-
1Academic Journal
Συγγραφείς: К. Партоев, С.Т. Саидзода, Б.Н. Сатторов, С.Дж. Суярзода, С. Мирзоали
Πηγή: Письма в Вавиловский журнал генетики и селекции, Vol 11, Iss 3, Pp 111-117 (2025)
Θεματικοί όροι: селекция, сорт, продуктивность, скороспелость, устойчивость, эффективность, изменение климата, таджикистан, Genetics, QH426-470
Περιγραφή αρχείου: electronic resource
Relation: https://pismavavilov.ru/wp-content/uploads/2025/10/004-Pisma-VJ_Partoev.pdf; https://doaj.org/toc/2686-8482
Σύνδεσμος πρόσβασης: https://doaj.org/article/577c078f095644858be5d50309a22fd9
-
2
-
3
-
4Academic Journal
-
5Academic Journal
-
6Academic Journal
Πηγή: Научно-агрономический журнал. :68-74
Θεματικοί όροι: кустистость, облиственность, отавность, толщина стебля, вымётывание, высота растений, сорт, ширина листа, Суданская трава, скороспелость, длина листа, цветение
-
7Academic Journal
Συγγραφείς: E. G. Kiselev, D. V. Sokolova, Е. Г. Киселев, Д. В. Соколова
Συνεισφορές: The work was carried out within the framework of the state assignment for the project FGEM-2022-0003 "World resources of vegetable and melon crops of the VIR collection: effective ways to reveal the ecological and genetic patterns of the formation of diversity and the use of breeding potentia., Работа выполнена в рамках государственного задания по проекту FGEM-2022-0003 «Мировые ресурсы овощных и бахчевых культур коллекции ВИР: эффективные пути раскрытия экологогенетических закономерностей формирования разнообразия и использования селекционного потенциала».
Πηγή: Vegetable crops of Russia; № 2 (2025); 36-44 ; Овощи России; № 2 (2025); 36-44 ; 2618-7132 ; 2072-9146
Θεματικοί όροι: селекция, varieties, types of spinach varieties, early ripening, gene pool, breeding, разновидности, сортотипы, скороспелость, генофонд
Περιγραφή αρχείου: application/pdf
Relation: https://www.vegetables.su/jour/article/view/2610/1639; Roberts J.L., Moreau R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & Function. 2016;7(8):3337–3353. https://doi.org/10.1039/c6fo00051g; Mukhanova Yu.I., Trebukhina K.A. Expand assortment. Potato and vegetables. 1987;1:23-25. (In Russ.); Pivovarov V.F. Vegetables of Russia. Moscow: Russian seeds. 1994. (In Russ.); Shivrina A.N. Biochemistry of spinach, sorrel, rhubarb. In the book: Biochemistry of vegetable crops. Moscow. 1961. p.304- 324 [ed. by I. Ermakov, V. V. Arasimovich] https://rusneb.ru/catalog/000199_000009_005943653/ (date of access: 14.01.2025); Pokrovsky A.A. Chemical composition of food products. Moscow, 1976. P.76-77. (ed. by M.F. Nesterin, I.M. Skurikhin) https://rusneb.ru/catalog/000200_000018_rc_2234586/ (15.01.2025); Sokolova D.V., Solovieva A.E. Characterization of the biochemical compositionand antioxidant activity of Spinacia oleracea L. and Spinacia turkestanica Iljin.: a comparative study. Vegetable crops of Russia. 2023;(4):23-29. https://doi.org/10.18619/2072-9146-2023-4-23-29; Longnecker M.P., Newcomb P.A., Mittendorf R., Greenberg E.R., Willett W.C. Intake of carrots, spinach, and supplements containing vitamin A in relation to risk of breast cancer. Cancer Epidemiol Biomarkers Prev.1997;6(11): 87–892.; Wang R., Furumoto T., Motoyama K., Okazaki K., Kondo A., Fukui H. Possible Antitumor Promoters in Spinacia oleracea (Spinach) and Comparison of their Contents among Cultivars. Bioscience, Biotechnology, and Biochemistry. 2002;66(2):248–254. https://doi.org/10.1271/bbb.66.248; Kuriyama I., Musumi K., Yonezawa Y., Takemura M., Maeda N., Iijima H., … Mizushina Y. Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. The Journal of Nutritional Biochemistry. 2005;16(10):594–601. https://doi.org/10.1016/j.jnutbio.2005.02.007; Maeda N., Matsubara K., Yoshida H., Mizushina Y. Anti-cancer Effect of Spinach Glycoglycerolipids as Angiogenesis Inhibitors Based on the Selective Inhibition of DNA Polymerase Activity. Mini-Reviews in Medicinal Chemistry. 2011;11(1):32–38. https://doi.org/10.2174/138955711793564042; Sidorova Y.S., Petrov N.A., Shipelin V.A., Mazo V.K. Spinach and quinoa - prospective food sources of biologically active substances. Voprosy Pitaniia. 2020;89(2):100-106. https://doi.org/10.24411/0042-8833-2020-10020 (In Russ.); Ryder E.J. Spinach. Leafy Salad Vegetables. 1979. 195–227. https://doi.org/10.1007/978-94-011-9699-4_6; Morelock T.E., Correll J.C. Spinach. In: Vegetables I. Handbook of plant breeding. (ed. by Prohens J., Nuez F.). Springer, New York. 2008. https://doi.org/.1007/978-0-387-30443-4_6; Bergquist S.Å.M., Gertsson U.E., Nordmark L.Y.G., Olsson M.E. Ascorbic Acid, Carotenoids, and Visual Quality of Baby Spinach as Affected by Shade Netting and Postharvest Storage. Journal of Agricultural and Food Chemistry. 2007;55(21):8444–8451. https://doi.org/10.1021/jf070396z; Li L.H., Lee J.C.-Y., Leung H.H., Lam W.C., Fu Z., Lo A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients. 2020;12(6):1721. https://doi.org/10.3390/nu12061721; Murray I.J., Makridaki M., van der Veen R.L.P., Carden D., Parry N.R.A., Berendschot T.T.J.M. Lutein Supplementation over a One-Year Period in Early AMD Might Have a Mild Beneficial Effect on Visual Acuity: The CLEAR Study. Investigative Opthalmology & Visual Science. 2013;54(3):1781. https://doi.org/10.1167/iovs.12-10715; Manayi A., Abdollahi M., Raman T., Nabavi S.F., Habtemariam S., Daglia M., Nabavi S.M. Lutein and cataract: from bench to bedside. Critical Reviews in Biotechnology. 2015;36(5):829–839. https://doi.org/10.3109/07388551.2015.1049510; Food and Agriculture Organization of the United Nations (FAO), FAOSTAT, 2023. https://www.fao.org/faostat/en/#data/QCL (date of access: 14.01.2025); Deleuran L.C. Innovation in vegetable seed production and the role of consumers in the organic and conventional babyleaf chains: The case of Denmark. Renewable Agriculture and Food Systems. 2010;26(02):149–160. https://doi.org/10.1017/s1742170510000530; State Register for Selection Achievements Admitted for Usage. 2024. https://gossortrf.ru/publication/reestry.php (date of access: 14.01.2025). (In Russ.) 21. Rubatzky V.E., Yamaguchi M. Spinach, Table Beets, and Other Vegetable Chenopods. In World Vegetables: Principles, Production, and Nutritive Values. Springer, 1997:457-473. https://doi.org/10.1007/978-1-4615-6015-9_21; Dekandol' A. Place of origin of cultivated plants: Translation from the 2nd fr. ed. with add. according to later sources. Dr. Chr. Gobi, prof. St. Petersburg. university (ed.). St. Petersburg: K. Ricker, 1885:96-98. (in Russian) https://rusneb.ru/catalog/000199_000009_003599056/ (date of access: 14.01.2025); Hu J., Mou B., Vick B.A. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genetic Resources and Crop Evolution. 2007;54(8):1667–1674. https://doi.org/10.1007/s10722-006-9175-4; Hallavant C., Ruas M.-P. The first archaeobotanical evidence of Spinacia oleracea L. (spinach) in late 12th–mid 13th century a.d. France. Vegetation History and Archaeobotany. 2013;23(2):153–165. https://doi.org/10.1007/s00334-013-0400-8; An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society. 2003;141(4):399–436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x; Girenko M.M. Variability of plant sex in different varieties of spinach. Proceedings on Applied Botany, Genetics and Breeding. 1962;35(1):74-78 (In Russ.); Fujito S., Takahata S., Suzuki R., Hoshino Y., Ohmido N., Onodera Y. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. Genes%7CGenomes%7CGenetics. 2015;5:1663–1673. https://doi.org/10.1534/g3.115.018671; Xu C., Jiao C., Sun H., Cai X., Wang X., Ge C., … Wang Q. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications. 2017;8:15275. https://doi.org/10.1038/ncomms15275; Simoons F.J. Food in China. A Cultural and Historical Inquiry. CRC Press, Boston. 1990; Girenko M.M. Initial material for breeding of leafy green crops in the northwestern zone of the USSR (spinach, lettuce, dill) [dissertation]. Leningrad; 1965. https://search.rsl.ru/ru/record/01000786532; Shi A., Qin J., Mou B., Correll J., Weng Y., Brenner D., … Ravelombola W. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLOS ONE. 2017;12(11):e0188745. https://doi.org/10.1371/journal.pone.0188745; Khattak J.Z.K., Torp A.M., Andersen S.B. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica. 2006;148:311–318. https://doi.org/10.1007/s10681-005-9031-1; Sneep J. The present position of spinach breeding. Euphytica, 1958а;7(1):1–8. https://doi.org/10.1007/bf00037858; Komai F., Masuda K. Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell Tissue and Organ Culture. 2004;78:285–287. https://doi.org/10.1023/B:TICU.0000025665.74491.1e; Pandey S.C., Kalloo G. Spinach. Genetic Improvement of Vegetable Crops. 1993;325–336. https://doi.org/10.1016/b978-0-08-040826-2.50027-8; Mikhov A.S., Alipieva M. Practical vegetable growing. Moscow. Kolos. 1980. (In Russ.); Ribera A., Bai Y., Wolters A.-M. A., van Treuren R., Kik C. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica. 2020;216(3). https://doi.org/10.1007/s10681-020-02585-y; Vilmorin-Andrieux. Description des Plantes Potage`res. Vilmorin Andrieux & Cie. 1855. Paris, pp. 127-130. https://gallica.bnf.fr/ark:/12148/bpt6k10250876/f5.item; Vilmorin-Andrieux. Les Plantes Potage`res. Vilmorin Andrieux & Cie. 1883. Paris, pp. 202–206. https://gallica.bnf.fr/ark:/12148/bpt6k9641303z/f9.image.texteImage; Gibault G. Histoire des légumes. Paris: Libraire Horticole. 1912. pp 81-88. https://gallica.bnf.fr/ark:/12148/bpt6k6422705t/f5.item; Smith L.B. Breeding mosaic resistant spinach and notes on malnutrition. Bulletin. Virginia Truck Experiment Station. 1920;31:137–160; Cook H.T., Nugent T.J., Paris G.K., Porter R.P. Fusarium wilt of spinach and the development of wilt resistant variety. Va. Truck Exp. Sta. 1947;110:1810–1820.; Sherbakoff C.D. Breeding for resistance to Fusarium and Verticillium wilts. The Botanical Review. 1949;15(6):377–422. https://doi.org/10.1007/bf02861698; Sneep J. The breeding of hybrid varieties and the production of hybrid seed in spinach. Euphytica. 1958;7(2):119–122. https://doi.org/10.1007/bf00035724; Jones R.K. Occurrence of race 3 of Peronospora effusa on spinach in Texas and identification of sources of resistance. Plant Disease. 1982;66(1):1078. https://doi.org/10.1094/PD-66-1078; Thompson A.E. The extent of natural crossing in inbred monoecious spinach lines. Proceedings. American Society for Horticultural Science. 1954;64:405-09.; Thompson A.E. The extent of hybrid vigor in spinach. Proceedings. American Society for Horticultural Science. 1956;67:440-4.; Smith P.G., Zahara M.B. New spinach immune to mildew: hybrid variety developed by plant breeding program intended for use where Viroflay is adapted, produces comparable yield. Hilgardia. 1956;10(7):15–15.; Zink F.W., Smith P.G. A second physiological race of spinach downy mildew. Plant Disease. 1958;42:818.; Smith P.G., Webb R.E., Millett A.M., Luhn C.H. Downy mildew on spinach: a second race of fungus has been found on Califlay variety in the coastal valley area of California. California Agriculture 1961;15(10):5–5. https://californiaagriculture.org/article/113287 (date of access: 14.01.2025); Eenink A.H. Linkage in Spinacia oleracea L. of two racespecific genes for resistance to downy mildew Peronospora farinosa f. sp. Spinaciae Byford. Euphytica 1976;25:713–715. doi.org/10.1007/bf00041610; Jones R.K., Dainello F.J. Occurrence of race 3 of Peronospora effusa on spinach in Texas and identification of sources of resistance. Plant Disease. 1982;66:1078–1079. https://doi.org/10.1094/PD-66-1078; Correll J.C., Morelock T.E., Black M.C., Koike S.T., Brandenberger L.P., Dainello F.J. Economically important diseases of spinach. Plant Disease. 1994;78:653–660.; Feng C., Saito K., Liu B., Manley A., Kammeijer K., Mauzey S. J., … Correll J. C. New Races and Novel Strains of the Spinach Downy Mildew Pathogen Peronospora effusa. Plant Disease. 2018;102(3):613–618. https://doi.org/10.1094/pdis-05-17-0781-re; The International Spinach Database (ISDB), Available online: https://ecpgr.cgn.wur.nl/lvintro/spinach/con_spec.htm (date of access: 14.01.2025); Van Treuren R., Coquin P., Lohwasser U. Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps. Genetic Resources and Crop Evolution. 2012;59(6):981–997. https://doi.org/10.1007/s10722-011-9738-x; Van Treuren R., de Groot L., Hisoriev H., Khassanov F., Farzaliyev V., Melyan G., Gabrielyan I., van Soest L., Tulmans C., Courand D., de Visser J., Kimura R., Boshoven J.C., Janda T., Goossens R., Verhoef M., Dijkstra J., Kik C.Acquisition and regeneration of Spinacia turkestanica and S. tetrandra Steven ex M. Bieb. to improve a spinach gene bank collection. Genetic Resources and Crop Evolution. 2019. https://doi.org/10.1007/s10722-019-00792-8; Qian W., Feng C.D., Zhang H.L., Liu W., Xu D.H., Correll J.C., Xu Z.S. First report of race diversity of the spinach downy mildew pathogen, Peronospora effusa, in China. Plant Disease. 2016;100:1248. https://doi.org/10.1094/PDIS-08-15-0847-PDN; Sattler M.C., Carvalho C.R., Clarindo W.R. The polyploidy and its key role in plant breeding. Planta. 2015;243(2):281–296. https://doi.org/10.1007/s00425-015-2450-x; Ito M., Ohmido N., Akiyama Y., Fukui K., Koba T. Characterization of spinach chromosomes by condensation patterns and physical mapping of 5S and 45S rDNAs by FISH. Journal of the American Society for Horticultural Science. 2000;125(1):59-62. https://doi.org/10.21273/JASHS.125.1.59; Bragdo M. Breeding of polyploid spinach. Euphytica. 1962;11:143–148 https://doi.org/10.1007/BF00033786; Roughani A., Miri S.M., Kashi A.K., Khiabani B.N. Increasing the ploidy level in spinach (Spinacia oleracea L.) using mitotic inhibitors. Plant cell biotechnology and molecular biology. 2017;18(3-4):124-130.; Murphy J.B., Morelock T.E. Spinach breeding program yields lines containing high levels of carotenoid antioxidants. In: Richardson M.D., Clark J.R. (eds) Horticultural studies, research series. 2000; 475. University of Arkansas, Fayetteville, pp 36–39.; Howard L.R., Pandjaitan N., Morelock T., Gil M.I. Antioxidant Capacity and Phenolic Content of Spinach As Affected by Genetics and Growing Season. Journal of Agricultural and Food Chemistry. 2002;50(21):5891–5896. https://doi.org/10.1021/jf020507o; EURISCO. European Search Catalogue for Plant Genetic Resources. https://eurisco.ipkgatersleben.de/apex/eurisco_ws/r/eurisco/cropsearchresult1?p17_crop=spinach&p17_ce=N (дата обращения 15.01.2025); Sokolova D.V., Zaretsky A.M. Study of genetic resources of representatives of the amaranth family (Amaranthaceae Juss.) at the Polar Experimental Station of VIR. Abstracts of reports. Series "Northern agriculture. Issue 1". VIR. 2023. https://doi.org/10.30901/978-5-907145-97-9 https://www.vir.nw.ru/wp-content/uploads/2023/09/Severnoezemledelie_Ovoshhnye-kultury_nauchnyj-seminar-v-ramkah100-letiya-severnogo-zemledeliya-posvyashhennyj-90-letiyu-sodnya-rozhdeniya-L.-V.-Sazonovoj_2023.pdf (date of access: 14.01.2025) (In Russ.); Kiselev E.G., Sokolova D.V. Study of the VIR spinach collection for early maturity and sex divergence in ontogenesis at different sowing dates in the conditions of the North-West region of the Russian Federation. Abstracts of the Conference "VIR - 130: Plant Genetic Resources".2024. (In Russ.).; https://www.vegetables.su/jour/article/view/2610
-
8
-
9
-
10
-
11
-
12Academic Journal
Συγγραφείς: V. M. Efimov, D. V. Rechkin, N. P. Goncharov, В. М. Ефимов, Д. В. Речкин, Н. П. Гончаров
Συνεισφορές: This study was supported by the Russian Science Foundation (project No. 22-16-20026) and the Government of the Novosibirsk Region.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 155-165 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 155-165 ; 2500-3259 ; 10.18699/vjgb-24-15
Θεματικοί όροι: скороспелость, global warming, models, next generation breeding, adaptability, earliness, глобальное потепление, модели, селекция будущего, адаптивность
