patients receiving multiple sclerosis disease-modifying therapies. Curr. Neurol. Neurosci. Rep. 2017;17(11):88.; Fetisova E., Chernyak B., Korshunova G., Muntyan M., Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017;24(19):2086–2114.; Fetisova E.K., Muntyan M.S., Lyamzaev K.G., Chernyak B.V. Therapeutic effect of the mitochondriatargeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell. Longev. 2019;2019:2082561.; Fock E.M., Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 2021;13(2):144.; Jiang Q., Yin J., Chen J., Ma X., Wu M., Liu G., Yao K., Tan B., Yin Y. Mitochondria-targeted antioxidants: a step towards disease treatment. Oxid. Med. Cell. Longev. 2020;2020:8837893.; Liberman E.A., Topaly V.P., Tsofina L.M., Jasaitis A.A., Skulachev V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222(5198):1076–1078.; Korshunova G.A., Shishkina A.V., Skulachev M.V. Design, synthesis, and some aspects of the biological activity of mitochondria-targeted antioxidants. Biochemistry (Mosc.). 2017;82(7):760–777.; Fields M., Marcuzzi A., Gonelli A., Celeghini C., Maximova N., Rimondi E. Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: perspectives and limitations. Int. J. Mol. Sci. 2023;24(4):3739.; Skulachev V.P., Antonenko Y.N., Cherepanov D.A., et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim. Biophys. Acta BBA-Bioenergetics. 2010;1797(6–7):878–89.; Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008;73(12):1273–1287.; Murphy M.P., Smith R.A.J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007;47(1):629–656.; Открытое исследование I фазы по изучению фармакокинетики, безопасности и переносимости препарата Пластомитин® при однократном приеме возрастающих доз у здоровых добровольцев. (Ответственный исследователь Щукин И.А.) [Электронный ресурс]. Государственный реестр лекарственных средств. 2016. Дата обновления: 15.12.2024. URL: https://grlsbase.ru/clinicaltrails/clintrail/3570 (дата обращения: 15.12.2024).; Fassas A., Anagnostopoulos A., Kazis A., Kapinas K., Sakellari I., Kimiskidis V., Tsompanakou A. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transpl. 1997;20(8):631–638.; Iacobaeus E., Kadri N., Lefsihane K., Boberg E., Gavin C., Törnqvist Andrén A., Lilja A., Brundin L., Blanc K.L. Short and long term clinical and immunologic follow up after bone marrow mesenchymal stromal cell therapy in progressive multiple sclerosis – a phase I study. J. Clin. Med. 2019;8(12):2102.; Федулов А.С., Борисов А.В., Зафранская М.М., Кривенко С.И., Марченко Л.Н., Качан Т.В., Московских Ю.В., Нижегородова Д.Б. Сравнительная оценка эффективности однократного и курсового применения аутологичной трансплантации мезенхимальных стволовых клеток в терапии рассеянного склероза. РМЖ. Медицинское обозрение. 2019;3(4-2):54–58.; Bisaga G.N., Topuzova M.P., Malko V.A., Motorin D.V., Alekseeva Yu.A., Badaev R.S., Krinitsina T.V., Alekseeva T.M. High-dose chemotherapy with autologous hematopoietic stem cell transplantation in multiple sclerosis: intermediate results of 3 years research. Russ. Neurol. J. 2022;27(6):22–31.; Pluchino S., Quattrini A., Brambilla E., Gritti A., Salani G., Dina G., Galli R., Del Carro U., Amadio S., Bergami A., Furlan R., Comi G., Vescovi A.L., Martino G. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422(6933):688–694.; Genchi A., Brambilla E., Sangalli F., et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study. Nat. Med. 2023;29(1):75–85.; Uccelli A., Laroni A., Ali R., et al. Safety, tolerability, and activity of mesenchymal stem cells versus placebo in multiple sclerosis (MESEMS): a phase 2, randomised, double-blind crossover trial. Lancet Neurol. 2021;20(11):917–929.; Сороковикова Т.В., Морозов А.М., Крюкова А.Н., Наумова С.А., Беляк М.А. Перспективы лечения прогрессирующих форм рассеяного склероза трасплантацией стволовых клеток (обзор литературы). Вестник медицинского института «Реавиз». Реабилитация, врач и здоровье. 2023;13(4):154–161.; Cecerska-Heryć E., Pękała M., Serwin N., Gliźniewicz M., Grygorcewicz B., Michalczyk A., Heryć R., Budkowska M., Dołęgowska B. The use of stem cells as a potential treatment method for selected neurodegenerative diseases: review. Cell Mol. Neurobiol. 2023;43(6):2643–2673.; Xie C., Liu Y.Q., Guan Y.T., Zhang G.X. Induced stem cells as a novel multiple sclerosis therapy. Curr. Stem Cell Res. Ther. 2016;11(4):313–320.; Yun W., Choi K.A., Hwang I., et al. OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen. Med. 2022;7(1):4.; Wang Y., Chang K., Liu C., Na W., Jiang Z., Xiong J. Clemastine promotes oligodendrocyte precursor cell differentiation and myelination after acute radiation injury. J. Radiat. Res. Radiat. Proces. 2023;39(5):48–55.; Caverzasi E., Papinutto N., Cordano C., Kirkish G., Gundel T.J., Zhu A., Akula A.V., Boscardin W.J., Neeb H., Henry R.G., Chan J.R., Green A.J. MWF of the corpus callosum is a robust measure of remyelination: Results from the ReBUILD trial. Proc. Nat. Acad. Sci. U.S.A. 2023;120(20):e2217635120.; Hansen C.S., Hasseldam H., Bacher I.H., Thamsborg S.M., Johansen F.F., Kringel H. Trichuris suis secrete products that reduce disease severity in a multiple sclerosis model. Acta Parasitol. 2017;62(1):22–28.; Fleming J., Hernandez G., Hartman L., Maksimovic J., Nace S., Lawler B., Risa T., Cook T., Agni R., Reichelderfer M., Luzzio C., Rolak L., Field A., Fabry Z. Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: results of the HINT 2 clinical trial. Mult. Scler. J. 2019;25(1):81–91.; Yordanova I.A., Ebner F., Schulz A.R., Steinfelder S., Rosche B., Bolze A., Paul F., Mei H.E., Hartmann S. The worm-specific immune response in multiple sclerosis patients receiving controlled Trichuris suis ova immunotherapy. Life (Basel). 2021;11(2):101.; Libbey J.E., Cusick M.F., Fujinami R.S. Role of pathogens in multiple sclerosis. Int. Rev. Immunol. 2014;33(4):266–283.; Tanasescu R., Tench C.R., Constantinescu C.S., Telford G., Singh S., Frakich N., Onion D., Auer D.P., Gran B., Evangelou N., Falah Y., Ranshaw C., Cantacessi C., Jenkins T.P., Pritchard D.I. Hookworm treatment for relapsing multiple sclerosis: a randomized double-blinded placebo-controlled trial. JAMA Neurol. 2020;77(9):1089–1098.; Jenkins T.P., Pritchard D.I., Tanasescu R., Telford G., Papaiakovou M., Scotti R., Cortés A., Constantinescu C.S., Cantacessi C. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol. 2021;19(1):74.; Wegener Parfrey L., Jirků M., Šíma R., Jalovecka M., Sak B., Grigore K., Jirků Pomajbíková K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS One. 2017;12(8):e0182205.; Calvani N.E.D., De Marco Verissimo C., Jewhurst H.L., Cwiklinski K., Flaus A., Dalton J.P. Two distinct superoxidase dismutases (SOD) secreted by the helminth parasite Fasciola hepatica play roles in defence against metabolic and host immune cell-derived reactive oxygen species (ROS) during growth and development. Antioxidants. 