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4085/1822; Atkinson M.D., Kettlewell P.S., Poulton P.R., Hollins P.D. Grain qua lity in the broadbalk wheat experiment and the winter north atlantic oscillation. J. Agric. Sci. 2008;146(5):541-549. DOI 10.1017/S0021859608007958; Baltzoi P., Fotia K., Kyrkas D., Nikolaou K., Paraskevopoulou A.T., Accogli A.R., Karras G. Low water-demand plants for landscaping and agricultural cultivations – A review regarding local species of Epirus/Greece and Apulia/Italy. Agric. Agric. Sci. Procedia. 2015;4:250-260. DOI 10.1016/j.aaspro.2015.03.029; Barash S.I. History of Crop Failures and Weather in Europe. Leningrad: Gidrometeoizdat Publ., 1989 (in Russian); Biswas A., Karak B.B., Usoskin I., Weisshaar E. Long-term modulation of solar cycles. Space Sci. Rev. 2023;219(3):19. DOI 10.1007/s11214-023-00968-w; Ceccarelli S., Grando S., Maatougui M., Michael M., Slash M., Haghparast R., Rahmanian M., Taheri A., Al-Yassin A., Benbelkacem A., Labdi M., Mimoun H., Nachit M. Plant breeding and climate changes. J. Agric. Sci. 2010;148(6):627-637. DOI 10.1017/S0021859610000651; Clette F., Svalgaard L., Vaquero J.M., Cliver E.W. Revisiting the sunspot number: A 400-year perspective on the solar cycle. Space Sci. Rev. 2014;186:35-103. DOI 10.1007/s11214-014-0074-2; Cooper M., Messina C.D. Breeding crops for drought-affected environments and improved climate resilience. Plant Cell. 2023;35(1):162-186. DOI 10.1093/plcell/koac321; Eastwood R.J., Tambam B.B., Aboagye L.M., Akparov Z.I., Aladele S.E., Allen R., Amri A., … Tapia Toll J., Vu D.T., Vu T.D., Way M.J., Yazbek M., Zorrilla C., Kilian B. Adap ting agriculture to climate change: A synopsis of coordinated National Crop Wild Relative Seed Collecting Programs across five continents. Plants. 2022;11(14):1840. DOI 10.3390/plants11141840; Eckardt N.A., Ainsworth E.A., Bahuguna R.N., Broadley M.R., Busch W., Carpita N.C., … Rim E.Y., Ronald P.C., Salt D.E., Shigenaga A.M., Wang E., Wolfe M., Zhang X. Climate change challenges, plant science solutions. Plant Cell. 2023;35(1): 24-66. DOI 10.1093/plcell/koac303; Efimov V.M., Goncharov N.P. Weather extremes and crop failures in Europe. In: Abstracts from the Tenth Siberian Meeting on Climate-Ecological Monitoring. Tomsk, October 14-17, 2013. Tomsk: Agraf-Press Publ., 2013;53 (in Russian); Efimov V.M., Galaktionov Yu.K., Shushpanova N.F. Analysis and Forecast of Time Series by the Principal Component Method. Novosibirsk: Nauka Publ., 1988 (in Russian); Efimov V.M., Efimov K.V., Polunin D.A., Kovaleva V.Y. New possibilities of the PCA-Seq method in the analysis of time series (on the example of solar activity). J. Phys. Conf. Ser. 2021; 2099(1):012034. DOI 10.1088/1742-6596/2099/1/012034; Goncharov N.P. Plant domestication. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013; 17(4/2):884-899 (in Russian); Goncharov N.P., Chikida N.N. Genetics of the growth habit in Aegilops squarrosa L. Genetika (Moscow). 1995;31(3):343-346; Gower J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966; 53(3-4): 325-338. DOI 10.1093/biomet/53.3-4.325; Gupta A. Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr. Sci. 2004;87(1):54-59; Gurova T.A., Osipova G.M. The problem of combined stress resistance of plants under climate change in Siberia. Sibirskiy Vestnik Sel’skokhozyaystvennoy Nauki = Siberian Herald of Agricultural Science. 2018;48(2):81-92. DOI 10.26898/0370-8799-2018-2-11 (in Russian); Hendry R.M. On the structure of the deep Gulf Stream. J. Mar. Res. 1982;40(1):119-142; Hogg N.G. On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep-Sea Res. 1992;39(7-8): 1231-1246. DOI 10.1016/0198-0149(92)90066-3; Hogg N.G., Johns W.E. Western boundary currents. Rev. Geophys. 1995;33(S2):1311-1334. DOI 10.1029/95RG00491; Jatayev S., Sukhikh I., Vavilova V., Smolenskaya S.E., Goncharov N.P., Kurishbayev A., Zotova L., Absattarova A., Serikbay D., Hu Y.-G., Borisjuk N., Gupta N.P., Jacobs B., de Groot S., Koekemoer F., Alharthi B., Lethola K., Cu D., Schramm C., Anderson P., Jenkins C., Soole K.L., Shavrukov Y., Langridge P. Green revolution ‘stumbles’ in a dry environment: Dwarf wheat plants with Rht genes fail to produce higher yield than taller geno types under drought. Plant Cell Environ. 2020;43(10):2355-2364. DOI 10.1111/pce.13819; Kamran A., Iqbal M., Spaner D. Flowering time in wheat (Triticum aestivum L.): A key factor for global adaptabi lity. Euphytica. 2014; 197:1-26. DOI 10.1007/s10681-014-1075-7; Karhunen K. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1947; 37:1-79.; Kattsov V.M., Meleshko V.P., Khlebnikova E.I., Shkolnik I.M. Assessment of climate impacts on agriculture in Russia over the first half of the XXI century: current opportunities provided by numerical modeling. Agrofizika = Agrophysica. 2011;(3):22-30 (in Russian); Leigh F.J., Wright T.I., Horsnell R.A., Dyer S., Bentley A.R. Progenitor species hold untapped diversity for potential climateresponsive traits for use in wheat breeding and crop improvement. Heredity. 2022;128(5):291-303. DOI 10.1038/s41437-022-00527-z; Liang Y., Tian F. Plant genetics: Mechanisms of wild soybean adaptation. Curr. Biol. 2023;33(2):R82-R84. DOI 10.1016/j.cub.2022.12.009; Liu Z., Hu Z., Lai X., Cao J., Zhang J., Ma X., Zhang X., Wang X., Ji W., Xu S. Multi-environmental population phenotyping suggests the higher risks of wheat Rht-B1b and Rht-D1b cultivars in global warming scenarios. bioRxiv. 2022;07:500398. DOI 10.1101/2022.07.18.500398; Lobell D.B., Gourdji S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012;160(4):1686-1697. DOI 10.1104/pp.112.208298; Lobkovsky L.I., Baranov A.A., Ramazanov M.M., Vladimirova I.S., Gabsatarov Y.V., Semiletov I.P., Alekseev D.A. Trigger mechanisms of gas hydrate decomposition, methane emissions, and glacier breakups in polar regions as a result of tectonic wave deformation. Geosciences. 2022;12(10):372. DOI 10.3390/geosciences12100372; Loève M. Fonctions Aléatoires de Second Ordre. In: Lévy P. (Ed.). Processus Stochastique et Mouvement Brownien. Paris: Gauthier-Vil lars, 1948;366-420; Manabe S. Role of greenhouse gas in climate change. Tellus A: Dyn. Meteorol. Oceanogr. 2019;71(1):1620078. DOI 10.1080/16000870.2019.1620078; Manabe S. Nobel Lecture: Physical modeling of Earth’s climate. Rev. Mod. Phys. 2023;95(1):010501. DOI 10.1103/RevModPhys.95.010501; Morgounov A., Sonder K., Abugalieva A., Bhadauria V., Cuthbert R.D., Shamanin V., Zelenskiy Yu., DePauw R.M. Effect of climate change on spring wheat yields in North America and Eurasia in 1981-2015 and implications for breeding. PLoS One. 2018;13(10):e0204932. DOI 10.1371/journal.pone.0204932; Nordhaus W. Climate change: The ultimate challenge for economics. Am. Econ. Rev. 2019;109(6):1991-2014. DOI 10.1257/aer.109.6.1991; Oppenheim A.V., Schafer R.W. Digital Signal Processing. New Jersey: Pearson, 1975; Pearson K.L. III. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901;2(11):559-572; Prentice R. Cultural responses to climate change in the Holocene. Anthós. 2009;1(1):3. DOI 10.15760/anthos.2009.41; Rauner Yu.L. Climate and Crop Productivity. Moscow: Nauka Publ., 1981 (in Russian); Ruddiman W.F., Fuller D.Q., Kutzbach J.E., Tzedakis P.C., Kaplan J.O., Ellis E.C., Vavrus S., Roberts J., Fyfe C.N., He R.F., Lemmen C., Woodbridge J. Late Holocene climate: Natural or anthropogenic? Rev. Geophys. 2016;54(1):93-118. DOI 10.1002/2015RG000503; Shnirelman V.A. The Emergence of a Productive Economy: Centers of Ancient Agriculture. Moscow: Librokom Publ., 2012 (in Russian); Sirotenko O.D. Crop modeling: Advances and problems. Agron. J. 2001;93(3):650-653. DOI 10.2134/agronj2001.933650ax; Sleptsov A.M., Klimenko V.V. Generalization of paleoclimatic data and reconstruction of the climate of Eastern Europe for the last 2000 years. Istoriya i Sovremennost’ = History and Modernity. 2005;(1):118-135 (in Russian); Smolenskaya S.E., Goncharov N.P. Allelic diversity of the Vrn genes and the control of growth habit and earliness in wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(8):933-946. DOI 10.18699/VJGB-23-108 (in Russian); Smolenskaya S.E., Efimov V.М., Kruchinina Yu.V., Nemtsev B.F., Chepurnov G.Yu., Ovchnnikova Е.S., Belan I.А., Zuev Е.V., Zhou Chenxi, Piskarev V.V., Goncharov N.P. Earliness and morphotypes of common wheat cultivars of Western and Eastern Siberia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Ge netics and Breeding. 2022;26(7):662-674. DOI 10.18699/VJGB-22-81 (in Russian); Solanki S.K., Usoskin I.G., Kromer B., Schüssler M., Beer J. An unusually active Sun during recent decades compared to the previous 11,000 years. Nature. 2004;431(7012):1084-1087. DOI 10.1038/nature02995; Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K., Tignor M., Miller H. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang. Cambridge: Cambridge University Press, 2007; Sukhikh I.S., Vavilova V.Y., Blinov A.G., Goncharov N.P. Diversity and phenotypical effect of the allelic variants of Rht dwarfing genes in wheat. Russ. J. Genet. 2021;57(2):127-138. DOI 10.1134/S1022795421020101; Takens F. Detecting strange attractors in turbulence. In: Rand D., Young L.S. (Eds). Dynamical Systems and Turbulence. Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer, 1981;366-381. DOI 10.1007/BFb0091924; Toynbee A.J. A Study of History. London: Oxford University Press, 1954; Trifonov V.G., Karakhanyan A.S. Geodynamics and History of Civilizations. Moscow: Nauka Publ., 2004 (in Russian); Trifonova A.A., Dedova L.V., Zuev E.V., Goncharov N.P., Kudryav tsev A.M. Comparative analysis of the gene pool structure of Triticum aethiopicum wheat accessions conserved ex situ and recollected in field after 85 year later. Biodivers. Conserv. 2021; 30(2):329-342. DOI 10.1007/s10531-020-02091-6; Usoskin I.G., Hulot G., Gallet Y., Roth R., Licht A., Joos F., Koval tsov G.A., Thebault E., Khokhlov A. Evidence for distinct modes of solar activity. Astron. Astrophys. 2014;562(1):L10. DOI 10.1051/0004-6361/201423391; Wu C.J., Usoskin I.G., Krivova N., Kovaltsov G.A., Baroni M.; Bard E., Solanki S.K. Solar activity over nine millennia: A consistent multi-proxy reconstruction. Astron. Astrophys. 2018; 615: A93. DOI 10.1051/0004-6361/201731892; Zolotokrylin A.N., Cherenkova E.A., Titkova T.B. Aridization of drylands in the European part of Russia: Secular trends and links to droughts. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya = Bulletin of the RAS. Geographic Series. 2020;84(2): 207-217. DOI 10.31857/S258755662002017X (in Russian); Zotova L., Shamambaeva N., Lethola K., Alharthi B., Vavilova V., Smolenskaya S.E., Goncharov N.P., Jatayev S., Kurishbayev A., Gupta N.K., Gupta S., Schramm C., Anderson P., Jenkins C.L.D., Soole K.L., Shavrukov Yu. TaDrAp1 and TaDrAp2, Partner genes of a transcription repressor, coordinate plant development and drought tolerance in spelt and bread wheat. Int. J. Mol. Sci. 2020;21(21):8296. DOI 10.3390/ijms21218296; https://vavilov.elpub.ru/jour/article/view/4085
-
13Academic Journal
Συγγραφείς: S. B. Lepekhov, С. Б. Лепехов
Πηγή: Bulletin of NSAU (Novosibirsk State Agrarian University); № 2 (2024); 102-110 ; Вестник НГАУ (Новосибирский государственный аграрный университет); № 2 (2024); 102-110 ; 2072-6724
Θεματικοί όροι: исходный материал, earliness, yield, yield components, Ppd-D1a allele, plant breeding, initial material, скороспелость, урожайность, элементы структуры урожая, аллель Ppd-D1a, селекция
Περιγραφή αρχείου: application/pdf
Relation: https://vestngau.elpub.ru/jour/article/view/2302/1012; Скороспелость образцов яровой мягкой пшеницы в условиях Среднего Поволжья / Д.Ф. Асхадуллин, Д.Ф. Асхадуллин, Н.З. Василова [и др.] // Труды по прикладной ботанике, генетике и селекции. – 2022. – Т. 183, № 3. – С. 66–75.; Сравнительная оценка сортообразцов яровой мягкой пшеницы по комплексу признаков в условиях Центрального района Нечерноземной зоны России / И.Н. Ворончихина, В.С. Рубец, В.В. Ворончихин [и др.] // Достижения науки и техники АПК. – 2021. – Т. 35, № 10. – С. 32–38.; Волкова Л.В. Исходный материал для селекции сортов яровой мягкой пшеницы в условиях Кировской области // Вестник НГАУ (Новосибирский государственный аграрный университет). – 2016. – № 2 (39). – С. 7–16.; Скороспелость и морфотип сортов мягкой пшеницы Западной и Восточной Сибири / С.Э. Смоленская, В.М. Ефимов, Ю.В. Кручинина [и др.] // Вавиловский журнал генетики и селекции. – 2022. – Т. 26, № 7. – С. 662–674.; Сидоров А.В. Селекция яровой пшеницы в Красноярском крае: монография. – Красноярск, 2018. – 208 с.; Создание конкурентоспособных сортов зерновых культур для условий Сибири / И.Е. Лихенко, Г.В. Артемова, Е.А. Салина [и др.] // Труды Кубанского государственного аграрного университета. – 2015. – № 54. – С. 181–185.; Identification of genetic loci for early maturity in spring bread wheat using the association analysis and gene dissection / A.A. Kiseleva, I.N. Leonova, E.V. Ageeva [et al.] // PeerJ. – 2023. – Vol. 11. – P. e16109.; Comparative AFLP mapping of Triticum monococcum genes controlling vernalization requirement / J. Dubcovsky, D. Lijavetzky, L. Appendino [et al.] // Theoretical and Applied Genetics. – 1998. – Vol. 97. – P. 968–975.; Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit / X.K. Zhang, Y.G. Xiao, Y. Zhang [et al.] // Crop Science. – 2008. – Vol. 48, No. 2. – P. 458–470.; Stelmakh A.F. Genetic systems regulating flowering response in wheat // Euphytica. – 1998. – Vol. 100. – P. 359–369.; Каталог мировой коллекции ВИР. Выпуск 815. Мягкая пшеница. Молекулярное тестирование аллелей Vrnи Ppd-генов у допущенных к использованию в Российской Федерации селекционных сортов / Н.С. Лысенко, А.А. Киселева, О.П. Митрофанова [и др.]. – СПб.: ВИР, 2014. – 30 с.; Pérez-Gianmarco T.I., Slafer G.A., González F.G. Wheat pre-anthesis development as affected by photoperiod sensitivity genes (Ppd-1) under contrasting photoperiods // Functional plant biology. – 2018. – Vol. 45, Iss. 6. – P. 645–657.; Phenotypic effects of the flowering gene complex in Canadian spring wheat germplasm / A. Kamran, H.S. Randhawa, C. Pozniak [et al.] // Crop Science. – 2013. – Vol. 53, N 1. – P. 84–94.; Лепехов С.Б. Перспектива внедрения аллеля Ppd-D1a в сорта яровой мягкой пшеницы в России // Генетика. – 2022. – Т. 58, № 1. – С. 27–34.; Eagles H.A., Cane K., Vallance N. The flow of alleles of important photoperiod and vernalisation genes through Australian wheat // Crop and Pasture Science. – 2009. – Vol. 60, N 7. – P. 646–657.; Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat / H. Chen, N.P. Moakhar, M. Iqbal [et al.] // Euphytica. – 2016. – Vol. 208. – P. 377–390.; Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century / J. Zhao, Z. Wang, H. Liu [et al.] // BMC Plant Biology. – 2019. – Vol. 19, N 1. – P. 1–14.; Genetic Resources Information System for Wheat and Triticale – URL: http://wheatpedigree.net.; A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) / J. Beales, A. Turner, S. Griffiths [et al.] // Theoretical and applied genetics. – 2007. – Vol. 115. – P. 721–733.; Green revolution ‘stumbles’ in a dry environment: Dwarf wheat with Rht genes fails to produce higher grain yield than taller plants under drought / S. Jatayev, A. Kurishbayev, L. Zotova [et al.] // Plant, Cell & Environment. – 2020. – Vol. 43, N 10. – P. 2355–2364.; Effect of variation for major growth habit genes on maturity and yield in five spring wheat populations / N.K. Blake, S.P. Lanning, J.M. Martin [et al.] // Crop Science. – 2009. – Vol. 49, N 4. – P. 1211–1220.; Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod / J. Dyck, M. Matus-Cadiz, P. Hucl [et al.] // Crop science. – 2004. – Vol. 44, N 6. – P. 1976–1981.; Floret development in near isogenic wheat lines differing in plant height / D.J. Miralles, S.D. Katz, A. Colloca [et al.] // Field Crops Research. – 1998. –Vol. 59, N 1. – P. 21–30.; Sakamoto T., Matsuoka M. Generating high-yielding varieties by genetic manipulation of plant architecture // Current Opinion in Biotechnology. – 2004. –Vol. 15. – P. 144–147.; Simmonds N.W. Yields of cereal grain and protein // Experimental Agriculture. – 1996. – Vol. 32, N 3. – P. 351–356.; https://vestngau.elpub.ru/jour/article/view/2302
-
14Academic Journal
Συγγραφείς: I. Yu. Ivanova, A. A. Fadeev, S. V. Ilina, И. Ю. Иванова, А. А. Фадеев, С. В. Ильина
Συνεισφορές: the research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of Federal Agricultural Research Center of the North-East named N. V. Rudnitsky (theme No. FNWE-2022-0007). The authors thank the reviewers for their contribution to the peer review of this work., работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «Федеральный аграрный научный центр Северо-Востока имени Н. В. Рудницкого» (тема № FNWE-2022-0007). Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.