2022;11(10):1968.; Otero L., Bonilla M., Protasio A.V., Fernández C., Gladyshev V.N., Salinas G. Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths. BMC Genomics. 2010;11:237.; Xiang C., Zhong G., Wang H. IL-9 plays a critical role in helminth-induced protection against COVID-19- related cytokine storms. mBio. 2024;15(7):e0122924.; Cao Z., Wang J., Liu X., Liu Y., Li F., Liu M., Chiu S., Jin X. Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way. mBio. 2024;15(6):e00905-24.; Solaro C., Ponzio M., Moran E., Tanganelli P., Pizio R., Ribizzi G., Venturi S., Mancardi G.L., Battaglia M.A. The changing face of multiple sclerosis: Prevalence and incidence in an aging population. Mult. Scler. 2015;21(10):1244–1250.; Marrie R.A., Cohen J., Stuve O., Trojano M., Sørensen P.S., Reingold S., Cutter G., Reider N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 2015;21(3):263–281.; Noseworthy J., Paty D., Wonnacott T., Feasby T., Ebers G. Multiple sclerosis after age 50. Neurology 1983;33(12):1537–1537.; Minden S.L., Frankel D., Hadden L.S., Srinath K.P., Perloff J.N. Disability in elderly people with multiple sclerosis: An analysis of baseline data from the Sonya Slifka Longitudinal Multiple Sclerosis Study. NeuroRehabilitation. 2004;19(1):55–67.; Zinganell A., Göbel G., Berek K., Hofer B., Asenbaum-Nan S., Barang M., Böck K., Bsteh C., Bsteh G., Eger S., Eggers C., Fertl E., Joldic D., Khalil M., Langenscheidt D. et al. Multiple sclerosis in the elderly: a retrospective cohort study. J. Neurol. 2024;271(2):674–687.; Weideman A.M., Tapia-Maltos M.A., Johnson K., Greenwood M., Bielekova B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol. 2017;8:577.; Bjornevik K., Cortese M., Healy, B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.; Matell H., Lycke J., Svenningsson A., Holmén C., Khademi M., Hillert J., Olsson T., Piehl F. Age-dependent effects on the treatment response of natalizumab in MS patients. Mult. Scler. 2015;21(1):48–56.; Gelibter S., Saraceno L., Pirro F., Susani E.L., Protti A. As time goes by: Treatment challenges in elderly people with multiple sclerosis. J. Neuroimmunol. 2024;391:578368.; Muñoz J.S., Santiago A.D., Escudero J.C., Merino J.A.G. Case report: Primary cytomegalovirus infection in a patient with late onset multiple sclerosis treated with dimethyl fumarate. Front. Neurol. 2024;15:1363876.; Oudrer N. Multiple sclerosis in elderly patients: When we can stopped treatment? Mult. Scler. Relat. Disord. 2023;80:105181.; Skulachev V.P., Anisimov V.N., Antonenko Y.N., et al. An attempt to prevent senescence: a mitochondrial approach. Biochim. Biophys. Acta (BBA)-Bioenergetics. 2009;1787(5):437–461.; Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017;117(15):10043–10120.; Lin M.M., Liu N., Qin Z.H., Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol. Sin. 2022;43(10):2439–2447.; Sanabria-Castro A., Alape-Girón A., FloresDíaz M., Echeverri-McCandless A., Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev. Neurosci. 2024;35(3):355–371.; Sutter P.A., McKenna M.G., Imitola J., Pijewski R.S., Crocker S.J. Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Curr. Opin. Pharmacol. 2022;63:102184.; Ghosh A., Chandran K., Kalivendi S.V., Joseph J., Antholine W.E., Hillard C.J., Kanthasamy A.,Kanthasamy A., Kalyanaraman B. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s Disease model. Free Radical Biol. Med. 2010;49:1674−1684.

  18. 18
    Academic Journal

    Πηγή: Acta Biomedica Scientifica; Том 10, № 1 (2025); 25-37 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5207/2958; Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020; 9(4): 880. doi:10.3390/cells9040880; Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 2022; 23(2): 905. doi:10.3390/ijms23020905; Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers.2018; 4: 18001. doi:10.1038/nrdp.2018.1; Venetsanopoulou AI, Alamanos Y, Voulgari PV, Drosos AA. Epidemiology of rheumatoid arthritis: Genetic and environmental influences. Expert Rev Clin Immunol. 2022; 18(9): 923-931. doi:10.1080/1744666X.2022.2106970; Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021; 44: 172-182. doi:10.1016/j.bj.2020.06.010; Damerau A, Gaber T. Modeling rheumatoid arthritis in vitro: From experimental feasibility to physiological proximity. Int J Mol Sci. 2020; 21: 7916. doi:10.3390/ijms21217916; Насонов Е.Л. Российские клинические рекомендации. Ревматология. М.: ГЭОТАР-Медиа; 2020.; Клиппел Дж.Х., Стоун Дж.Х., Кроффорд Л.Дж., Уайт П.Х. (ред.). Ревматические заболевания: практическое руководство; в 3 т. М.: ГЭОТАР-Медиа; 2014; 2.; Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: Pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020; 16: 301-315. doi:10.1038/s41584-020-0409-1; Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA. 2018; 320(13): 1360-1372. doi:10.1001/jama.2018.13103; Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation lessons from rheumatoid arthritis. Front Immunol. 2019; 10: 353. doi:10.3389/fimmu.2019.00353; Kwon EJ, Ju JH. Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: Focusing on citrullination, carbamylation, and acetylation. Int J Mol Sci. 2021; 22: 10576. doi:10.3390/ijms221910576; Komatsu N, Win S, Yan M, Huynh NC, Sawa S, Tsukasaki M, et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Investig. 2021; 131: e143060. doi:10.1172/JCI143060; Coutant F. Pathogenic effects of anti-citrullinated protein antibodies in rheumatoid arthritis – role for glycosylation. Joint Bone Spine. 2019; 86(5): 562-567. doi:10.1016/j.jbspin.2019.01.005; Jung SM, Kim KW, Yang CW, Park SH, Ju JH. Cytokinemediated bone destruction in rheumatoid arthritis. JImmunol Res. 2014; 2014: 263625. doi:10.1155/2014/263625; Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2019; 14(5): 364. doi:10.3389/fmed.2018.00364; Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015; 18(4): 433-448. doi:10.1007/s10456-015-9477-2; Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, et al. Recent advances in understanding the pathogenesis of rheumatoid arthritis: New treatment strategies. Cells. 2021; 10(11): 3017. doi:10.3390/cells10113017; Singh JA. Treatment guidelines in rheumatoid arthritis. Rheum Dis Clin North Am. 2022; 48(3): 679-689. doi:10.1016/j.rdc.2022.03.005; Debreova M, Culenova M, Smolinska V, Nicodemou A, Csobonyeiova M, Danisovic L. Rheumatoid arthritis: From synovium biology to cell-based therapy. 2022; 24: 365-375. doi:10.1016/j.jcyt.2021.10.003; Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Ther. 2022; 13(1): 101. doi:10.1186/s13287-022-02782-7; Yang JH, Liu FX, Wang JH, Cheng M, Wang SF, Xu DH. Mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles: Potential roles in rheumatic diseases. World J Stem Cells. 2020; 12(7): 688-705. doi:10.4252/wjsc.v12.i7.688; Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells in rheumatoid arthritis. Front Immunol. 2021; 12: 626193. doi:10.3389/fimmu.2021.626193; Sarsenova M, Issabekova A, Abisheva S, Rutskaya-Moroshan K, Ogay V, Saparov A. Mesenchymal stem cell-based therapy for rheumatoid arthritis. Int J Mol Sci. 2021; 22(21): 11592. doi:10.3390/ijms222111592; Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi:10.3389/fimmu.2020.01912; Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrere-Kremer S, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 2019; 10: 232. doi:10.1186/s13287-019-1307-9; Vasilev G, Ivanova M, Ivanova-Todorova E, Tumangelova-Yuzeir K, Krasimirova E, Stoilov R, et al. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol Int. 2019; 39: 819-826. doi:10.1007/s00296-019-04296-7; Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev. 2019; 288: 85-96. doi:10.1111/imr.12740; Yap HY, Tee SZY, Wong MMT, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells. 2018; 7: 161. doi:10.3390/cells7100161; Gowhari Shabgah A, Shariati-Sarabi Z, Tavakkol-Afshari J, Ghasemi A, Ghoryani M, Mohammadi M. A significant decrease of BAFF, APRIL, and BAFF receptors following mesenchymal stem cell transplantation in patients with refractory rheumatoid arthritis. Gene. 2020; 732: 144336. doi:10.1016/j.gene.2020.144336; Gaugler B, Laheurte C, Bertolini E, Pugin A, Wendling D, Saas P, et al. Peripheral blood B cell subsets and BAFF/APRIL levels and their receptors are disturbed in rheumatoid arthritis but not in ankylosing spondylitis. J Clin Cell Immunol. 2013; 4: 2. doi:10.4172/2155-9899.1000163; Rosado MM, Bernardo ME, Scarsella M, Conforti A, Giorda E, Biagini S, et al. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev. 2015; 24(1): 93-103. doi:10.1089/scd.2014.0155; Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, et al. Amniotic membrane mesenchymal cellsderived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep. 2015; 11: 394-407. doi:10.1007/s12015-014-9558-4; Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: A promising way in therapies of graft-versus-host disease. Cancer Cell Int. 2020; 20: 114. doi:10.1186/s12935-020-01193-z; Liu H, Li R, Liu T, Yang LYi, Yin G, Xie QB. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi:10.3389/fimmu.2020.01912; Afzali B, Mitchell PJ, Scottà C, Canavan J, Edozie FC, Fazekasova H, et al. Relative resistance of human CD4+ memory T cells to suppression by CD4+, CD25+ regulatory T cells: Memory cells as barriers to Treg-cell therapy. Am J Transpl. 2011; 11: 1734-1742. doi:10.1111/j.1600-6143.2011.03635.x; Luque-Campos N, Contreras-López RA, Paredes-Martínez MJ, Torres MJ, Bahraoui S, Wei M, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019; 10: 798. doi:10.3389/fimmu.2019.00798; Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther. 2013; 4: 125. doi:10.1186/scrt336; Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, et al. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol. 2016; 44: 138-150. doi:10.1016/j.exphem.2015.10.009; Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, et al. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory and effector T cells. Stem Cell Res Ther. 2015; 6: 3. doi:10.1186/scrt537; Hu C, Qian L, Miao Y, Huang Q, Miao P, Wang P, et al. Antigen-presenting effects of effector memory Vγ9Vδ2 T cells in rheumatoid arthritis. Cell Mol Immunol. 2012; 9: 245-254. doi:10.1038/cmi.2011.50; Liu X, Feng T, Gong T, Shen C, Zhu T, Wu Q, et al. Human umbilical cord mesenchymal stem cells inhibit the function of allogeneic activated V γδ T lymphocytes in vitro. BioMed Res Int. 2015; 2015: 317801. doi:10.1155/2015/317801; Hu C, Li L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med. 2019; 17: 412. doi:10.1186/s12967-019-02167-0; Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JF, McKusick MA, et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J Am Soc Nephrol 2017; 28: 2777-2785. doi:10.1681/ASN.2017020151; Saldana L, Bensiamar F, Valles G, Mancebo FJ, García-Rey E, Vilaboa N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019; 10: 58. doi:10.1186/s13287-019-1156-6; Ren W, Hou J, Yang C, Wang H, Wu S, Wu Y, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019; 38: 62. doi:10.1186/s13046-019-1027-0; Yuan X, Qin X, Wang D, Zhang Z, Tang X, Gao X, et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nat Commun. 2019; 10: 2498. doi:10.1038/s41467-019-10491-8; Das T, Bergen IM, Koudstaal T, van Hulst JAC, van Loo G, Boonstra A, et al. DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology. J Autoimmun 2019; 102: 167-178. doi:10.1016/j.jaut.2019.05.007; Montesinos JJ, Lopez-Garcia L, Cortes-Morales VA, ArriagaPizano L, Valle-Ríos R, Fajardo-Orduña GR, et al. Human bone marrow mesenchymal stem/stromal cells exposed to an inflammatory environment increase the expression of ICAM-1 and release microvesicles enriched in this adhesive molecule: Analysis of the participation of TNF-alpha and IFN-gamma. J Immunol Res 2020; 2020: 8839625. doi:10.1155/2020/8839625; Cho KA, Lee JK, Kim YH, Park M, Woo SY, Ryu KH. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol 2017; 14: 895-908. doi:10.1038/cmi.2016.59; Goradel NH, Jahangiri S, Negahdari B. Effects of mesenchymal stem cellderived exosomes on angiogenesis in regenerative medicine, Curr. Regenerat. Med. 2018; 7(1): 46-53. doi:10.2174/2468424408666180315101232; Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cellderived extracellular vesicles: A novel therapeutic paradigm, J Cell Physiol. 