Πηγή: Agricultural Science Euro-North-East; Том 25, № 5 (2024); 831–838 ; Аграрная наука Евро-Северо-Востока; Том 25, № 5 (2024); 831–838 ; 2500-1396 ; 2072-9081
Θεματικοί όροι: элементы продуктивности, precocity, yield, adaptability, variability, productivity elements, скороспелость, урожайность, адаптивность, вариабельность
Περιγραφή αρχείου: application/pdf
Relation: https://www.agronauka-sv.ru/jour/article/view/1758/813; Минькач Т. В., Селихова О. А., Дубовицкая Л. К., Тихоньчук П. В. Комплексная оценка коллекционных образцов для селекции сои. Дальневосточный аграрный вестник. 2020;54(2):35–41. Режим доступа: https://elibrary.ru/item.asp?id=43313796 EDN: GYYMMH; Некрасов А. Ю. Соя: источники из коллекции генетических ресурсов ВИР. Труды по прикладной ботанике, генетике и селекции. 2020;181(1):48–52. DOI: http://doi.org/10.30901/2227-8834-2020-1-48-52 EDN: QMLIIA; Присяжная И. М., Присяжная С. П. Определение конструктивных параметров дополнительной транспортной и скатной досок в комбайне двухфазного обмолота для сепарации семян сои. Агронаука. 2024;2(1):78–89. Режим доступа: https://www.elibrary.ru/item.asp?id=65110526 EDN: BORKEV; Дорохов А. С., Белышкина М. Е., Большева К. К. Производство сои в Российской Федерации: основные тенденции и перспективы развития. Вестник Ульяновской государственной сельскохозяйственной академии. 2019;(3(47)):25–33. DOI: http://doi.org/10.18286/1816-4501-2019-3-25-33 EDN: DXORYI; Асанов А. М., Омельянюк Л. В., Халипский А. Н. Урожайность сортов сои различного происхождения в условиях западной Сибири. Вестник КрасГАУ. 2023;(8(197)):54–63. Режим доступа: https://www.elibrary.ru/item.asp?id=56446659 EDN: FBXUFS; Васина Е. А., Бутовец Е. С., Лукьянчук Л. М. Результаты изучения исходного материала сои в условиях Приморского края для селекционных целей. Труды по прикладной ботанике, генетике и селекции. 2022;183(4):19–29. DOI: https://doi.org/10.30901/2227-8834-2022-4-19-29 EDN: SZUJVA; Сеферова И. В., Вишнякова М. А. Генофонд сои из коллекции ВИР для продвижения агрономического ареала культуры к северу. Зернобобовые и крупяные культуры. 2018;(3(27)):41–47. DOI: http://doi.org/10.24411/2309-348X-2018-11030 EDN: XZCKXJ; Иванова И. Ю., Фадеев А. А. Влияние погодных условий на урожайность сои в условиях Волго-Вятского региона. Зернобобовые и крупяные культуры. 2020;(4(36)):93–98. Режим доступа: https://www.elibrary.ru/item.asp?id=44356452 EDN: DFFASV; Зеленский Н. А., Зеленская Г. М., Абрамов А. А., Бабак Ю. В. Продуктивность сои в зависимости от совместного применения почвопокровной сидеральной культуры и различных ресурсосберегающих технологий обработки почвы в Волго-Вятском регионе. APK News. 2018;(10):23–25. Режим доступа: https://www.elibrary.ru/item.asp?id=36265635 EDN: VJNNSU; Решение координационного совещания «Развитие исследований по селекции, семеноводству и технологиям возделывания масличных культур с учетом изменяющихся погодных условий». Масличные культуры. Научно-технический бюллетень Всероссийского научно-исследовательского института масличных культур. 2011;(2(148–149)):3–4. Режим доступа: https://www.elibrary.ru/item.asp?id=17889509 EDN: PBMJSJ; Посыпанов Г. С. Соя в Подмосковье. Сорта северного экотипа для Центрального Нечерноземья и технологии их возделывания. М.: РГАУ-МСХА им. К. А. Тимирязева, 2007. 200 с.; Белышкина М. Е., Кобозева Т. П., Гуреева Е. В. Рост и развитие сортов сои северного экотипа в зависимости от влияния лимитирующих факторов вегетационного периода. Аграрный научный журнал. 2020;(9):4–9. DOI: https://doi.org/10.28983/asj.y2020i9pp4-9 EDN: FMBIUQ
-
15Academic Journal
Συγγραφείς: Yakubenko, E. V., Zinchenko, A. S., Boyko, K. Y., Vedmedeva, E. V.
Πηγή: Селекція і насінництво; № 119 (2021); 210-218
Plant Breeding and Seed Production; No. 119 (2021); 210-218
Селекция и семеноводство; № 119 (2021); 210-218Θεματικοί όροι: 2. Zero hunger, 0301 basic medicine, drought resistance, ранньостиглість, засухоустойчивость, 04 agricultural and veterinary sciences, 15. Life on land, урожайність, yield, продуктивність, 6. Clean water, посухостійкість, early ripening, variety, продуктивность, 03 medical and health sciences, урожайность, 0401 agriculture, forestry, and fisheries, сорт, soybean, соя, performance, скороспелость
Περιγραφή αρχείου: application/pdf
-
16Academic Journal
Συγγραφείς: Nikolay V. Dorofeev, Anatoly V. Pomortsev, Irina V. Fedoseeva, Natalia B. Katysheva, Alexander I. Katyshev
Πηγή: Siberian Journal of Life Sciences and Agriculture, Vol 13, Iss 1, Pp 35-57 (2021)
Θεματικοί όροι: Science, соя (glycine max (l.) merr.), транскрипционные факторы, Agriculture, экспрессия генов, скороспелость
-
17
-
18Report
-
19Academic Journal
Συγγραφείς: Bekenev, V.A., Deeva, V.S., Bolshakova, I.V., Aitnazarov, R.B., Khoroshilova, T.S., Frolova, Y.V.
Πηγή: Journal of Bioinformatics and Genomics, Vol 2021, Iss 2 (16), Pp 1-4 (2021)
Θεματικοί όροι: agriculture breeds, blood groups, erythrocyte enzymes, genetic markers, fatty acids, growth rate, породы, группы крови, эритроцитарные ферменты, генетические маркеры, жирные кислоты, скороспелость, плодовитость, Genetics, QH426-470
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/8865810c2b9e4c9e80c3824699b544ed
-
20Academic Journal
Συγγραφείς: S. E. Smolenskaya, N. P. Goncharov, С. Э. Смоленская, Н. П. Гончаров
Συνεισφορές: This research was funded by of the Russian Science Foundation (Project No. 22-16-20026) and the Governments of the Novosibirsk Region.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 8 (2023); 933-946 ; Вавиловский журнал генетики и селекции; Том 27, № 8 (2023); 933-946 ; 2500-3259 ; 10.18699/VJGB-23-106
Θεματικοί όροι: скороспелость, Vrn genes, winter/spring growth habit, length of plant vegetative period, earliness, гены Vrn, яровость, озимость, длина вегетационного периода
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4004/1781; Adonina I.G., Goncharov N.P., Badaeva E.D., Sergeeva E.M., Petrash N.V., Salina E.A. (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp. Cytogenet. 2015;9(4):533-547. DOI 10.3897/CompCytogen.v9i4.5120; Ausemus E.R., Herrington J.B., Reitz L.P., Worzella W.W. A summary of genetic studies in hexaploid and tetraploid wheats. J. Am. Soc. Agron. 1946;38:1082-1099; Barrett B., Bayram M., Kidwell K., Weber W.E. Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed. 2002;121(5):400-406. DOI 10.1046/j.1439-0523.2002.732319.x; Berezhnaya A., Kiseleva A., Leonova I., Salina E. Allelic variation analysis at the vernalization response and photoperiod genes in Russian wheat varieties identified two novel alleles of Vrn-B3. Biomolecules. 2021;11(12):1897. DOI 10.3390/biom11121897; Bonnin I., Rousset M., Madur D., Sourdille P., Dupuits C., Brunel D., Goldringer I. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet . 2008;116(3):383-394. DOI 10.1007/s00122-007-0676-0; Bulavka N.V. Inheritance of different requirements for vernalization in crossing winter varieties of bread wheat. Trudy po Pri klad noy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1984;85:37-42 (in Russian); Catalogue of Varieties of Spring Soft Wheat by Genotypes of the Vrn Loci System (Sensitivity to Vernalization). Odessa: Plant Breeding and Genetics Institute, 1987 (in Russian); Chen A., Li C., Hu W., Lau M.Y., Lin H., Rockwell N., Martin S.S., Jernstedt J., Lagarias K., Dubcovsky J. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc. Natl. Acad. Sci. USA. 2014;111(28):10037-10044. DOI 10.1073/pnas.1409795111; Chen F., Gao M., Zhang J., Zuo A., Shang X., Cui D. Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biol. 2013;13(1): 199. DOI 10.1186/1471-2229-13-199; Chen Y., Carver B.F., Wang S., Zhang F., Yan L. Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor. Appl. Genet. 2009;118(5):881-889. DOI 10.1007/s00122-008-0946-5; Chen Y., Carver B.F., Wang S., Cao S., Yan L. Genetic regulation of developmental phases in winter wheat. Mol. Breed. 2010;26(4):573- 582. DOI 10.1007/s11032-010-9392-6; Chen Z., Cheng X., Chai L., Wang Z., Du D., Wang Z., Bian R., Zhao A., Xin M., Guo W., Hu Z., Peng H., Yao Y., Sun Q., Ni Z. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2020;133(6):1825-1838. DOI 10.1007/s00122-020-03556-6; Chepurnov G.Yu., Blinov A.G. Effect of different alleles of the Vrn- A1 gene on the timing of heading in T. monococcum. In: Proceedings the 6th International Conference “Gene Pool and Plant Breeding” (GPB2022), Novosibirsk, November 23–25, 2022. Novosibirsk: Institute of Cytology and Genetics, 2022;206-209 (in Russian); Chepurnov G.Y., Ovchinnikova Е.S., Blinov A., Chikida N.N., Belousova M.Kh., Goncharov N.P. Analysis of structural organization and expression of Vrn-D1 genes that control the growth habit (spring vs. winter) in Aegilops tauschii Coss. Plants. 2023;12(20):3596. DOI 10.3390/plants12203596; Chu C.-G., Tan C.T., Yu G.-T., Zhong S., Xu S.S., Yan L. A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.). G3. 2011; (7):637-645. DOI 10.1534/g3.111.001131; Cockram J., Jones H., Leigh F.J., O’Sullivan D., Powell W., Laurie D.A., Greenland A.J. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J. Exp. Bot. 2007;58(6):1231-1244. DOI 10.1093/jxb/erm042; Dhillon T., Pearce S.P., Stockinger E.J., Distelfeld A., Li C., Knox A.K., Vashegyi I., Vagujfalvi A., Galiba G., Dubcovsky J. Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol. 2010;153(4):1846-1858. DOI 10.1104/pp.110.159079; Díaz A., Zikhali M., Turner A.S., Isaac P., Laurie D.A. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PloS One. 2012;7(3):e33234. DOI 10.1371/journal.pone.0033234; Distelfeld A., Tranquilli G., Li C., Yan L., Dubcovsky J. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 2009;149(1):245-257. DOI 10.1104/pp.108.129353; Dolgushin D.A. World Collection of Wheats against the Background of Vernalization. Moscow: Selkhozgiz Publ., 1935 (in Russian); Dubcovsky J., Lijavetzky D., Appendino L., Tranquilli G. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 1998;97(5):968-975. DOI 10.1007/s001220050978; Dubcovsky J., Chen C., Yan L. Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol. Breed. 2005;15(4):395-407. DOI 10.1007/s11032-005-0084-6; Dubcovsky J., Loukoianov A., Fu D., Valarik M., Sanchez A., Yan L. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 2006;60(4):469-480. DOI 10.1007/s11103-005-4814-2; Efremova T.T., Chumanova E.V., Trubacheeva N.V., Arbuzova V.S., Pershina L.A., Belan I.A. Prevalence of VRN1 locus alleles among spring common wheat cultivars cultivated in Western Siberia. Russ. J. Genet. 2016;52(2):146-153. DOI 10.1134/S102279541601004X; Efremova T.T., Chumanova E.V. Stages of growth and development of wheat and their importance in the formation of productivity elements. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2023;9(2):54-80. DOI 10.18699/LettersVJ-2023-9-09 (in Russian); Faure S., Higgins J., Turner A., Laurie D.A. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics. 2007; 176(1):599-609. DOI 10.1534/genetics.106.069500; Fayt V.I. Genetic system for the control of differences in vernalization duration in winter wheat. Tsitologiya i Genetika = Cytology and Genetics. 2003;37(5):69-76 (in Russian); Fayt V.I. Genetic control of vernalization requirement duration of winter wheat cultivars. Ekologicheskaya Genetika = Ecological Genetics. 2006a;4(2):29-36 (in Russian); Fayt V.I. Near-isogenic lines on the genes controlling differences in duration of vernalization in winter common wheat. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2006b;10(3):580-587 (in Russian); Fayt V.I., Symonenko L.K., Mokanu N.V., Popova N.V. Chromosomal location of genes for vernalization requirement duration (Vrd ) in winter bread wheat. Russ. J. Genet. 2007;43(2):143-148. DOI 10.1134/S1022795407020081; Fayt V.І., Gubich O.Yu., Zelenіna G.A. Differences in the alternate varieties of soft wheat for Vrn-1 genes of development type. Plant Varieties Studying and Protection. 2018;14(2):160-169. DOI 10.21498/2518-1017.14.2.2018.134762 (in Russian); Ferrándiz C., Gu Q., Martienssen R., Yanofsky M.F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development. 2000;127(4):725-734. DOI 10.1242/dev.127.4.725; Flaksberger K.A. Wheat. Moscow; Leningrad: Selkhozgiz Publ., 1938 (in Russian); Flood R.G., Halloran G.M. Genetics and physiology of vernalization response in wheat. Adv. Agron. 1986;39:87-125. DOI 10.1016/S0065-2113(08)60466-6; Fu D., Szűcs P., Yan L., Helguera M., Skinner J.S., von Zitzewitz J., Hayes P.M., Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Gen. Genomics. 2005;273(1):54-65. DOI 10.1007/s00438-004-1095-4; Fu Hao, Bohuslavskyi R.L. Inheritance of growth habit in einkorn wheat. Visnik Ukrains’kogo Tovaristva Genetikiv i Selekcioneriv. 2023;20(1-2):24-30. DOI 10.7124/visnyk.utgis.20.1-2.1510; Galiba G., Quarrie S.A., Sutka J., Morgounov A., Snape J.W. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 1995;90(7):1174-1179. DOI 10.1007/BF00222940; Genotypes of Accessions of Spring Soft Wheat by Genes Controlling the Habit of Development. Catalog of the World Collection of VIR. Issue 427. Leningrad: VNIIR, 1985 (in Russian); Golovnina K.A., Kondratenko E.Ya., Blinov A.G., Goncharov N.P. Phylogeny of the A genome of wild and cultivated wheat species. Russ. J. Genet. 2009;45(11):1360-1367. DOI 10.1134/S1022795409110106; Golovnina K.A., Kondratenko E.Y., Blinov A.G., Goncharov N.P. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biol. 2010;10(1):168. DOI 10.1186/1471-2229-10-168; Goncharov N.P. Genetic resources of wheat related species: The Vrn genes controlling growth habit (spring vs. winter). Euphytica. 1998; 100:371-376. DOI 10.1023/A:1018323600077; Goncharov N.P. Genetics of growth habit (spring vs winter) in common wheat: confirmation of the existence of dominant gene Vrn4. Theor. Appl. Genet. 2003;107(4):768-772. DOI 10.1007/s00122-003-1317-x; Goncharov N.P. Response to vernalization in wheat: its quantitative or qualitative nature. Cereal Res. Commun. 2004;32(3):323-330. DOI 10.1007/BF03543317; Goncharov N.P. Genus Triticum L. taxonomy: the present and the future. Plant Syst. Evol. 2011;295:1-11. DOI 10.1007/s00606-0110480-9; Goncharov N.P. Comparative Genetics of Wheats and their Related Species. 2nd edn. Novosibirsk: Acad. Publ. House “Geo”, 2012 (in Russian); Goncharov N.P., Chikida N.N. Genetics of the growth habit in Aegi lops squarrosa L. Genetika (Moscow). 1995;31(3):343-346; Goncharov N.P., Gaidalenok R.F. Localization of genes controlling spherical grain and compact ear in Triticum antiquorum Heer ex Udacz. Russ. J. Genet. 2005;41(11):1262-1267. DOI 10.1007/s11177-005-0227-1; Goncharov N.P., Goncharov P.L. Methodical Bases of Plant Breeding. 3rd edn. Novosibirsk: Acad. Publ. House “Geo”, 2018 (in Russian); Goncharov N.P., Shitova I.P. The inheritance of growth habit in old local varieties and landraces of hexaploid wheat. Russ. J. Genet. 1999; 35(4):386-392; Goncharov N.P., Kondratenko E.Ja., Bannikova S.V., Konova lov A.A., Golovnina K.A. Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession. Russ. J. Genet. 2007;43(11):1248-1256. DOI 10.1134/S1022795407110075; Gotoh T. Genetic studies on growth habit of some important spring wheat cultivars in Japan, with special reference to the identification of the spring genes involved. Japan. J. Breed. 1979;29(2):133-145. DOI 10.1270/jsbbs1951.29.133; Guo X., Wang Y., Meng L., Liu H., Yang L., Zhou Y., Zhang H. Distribution of the Vrn-D1b allele associated with facultative growth habit in Chinese wheat accessions. Euphytica. 2015;206:1-10. DOI 101007/s10681-015-1440-1; Gupalo P.I., Skripchinskiy V.V. Physiology of the Individual Development of Plants. Moscow: Kolos Publ., 1971 (in Russian); International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191. DOI 10.1126/science.aar7191; Ivaničová Z., Jakobson I., Reis D., Šafář J., Milec Z., Abrouk M., Doležel J., Järve K., Valárik M. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae. New Biotechnol. 2016;33(5/B):718-727. DOI 10.1016/j.nbt.2016.01.008; Iwaki K., Nakagawa K., Kuno H., Kato K. Ecogeographical differentiation in East Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. Euphytica. 2000;111(2):137-143. DOI 10.1023/A:1003862401570; Iwaki K., Haruna S., Niwa T., Kato K. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breed. 2001;120(2):107114. DOI 10.1046/j.1439-0523.2001.00574.x; Iwaki K., Nishida J., Yanagisawa T., Yoshida H., Kato K. Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002;104(4):571-576. DOI 10.1007/s00122-001-0769-0; Jin F.F., Wei L. The expression patterns of three VRN genes in common wheat (Triticum aestivum L.) in response to vernalization. Cereal Res. Commun. 2016;44(1):1-12. DOI 10.1556/0806.43.2015.041; Kato K. Chromosomal location of the genes for vernalization response, Vrn2 and Vrn4, in common wheat, Triticum aestivum L. Wheat Inf. Serv. 1993;76:53-53; Kippes N., Zhu J., Chen A., Vanzetti L., Lukaszewski A., Nishida H., Kato K., Dvorak J., Dubcovsky J. Fine mapping and epistatic interaction of the vernalization gene VRN-D4 in hexaploid wheat. Mol. Genet. Genomics. 2014;289(1):47-62. DOI 10.1007/s00438-0130788-y; Kippes N., Debernardi J.M., Vasquez-Gross H.A., Akpinar B.A., Budak H., Kato K., Chaod S., Akhunov E., Dubcovsky J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc. Natl. Acad. Sci. USA. 2015;112(39):E5401-E5410. DOI 10.1073/pnas.1514883112; Kippes N., Chen A., Zhang X., Lukaszewski A.J., Dubcovsky J. Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes. Theor. Appl. Genet. 2016;129(7):1417-1428. DOI 10.1007/s00122-016-2713-3; Kippes N., Guedira M., Lin L., Alvarez M.A., Brown-Guedira G.L., Dubcovsky J. Single nucleotide polymorphisms in a regulatory site of VRN-A1 first intron are associated with differences in vernalization requirement in winter wheat. Mol. Gen. Genomics. 2018; 293(5):1231-1243. DOI 10.1007/s00438-018-1455-0; Kiseleva A.A., Salina E.A. Genetic regulation of common wheat heading time. Russ. J. Genet. 2018;54(4):375-388. DOI 10.1134/S1022795418030067; Knott D.R. The inheritance of rust resistance: IV. Monosomic analysis of rust resistance and some other characters in six varieties of wheat including Gabo and Kenya farmer. Can. J. Plant Sci. 1959; 39(2):215-228. DOI 10.4141/cjps59-031; Konopatskaia I., Vavilova V., Kondratenko E.Ya., Blinov A., Goncharov N.P. Allelic variation of VRN1 gene in tetraploid wheat species with spring growth habit. BMC Plant Biol. 2016;16(Suppl. 3):244. DOI 10.1186/s12870-016-0924-z; Koval S.F., Goncharov N.P. Multiple allelism at VRN1 locus of common wheat. Acta Agr. Hung. 1998;46(2):113-119; Krasileva K.V., Vasquez-Gross H.A., Howell T., Bailey P., Paraiso F., Clissold L., Simmonds J., Ramirez-Gonzalez R.H., Wang X., Borrill P., Fosker C., Ayling S., Phillips A.L., Uauy C., Dubcovsky J. Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. USA. 2017;114(6):E913-E921. DOI 10.1073/pnas.1619 268114; Kumakov V.A. Principles of constructing optimum models (idiot ypes) of plant varieties. Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 1980;15(2):190-197 (in Russian); Law C.N., Worland A.J., Giorgi B. The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity. 1976; 36(1):49-58. DOI 10.1038/hdy.1976.5; Li C., Dubcovsky J. Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J. 2008;55(4):543-554. DOI 10.1111/j.1365-313X.2008.03526.x; Likhenko I.E., Stasyuk A.I., Shcherban’ A.B., Zyryanova A.F., Likhenko N.I., Salina E.A. Analysis of the allelic variation of the Vrn-1 and Ppd-1 genes in Siberian early and medium early varieties of spring wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(4/1):691-703 (in Russian); Liu Y., He Z., Appels R., Xia X. Functional markers in wheat: current status and future prospects. Theor. Appl. Genet. 2012;125:1-10. DOI 10.1007/s00122-012-1829-3; Lysenko N.S., Kiseleva A.A., Mitrofanova O.P., Potokina E.K. Catalog of the world collection of VIR. Iss. 815. Common wheat. Molecular Testing of Vrn- and Ppd Gene Alleles in Breeding Varie ties Authorized for Use in the Russian Federation. St. Petersburg, 2014 (in Russian); Makhoul M., Chawla H.S., Wittkop B., Stahl A., Voss-Fels K.P., Zetzsche H., Snowdon R.J., Obermeier C. Long-amplicon singlemolecule sequencing reveals novel, trait-associated variants of VERNALIZATION1 homoeologs in hexaploid wheat. Front. Plant Sci. 2022;13:942461. DOI 10.3389/fpls.2022.942461; McIntosh R.A. Catalogue of gene symbols for wheat. In: Proceedings of the Fourth International Wheat Genetics Symposium, Held at the University of Missouri, Columbia, Missouri, USA, August 6-11, 1973. Missouri, 1973;893-937; McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat. 2013. Retrieved from http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp (accessed 20 Febr. 2023); Milec Z., Tomková L., Sumíková T., Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol. Breed. 2012;30(1):317-323. DOI 10.1007/s11032-011-9621-7; Milec Z., Strejčková B., Šafář J. Contemplation on wheat vernalization. Front. Plant Sci. 2023;13:1093792. DOI 10.3389/fpls.2022. 1093792; Moiseeva E.A., Goncharov N.P. Genetic control of the spring habit in old local cultivars and landraces of common wheat from Siberia. Russ. J. Genet. 2007;43(4):369-375. DOI 10.1134/S1022795407040035; Murai K., Miyamae M., Kato H., Takumi S., Ogihara Y. WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol. 2003;44(12):1255-1265. DOI 10.1093/pcp/pcg171; Muterko A. Copy number variation and expression dynamics of the dominant Vernalization-A1a allele in wheat. Plant Mol. Biol. Rep. 2023;1-16. https://doi.org/10.1007/s11105-023-01406-5; Muterko A.F., Salina E.A. Analysis of the VERNALIZATION-A1 exon- 4 polymorphism in polyploid wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(3): 323-333. DOI 10.18699/VJ16.19-o; Muterko A., Balashova I., Cockram J., Kalendar R., Sivolap Y. The new wheat vernalization response allele Vrn-D1s is caused by DNA transposon insertion in the first intron. Plant Mol. Biol. Rep. 2015;33:294-303. DOI 10.1007/s11105-014-0750-0; Muterko A., Kalendar R., Salina E. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol. 2016;16(Suppl. 1):9. DOI 10.1186/s12870-015-0691-2; Nédellec C., Ibanescu L., Bossy R., Sourdille P. WTO, an ontology for wheat traits and phenotypes in scientific publications. Genomics Inform. 2020;18(2): e14. DOI 10.5808/GI.2020.18.2.E14; Nishimura K., Moriyama R., Katsura K., Saito H., Takisawa R., Kitajima A., Nakazaki T. The early flowering trait of an emmer wheat accession (Triticum turgidum L. ssp. dicoccum) is associated with the cis-element of the Vrn-A3 locus. Theor. Appl. Genet. 2018;131(10): 2037-2053. DOI 10.1007/s00122-018-3131-5; Nishimura K., Handa H., Mori N., Kawaura K., Kitajima A., Nakazaki T. Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection. Planta. 2021;253(6):132. DOI 10.1007/s00425-021-03646-9; Nishiura A., Kitagawa S., Matsumura M., Kazama Y., Abe T., Mizuno N., Nasuda S., Murai K. An early-flowering einkorn wheat mutant with deletions of PHYTOCLOCK 1/LUX ARRHYTHMO and VERNALIZATION 2 exhibits a high level of VERNALIZATION 1 expression induced by vernalization. J. Plant Physiol. 2018;222: 28-38. DOI 10.1016/j.jplph.2018.01.002; Preston J.C., Kellogg E.A. Reconstructing the evolutionary history of pa ralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics. 2006;174(1):421-437. DOI 10.1534/genetics.106.057125; Pugsley A.T. Genetic studies of phasic development and their application to wheat breeding. In: Proceedings of the Third International Wheat Genetics Symposium, Australian Academy of Science, Canberra (5-9 August, 1968). Canberra: Australian Academy of Science, 1968;288-293; Pugsley A.T. A genetic analysis of the spring-winter habit of growth in wheat. Austr. J. Agr. Res. 1971;22(1):21-31. DOI 10.1071/AR9710021; Pugsley A.T. Additional genes inhibiting winter habit in wheat. Euphytica. 1972;21(3):547-552. DOI 10.1007/BF00039355; Pugsley A.T. The impact of plant physiology on Australian wheat breeding. Euphytica. 1983;32:743-748. https://doi.org/10.1007/BF00042154; Rigin B.V., Letifova M.S., Repina T.S. Comparative genetics of maturation rate of plant species of genus Triticum L. Genetika (Mosсow). 1994;30(10):1148-1154; Rigin B.V., Zuev E.V., Andreeva A.S., Matvienko I.I., Pyzhenkova Z.S. Comparative analysis of the inheritance of a high development rate in the Rimax and Rico lines of spring bread wheat (Triticum aestivum L.). Trudy po Prikladnoy Botanike, Genetike i Se lek tsii = Proceedings on Applied Botany, Genetics, and Breeding. 2021;182(2): 81-88. DOI 10.30901/2227-8834-2021-2-81-88 (in Russian); Royo C., Dreisigacker S., Soriano J.M., Lopes M.S., Ammar K., Villegas D. Allelic variation at the vernalization response (Vrn-1) and photoperiod sensitivity (Ppd-1) genes and their association with the development of durum wheat landraces and modern cultivars. Front. Plant Sci. 2020;11:838. DOI 10.3389/fpls.2020.00838; Santra D.K., Santra M., Allan R.E., Campbell K.G., Kidwell K.K. Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the USA. Plant Breed. 2009;128(6):576-584. DOI 10.1111/j.1439-0523.2009.01681.x; Shcherban A.B., Salina E.A. Evolution of VRN-1 homoeologous loci in allopolyploids of Triticum and their diploid precursors. BMC Plant Biol. 2017;17(Suppl. 1):188. DOI 10.1186/s12870-017-1129-9; Shcherban A.B., Efremova T.T., Salina E.A. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol. Breed. 2012a;29(3):675-685. DOI 10.1007/s11032-011-9581-y; Shcherban A.B., Emtseva M.V., Efremova T.T. Molecular genetical characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent regions. Cereal Res. Commun. 2012b;40(3):351-361. DOI 10.1556/CRC.40.2012.3; Shcherban A.B., Khlestkina E.K., Efremova T.T., Salina E.A. The effect of two differentially expressed wheat VRN-B1 alleles on the heading time is associated with structural variation in the first intron. Genetica. 2013;141(4-6):133-141. DOI 10.1007/s10709-013-9712-y; Shcherban A.B., Börner A., Salina E.A. Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breed. 2015a;134(1):49-55. DOI 10.1111/pbr.12223; Shcherban A.B., Strygina K.V., Salina E.A. VRN-1 gene-associated prerequisites of spring growth habit in wild tetraploid wheat T. dicoccoides and the diploid A genome species. BMC Plant Biol. 2015b;15(1):94. DOI 10.1186/s12870-015-0473-x; Shcherban A.B., Schichkina A.A., Salina E.A. The occurrence of spring forms in tetraploid Timopheevi wheat is associated with variation in the first intron of the VRN-A1 gene. BMC Plant Biol. 2016;16(3): 107-118. DOI 10.1186/s12870-016-0925-y; Shitsukawa N., Ikari C., Shimada S., Kitagawa S., Sakamoto K., Saito H., Ryuto H., Fukunishi N., Abe T., Takumi S., Nasuda S., Murai K. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 2007;82(2):167-170.; Singh M.P. Monosomic analysis in wheat. Heredity. 1967;22(4):591596. DOI 10.1038/hdy.1967.72; Smith L. Mutant and Linkage Studies in Triticum monococcum and T. aegilopoides. Columbia: University of Missouri, Agricultural Experiment Station, 1939; Smolenskaya S.E., Efimov V.М., Kruchinina Yu.V., Nemtsev B.F., Chepurnov G.Yu., Ovchinnikova E.S., Belan I.A., Zuev E.V., Zhou Chenxi, Piskarev V.V., Goncharov N.P. Earliness and morphotypes of common wheat cultivars of Western and Eastern Siberia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(7):662-674. DOI 10.18699/VJGB-22-81 (in Russian); State Register of Selection Achievements Authorized for Use for Production Purposes. Vol. 1. Plant Varieties (official publication). Moscow: Rosinformagrotekh Publ., 2023 (in Russian); Steinfort U., Trevaskis B., Fukai S., Bell K.L., Dreccer M.F. Vernalisation and photoperiod sensitivity in wheat: Impact on canopy development and yield components. Field Crops Res. 2017;201:108-121. DOI 10.1016/j.fcr.2016.10.012; Stelmakh A.F. Genetics of the habit of development and duration of the growing season of bread wheats. Selektsiya i Semenovodstvo (Kyiv) = Breeding and Seed Production (Kyiv).1981;48:8-15 (in Rus sian); Stelmakh A.F. Genetic effects of the Vrn1-3 loci and the specific effect of the dominant Vrn3 allele on bread wheat. Tsitologiya i Genetika = Cytology and Genetics. 1987;21(4):278-286 (in Russian); Stelmakh A.F. Geographic distribution of Vrn-genes in landraces and improved varieties of spring bread wheat. Euphytica. 1990;45:113118. DOI 10.1007/BF00033278; Stelmakh A.F. Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat. Euphytica. 1993;65:53-60. DOI 10.1007/BF00022199; Stelmakh A.F., Avsenin V.I. Alien introgressions of spring habit dominant genes into bread wheat genomes. Euphytica. 1996;89:65-68. DOI 10.1007/BF00015720; Stelmakh A., Zolotova N., Fayt V. Genetic analysis of differences in duration vernalization requirement of winter bread wheat. Cereal Res. Commun. 2005;33(4):713-718. DOI 10.1556/CRC.33.2005.2- 3.139; Strejčková B., Milec Z., Holušová K., Cápal P., Vojtková T., Čegan R., Šafář J. In-depth sequence analysis of bread wheat VRN1 genes. Int. J. Mol. Sci. 2021;22:12284. DOI 10.3390/ijms222212284; Strejčková B., Mazzucotelli E., Čegan R., Milec Z., Brus J., Çakır E., Mastrangelo A.M., Özkan H., Šafář J. Wild emmer wheat, the progenitor of modern bread wheat, exhibits great diversity in the VERNALIZATION1 gene. Front. Plant Sci. 2023;13:1106164. DOI 10.3389/fpls.2022.1106164; Takumi S., Koyama K., Fujiwara K., Kobayashi F. Identification of a large deletion in the first intron of the Vrn-D1 locus, associated with loss of vernalization requirement in wild wheat progenitor Aegilops tauschii Coss. Genes Genet. Syst. 2011;86(3):183-195. DOI 10.1266/ggs.86.183; Tan C., Yan L. Duplicated, deleted and translocated VRN2 genes in hexaploid wheat. Euphytica. 2016;208(2):277-284. DOI 10.1007/s10681-015-1589-7; Trevaskis B., Bagnall D.J., Ellis M.H., Peacock W.J., Dennis E.S. MADS box genes control vernalization-induced flowering in cereals. Proc. Natl. Acad. Sci. USA. 2003;100(22):13099-13104. DOI 10.1073/pnas.1635053100; Trevaskis B., Hemming M.N., Peacock W.J., Dennis E.S. HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol. 2006;140(4):1397-1405. DOI 10.1104/pp.105.073486; Tsunewaki K. Monosomic analysis of synthesized hexaploid wheats. Japan. J. Genet. 1962;37(2):155-168. DOI 10.1266/jjg.37.155; Tsunewaki K., Jenkins B.S. Monosomic and conventional gene analysis in common wheat. II. Growth habit and awnedness. Japan. J. Genet. 1961;46(11/12):428-443. DOI 10.1266/jjg.36.428; van Beem J., Mohler V., Lukman R., van Ginkel M., William M., Crossa J., Worland A.J. Analysis of genetic factors influencing the deve lopmental rate of globally important CIMMYT wheat cultivars. Crop Sci. 2005;45(5):2113-2119. DOI 10.2135/cropsci2004.0665; Würschum T., Boeven P.H., Langer S.M., Longin C.F., Leiser W.L. Multiply to conquer: copy number variations at Ppd-B1 and Vrn- A1 facilitate global adaptation in wheat. BMC Genet. 2015;16:96. https://doi.org/10.1186/s12863-015-0258-0; Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA. 2003;100(10):6263-6268. DOI 10.1073_ pnas.0937399100; Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., Bennetzen J.L., Echenique V., Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004a;303(5664):1640-1644. DOI 10.1126/science.1094305; Yan L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 2004b;109(8):1677-1686. DOI 10.1007/s00122004-1796-4; Yan L., Fu D., Li C., Blechl A., Tranquilli G., Ramakrishna W., SanMeguel P., Bennetzen J.L., Echenique V., Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA. 2006;103(51):19581-19586. DOI 10.1073/pnas.0607142103; Zhang B., Wang X., Wang X., Ma L., Wang Z., Zhang X. Molecular characterize ation of a novel vernalization allele Vrn-B1d and its effect on heading time in Chinese wheat (Triticum aestivum L.) landrace Hongchunmai. Mol. Breed. 2018;38(10):127. DOI 10.1007/s11032-018-0870-6; Zhang J., Wang Y., Wu S., Yang J., Liu H., Zhou Y. A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor. Appl. Genet. 2012; 125(8):1697-1704. DOI 10.1007/s00122-012-1946-z; Zhang X., Gao M., Wang S., Chen F., Cui D. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front. Plant Sci. 2015;6:470. DOI 10.3389/fpls.2015.00470; Zhang X.K., Xiao Y.G., Zhang Y., Xia X.C., Dubcovsky J., He Z.H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci. 2008;48(2):458-470. DOI 10.2135/cropsci2007.06.0355; Zotova L., Kurishbayev A., Jatayev S., Goncharov N.P., Shamambayeva N., Kashapov A., Nuralov A., Otemissova A., Sereda S., Shvidchenko V., Lopato S., Schramm C., Jenkins C., Soole K., Langridge P., Shavrukov Y. General transcription repressor gene, TaDr1, mediates expressions of TaVrn1 and TaFT1 controlling flowering in bread wheat under drought and slowly dehydration. Front. Genet. 2019;10:63. DOI 10.3389/fgene.2019.00063; https://vavilov.elpub.ru/jour/article/view/4004