2020; 235(2): 706-717. doi:10.1002/jcp.29004; Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W, et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022; 13(1): 101. doi:10.1186/s13287-022-02782-7; Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: The role of microvesicles. Cell Transplant. 2015; 24: 133-149. doi:10.3727/096368913X675728; Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): 6977. doi:10.1126/science.aau6977; Wang S, Lei B, Zhang E, Gong P, Gu J, He L, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: From basic to clinics. IntJ Nanomedicine. 2022; 17: 1757-1781. doi:10.2147/IJN.S355366; Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018; 17(1): 147. doi:10.1186/s12943-018-0897-7; Meng Q, Qiu B. Exosomal microRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 expression. Front Physiol. 2020; 11: 441. doi:10.3389/fphys.2020.00441; Liu H, Chen Y, Yin G, Xie Q. Therapeutic prospects of microRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases. Life Sci. 2021; 277: 119458. doi:10.1016/j.lfs.2021.119458; Wu H, Zhou X, Wang X, Cheng W, Hu X, Wang Y, et al. miR-34a in extracellular vesicles from bone marrow mesenchymal stem cells reduces rheumatoid arthritis inflammation via the cyclin I/ATM/ATR/p53 axis. J Cell Mol Med. 2021; 25(4): 1896-1910. doi:10.1111/jcmm.15857; Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol. 2018; 201(8): 2472-2482. doi:10.4049/jimmunol.1800304; Huldani H, Jasim SA, Bokov DO, Abdelbasset WK, Shalaby MN, Thangavelu L, et al. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol. 2022; 106: 108634. doi:10.1016/j.intimp.2022.108634; Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018; 8(5): 1399-1410. doi:10.7150/thno.21072; Abdelmawgoud H, Saleh A. Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018; 27: 873-880. doi:10.17219/acem/73720; Álvaro-Gracia JM, Jover JA, García-Vicuña R, Carreño L, Alonso A, Marsal S, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): Results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/ IIa clinical trial. Ann Rheum Dis. 2017; 76: 196-202. doi:10.1136/annrheumdis-2015-208918; Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev. 2013; 22: 3192-3202. doi:10.1089/scd.2013.0023; Zhang Q, Li Q, Zhu J, Guo H, Zhai Q, Li B, et al. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. Peer J. 2019; 3: 7: e7023. doi:10.7717/peerj.7023; Timin AS, Peltek OO, Zyuzin MV, Muslimov AR, Karpov TE, Epifanovskaya OS, et al. Safe and effective delivery of antitumor drug using mesenchymal stem cells impregnated with submicron carriers. ACS Appl Mater Interfaces. 2019; 11(14): 13091-13104. doi:10.1021/acsami.8b22685; Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016; 106: 148-156. doi:10.1016/j.addr.2016.02.006; Kim KW, Kim HJ, Kim BM, Kwon YR, Kim HR, Kim YJ. Epigenetic modification of mesenchymal stromal cells enhances their suppressive effects on the Th17 responses of cells from rheumatoid arthritis patients. Stem Cell Res Ther. 2018; 9: 208. doi:10.1186/s13287-018-0948-4; Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7: 1535750. doi:10.1080/20013078.2018.1535750; He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSCderived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019; 2019: 7132708. doi:10.1155/2019/7132708; Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol. 2018; 9: 2538. doi:10.3389/fimmu.2018.02538; Matheakakis A, Batsali A, Papadaki HA, Pontikoglou CG. Therapeutic implications of mesenchymal stromal cells and their extracellular vesicles in autoimmune diseases: From biology to clinical applications. IntJ Mol Sci. 2021; 22(18): 10132. doi:10.3390/ijms221810132; Kahmini FR, Shahgaldi S. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles as novel cell-free therapy for treatment of autoimmune disorders. Exp Mol Pathol. 2021; 118: 104566. doi:10.1016/j.yexmp.2020.104566; Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci. 2019; 13: 209. doi:10.3389/fnins.2019.00209; Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal cells for rheumatoid arthritis treatment: An update on clinical applications. Cells. 2020; 9: 1852. doi:10.3390/cells9081852; Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, et al. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem. 2018; 119: 8048-8073. doi:10.1002/jcb.26726; https://www.actabiomedica.ru/jour/article/view/5207

  19. 19
  20. 20